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Despite broad application during labor and delivery, there remains considerable debate

about the value of electronic fetal monitoring (EFM). EFM includes the surveillance of fetal

heart rate (FHR) patterns in conjunction with the mother’s uterine contractions, providing

a wealth of data about fetal behavior and the threat of diminished oxygenation and

cerebral perfusion. Adverse outcomes universally associate a fetal injury with the failure

to timely respond to FHR pattern information. Historically, the EFM data, stored digitally,

are available only as rasterized pdf images for contemporary or historical discussion and

examination. In reality, however, they are rarely reviewed systematically or purposefully.

Using a unique archive of EFM collected over 50 years of practice in conjunction with

adverse outcomes, we present a deep learning framework for training and detection of

incipient or past fetal injury. We report 94% accuracy in identifying early, preventable fetal

injury intrapartum. This framework is suited for automating an early warning and decision

support system for maintaining fetal well-being during the stresses of labor. Ultimately,

such a system could enable obstetrical care providers to timely respond during labor

and prevent both urgent intervention and adverse outcomes. When adverse outcomes

cannot be avoided, they can provide guidance to the early neuroprotective treatment of

the newborn.

Keywords: cardiotocography, deep learning-artificial neural network (DL-ANN), fetal brain injury, convolutional

neural network (CNN), prevention

INTRODUCTION

In the United States, there are approximately four million births per year (1). Over 85%
of them are accompanied by electronic fetal monitoring (EFM) in labor with the objective
of safeguarding fetal/neonatal well-being. This surveillance of the FHR pattern (rhythm) in
conjunction with the mother’s uterine contractions provides a wealth of data about fetal
behavior and the threat of diminished oxygenation and cerebral perfusion. Fifty years after
its introduction, however, fetal monitoring continues to inspire debate about its value and
especially its role in the increasing cesarean section rate as well as being a “litogen"—a
stimulus to allegations of medical malpractice (2–10). Reviews of adverse labor outcomes in
numerous countries universally associate adverse fetal outcomes with the failure to timely
respond to the FHR pattern information [(11, 12); Inquiries, personal communication]. Indeed,
various sources affirm that misinterpretation of EFM (or the uncertainty with patterns) has
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contributed to the significantly increased use of cesarean delivery
from 5% in the 1970s to>30% today (13, 14), leading to increased
expenditures, incurring costs in the United States (13, 14) of
over $1 billion per year per 5% of additional cesarean deliveries
(15). Obstetrical liability costs the country ∼$40 billion per
year, of which 70% is accounted for by uncertainty about EFM
interpretation and related brain injury (14, 15).

Earlier and more precise recognition of the precursors of
fetal compromise and the institution of corrective/preventative
initiatives during labor are urgently needed. Only rarely should
urgent delivery be required (16). Additional benefits include
better maternal and child outcomes thanks to the avoidance of
early intervention, lower cesarean delivery rate, and immediate
neonatal monitoring of heart rate pattern, i.e., having the baby
continuously monitored for at least 15min after delivery. Here,
babies seen to be at risk can be evaluated and more aggressively
treated earlier than currently undertaken.

Historically, the EFM data, stored digitally, are available only
as rasterized pdf images for contemporary or historical discussion
and examination (Figure 1). In reality, however, they are rarely
reviewed systematically or purposefully. In the case of a medical–
legal review, it is the paper copy of the tracing, exclusively, that is
likely available and consulted.

We propose a deep learning (DL)-based approach to this
challenge. It is based on a unique archive which collected over
four decades of EFM tracings of babies with known, adverse
outcomes. This archive provides many unique examples of the

FIGURE 1 | Example of FHR (top) and uterine contraction (bottom) during labor, captured simultaneously and stored electronically in a digital format but available only

as a rasterized pdf document.

broad range of healthy, threatened, and injured fetuses along
with their long-term follow-up. Consequently, this archive is
ideal for automating an early warning (preventive guidance)
system for maintaining fetal well-being during the stresses of
labor and delivery that could ultimately enable a health care
provider to timely and conservatively respond during labor
to prevent urgent interventions and adverse outcomes. When
adverse outcomes cannot be avoided, they guide the early
neuroprotective treatment of the newborn. This system utilizes
a unique classification of heart rate and contraction patterns
(details in section Methods), including specific identifiable
indicators (“point A” and “point B”) of the need for attention by
the provider (16–19).

METHODS

Data
For this pilot study, a convenience sample of 36 tracings was
selected. All tracings were derived from singleton pregnancies at
term undergoing a trial of labor with a fetal monitor in place as
previously described (18). Each tracing was considered normal
at the onset of monitoring—an important distinction. The
majority of features were derived from conventional guidelines
(ACOG) including baseline rate, variability, accelerations, and
decelerations. For this study, however, certain operational
definitions of heart rate patterns (Table 1) and uterine
contractions (Table 2) were modified by the subject matter
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TABLE 1 | Definitions of EFM patterns.

Basal heart rate The baseline FHR established at the beginning of

labor with fetus quiescent

Tachycardia Absolute—sustained (>10min) baseline heart rate

above 155 bpm

Relative—sustained (>10min) baseline heart rate

>15 above basal rate

Bradycardia Absolute—sustained (>10min) baseline heart rate

below 110 bpm

Relative—sustained (>10min) baseline heart rate

>15 bpm below the basal rate

Deceleration recovery The response of the fetus to a deceleration

Categories of recovery:

Normal response Prompt return to the previously normal baseline rate

and variability

Adverse response Applies to the recovery of the deceleration but may

persist as a feature of the subsequent baseline heart

rate

Overshoot An acceleration of the FHR immediately following a

deceleration with a duration proportional to the

amplitude of the preceding deceleration. Usually

associated with alterations in baseline rate and

variability

Delayed return A “slow return” to the baseline—likely a sustained

elevation of fetal blood pressure in anticipation of

recovery

Peaked return An abrupt peak at the end of a deceleration

followed by a late deceleration. An ominous

commentary usually leading to fetal death

Decreased/absent variability Persistent diminution in baseline variability <6 bpm

Increased variability Persistent or transient elevation of variability >25

bpm

Sinusoidal pattern Visually apparent, smooth, sine wave-like undulating

pattern in FHR baseline with a cycle frequency of

3–5 per min. Occurs in the absence of a normal

CTG pattern nearby. May be brief or persistent

Checkmark pattern A unique pattern seen in neurologically

compromised/asphyxiated fetuses suggesting

repetitive “checkmarks” () of varying

duration—frequently elicited by a preceding

deceleration

Sawtooth pattern Rapid, high frequency (20+ cpm), low amplitude

(<15 bpm), peaked oscillations in the heart rate that

generally increase in frequency and decrease in

amplitude over time

Conversion A CTG pattern in which there is a dramatic change

in rate, variability, and pattern of deceleration within

1–2 contractions—suggests fetal ischemic injury

expert (Figure 2). These included the basal rate, the use of
relative bradycardia and tachycardia, and the pattern of recovery
of the deceleration.

Identification of EFM Features
Tracing is defined at the outset of monitoring as normal
or abnormal.

A normal tracing is characterized by a stable baseline heart
rate between 110 and 155 bpm, with moderate variability and

TABLE 2 | Definition of excessive uterine activity.

Contraction parameter Average Excessive

Frequency 2–4.5 UC/10min >5/10min (×2)

Intensity 25–75 mmHg Not defined

Duration 60–90 s >90 s

Resting tone 12–20 mmHg >20 mmHg

Interval between peaks 2–4min <120 s

Rest time* 50–75% <50%

Montevideo units Not used

*Rest time—interval when contractions and pushing are absent.

UC, uterine contractions; mmHg, millimeters of mercury.

absent decelerations. An abnormal tracing is characterized by at
least one of the following features:

• baseline heart rate: <100, >155,
arrhythmia, unstable/indeterminate;

• baseline variability: absent, decreased (<6 bpm), increased
(>25 bpm); and

• decelerations: late, variable, undefined.

Thus, for decelerations with normal recovery, no immediate
action is required. They return promptly to the previously normal
baseline variability (5–15 bpm peak to trough and chaotic,
pseudorandom) and heart rate (usually 110–155 bpm and stable);
each fetus has an individually unique baseline (basal rate).
A “normal” deceleration returns to baseline without changing
trajectory, and upon reaching the previous baseline rate remains
there. These features pertain regardless of amplitude, duration,
and timing of the deceleration and signify the comfortable
compensation for the alteration in blood flow represented by
the deceleration.

Point A
Point A denotes the time when the recovery of the deceleration
is no longer “normal” and those additional compensatory
activities are invoked by the fetus to maintain homeostasis.
The detection of Point A signifies that increased attention and
conservative measures are needed in an attempt to restore
homeostasis to the previously normal tracing. These features
include the following:

A. Delayed return to baseline: includes a change in the trajectory
of the recovery such that the return to baseline is delayed
beyond the end of the contraction.

B. Period of increased variability: peak to trough >20 bpm,
frequency 5–10 cycles per min. Duration is also influenced
by the appearance of a subsequent contraction during which
time the pattern disappears—taken over by the deceleration.

C. Overshoot: an acceleration following the upslope of the
return of the deceleration lasting 15 s or more prior to the
return to the baseline.

D. Transient (usually at least 1min) return to a higher baseline
by at least 15 bpm, duration affected by next contraction,
compared to the previously stable baseline.
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E. Transient (at least 1min) return to a lower baseline by at least
10 bpm compared to the previously normal baseline.

F. Excessive uterine activity—irrespective of changes in
FHR pattern.

The detection of Point A alerts the health care provider to
the need for at least conservative intervention in regard to the
maternal condition, the frequency of contractions, or expulsive
efforts during the second stage of labor. Point A is identified
sooner if an excessive uterine activity is present.

Point B
Point B represents the attempt to define significant fetal
compromise or injury, irrespective of the perceived amount of
acidosis (pH) in the fetus. No clinical circumstances are used
in the definition of Point B. Point B was identified by the
subject expert (BSS) via a custom-created digital interface (AWS)
allowing us to feed the annotations directly into the DL model.

These features include the following:

• sustained return to a baseline with diminished/absent baseline
variability, usually accompanied by a rise in the baseline heart
rate; and

• sustained change in baseline rate and variability with
adverse features (Table 1) occurring within 5 to 10min of a
previously normal rate and variability—usually with recurrent
variable decelerations.

DL Pipeline
We present a method for automated extraction of features in
FHR and uterine contractions (UCs), which are outlined in the
above section.

Briefly, the method includes acquiring a set of non-digitized
charts, digitally assigning markers to predetermined features
in the charts, supplying the assigned marker-feature sets to
a supervised model, statistically iterating over the assigned
sets, automatically assessing model performance, and applying
the model to new sets of charts to extract non-assigned
predetermined features.

The method for automated chart processing includes
analyzing time-series sets of non-digitized charts of FHR and/or
concurrent maternal UC to digitally associate markers with fetal
signatures, using the associated groups for supervised training
of an artificial intelligence model, determining accuracy and
precision of the model, and applying the trained model to
automatically process new time-series sets of one or more charts
of FHR and concurrent maternal UC, having one or more
unassociated fetal signatures.

To achieve this goal, we treat scanned EFM recordings as
non-vectorized images, similar to digital photographs, and apply
supervised machine learning to extract and process features to
train an artificial intelligence model. An image is supplied to
a convolution neural network (CNN) model (20). The image
is represented as one or more numeric arrays of pixel values
with varying signal counts associated with the pixel content. The
pixel content is dictated by the amount of red, green, blue, or
other spectral bands that the pixel may receive and is an integer
number in one or more dimensions. The CNN is represented

as a set of algorithmic layers into which the numeric pixel data
are sent. It consists of a series of convolutional layers, non-linear
layers, pooling layers, and fully connected layers. Each such layer
may be considered an individual set of equations, where the
output of one equation becomes the input to another. The CNN
eliminates the need for manual feature extraction, as the features
are acquired through the passing of the pixel data to one or more
other layers, and correlations are extracted and weighted as a
consequence of the layer transitions.

We implement a single-shot detector (SSD) algorithm to
achieve this goal (21). It utilizes a standard CNN network (e.g.,
VGG-16) with an additional set of convolution layers to identify
discrete locations of one or more features in one or more images
(22). The SSD codebase is available here: https://github.com/
zhreshold/mxnet-ssd.

Through a single pass in the CNN, the weighted correlations
meant to describe the relevant features are tested against ground
truth data (validation data), separate from training data. The
goal of this statistically iterative operation is to minimize a
loss function between the predicted correlations and the truth
values through adaptively updating the weights of the predicted
function. The process of adjusting the weights continues until a
minimum statistical loss is obtained.

The output model and weights are then used for inference
against the withheld (unseen) dataset to extract similar
relevant information.

Sample Selection and Processing
Briefly, in this study, we implemented a conventional random
80/20 train/test split. This corresponded to 26.4 h of training on
EMF image information and 6.6 h used for testing (validation).

That is, the EFM images were flipped/translated, and the noise
was added to represent more of the variability observed in the
original pdfs.

The samples used in the analysis were 36 unique medical
case reports in the form of a static pdf. The pdfs were split
and converted into individual PNG images, one PNG per page
in the pdf. As each pdf report consisted of a different number
of unique pages, the number of images per page varied. In
the end, there were 252 image pages across the 36 individual
medical cases. The images were further cropped automatically
to contain just the graphical data component of the page,
removing headers, footers, and extraneous text. This was then
split into 80/20 train/test datasets, resulting in 202 training image
graphs and 50 test image graphs. Of the 50 test images, 25
were held back for separate validation. The images consolidated
in these training and testing datasets were similar in quality
(bold graphs with discernible FHR features). It should be noted
that many additional pdf reports contained a varying degree
of quality based on the photocopied/scanned/faxed nature of
the captured data. This presented a significant challenge to
create a robust training dataset with representative features. With
202/50 train/test data, significant augmentation was required.
The images were flipped in horizontal space, as that preserved
the domain of the information. A vertical flip would manifest
in features unrepresentative of the FHR signatures. A further
augmentation was required to reduce or sharpen the resolution
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TABLE 3 | Cohort characteristics.

Age, years EGA, weeks BMI BWT, g Apgar 1 Apgar 5

Median 26.5 39.8 31.0 3,325 2 6

25th 21.0 39.1 26.7 3,070.0 1.0 4.0

75th 30.3 40.4 35.9 3,601.8 4.0 7.0

Temporal characteristics of labor (h:min)

1st 2nd Labor Point A Point A to Delivery Point B Point B to Delivery

Median 14:24 3:35 23:10 13:38 4:01 10:30 0:43

25th 1:30 2:49 16:33 5:44 1:52 4:20 0:23

75th 13:30 5:20 10:12 20:43 5:18 18:20 1:37

of the images, to better capture the variability of the pdf graphs.
In the end, 808 images were used in training and 200 in testing.
These data are still rather shallow for DL, as the feature space
and EFM signatures possible are vast. In future work, further data
must be included in order to fully represent the feature space of
the variabilities of both the documents and the EFM signatures.
As an SSD algorithm was leveraged to isolate the EFM events,
the images were manually annotated with standard data labeling
practices, and output into the Pascal VOC XML format (http://
host.robots.ox.ac.uk/pascal/VOC/).

RESULTS

The demographics and clinical characteristics are summarized in
Table 3. There were 11 outcomes with a pH <7.00. Table 3 also
denotes the duration and timing of the first and second stages of
pushing, Point A and Point B.

There were numerous points in the dataset that were
abnormal but did not trigger Point A. Isolated but persistent
changes in baseline rate, baseline variability, and excessive uterine
activity are commonplace and do make the tracing abnormal
without evoking Point A. Eventually, Point A was reached in
all instances in this dataset. As such, from a machine learning
perspective, this is a balanced dataset. This is also implied by the
column “Point A to delivery” (Table 3).

As a step toward developing this proactive fetal surveillance
system, we have created an artificial intelligence model using
a basic SSD DL approach to retrospectively identify critical
features in the EFM data (cardiotocography) from the rasterized
pdf directly (Figure 3). This model creates a classification of
the pattern and identifies critical features of the tracing that
indicate critical and timely points of either conservative or
operative intervention, “Point A” and “Point B." Here, in the
initial implementation, we focused on predicting “Point A.”

This novel application of using pdf rasterized plots as an
image detection DL problem facilitates (1) quick and efficient
deployment against a large record of data without chart digitizing
and (2) packaging and deployment as a lightweight or MobileNet
(23) application useful for immediate integration with a mobile
device, post event.

The model achieved an accuracy of 93.6% in identifying
Point A (i.e., detecting accurately the entire test set of features
comprising Point A) against a small dataset with limited
variability in features.

The average intersection over union (IoU) for the 25
validation images was 0.67, indicating a 67% overlap in the area
with the true annotated feature. Annotated features are described
inTable 1. This was averaged over 47 EFMbounding box features
(true features and negative features) in the 25 images. Of the 47
features, the precision and recall were 87 and 82.5%.

DISCUSSION

Our primary goal was the early identification of abnormal
tracings at the outset (considered Point A) and the early detection
of isolated adverse features (abnormal) whose coalescence (Point
A) demands intervention at a time when correction is likely.
We successfully implemented automated identification of Point
A, indicating threatened fetal decompensation of the highest
relevance for real-time clinical implementation of such an
algorithm. The SSD approach we deployed uses baseline data to
identify Point A. In other words, the expert diagnosis of Point A
on which the model was trained takes the baseline into account
and seeks to identify the patterns comprising Point A in relation
to the baseline.

In response to Point A, conservative rehabilitative measures
include the following:

• diminishing the frequency of uterine contractions;
• diminishing/ceasing pushing during the second stage of labor;
• decreasing infusion of oxytocin; and
• assessing the feasibility of safe vaginal delivery.

However, the suggested measures cannot be ranked in relation to
the probability score of Point A that our model provides as their
sequence is primarily responsive to the feature(s) that prompted
the response. If the problem involves excessive uterine activity,
the care provider is directed to diminish uterine activity. If the
response reveals late decelerations, the care provider is directed
to modify the patient’s position, providing supplemental oxygen,
assisting with maternal blood pressure, etc.
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FIGURE 2 | Definition of Point A and Point B. (Top) A representative raw CTG tracing. (Bottom) The annotated CTG tracing deriving Point A and Point B. See

Tables 1, 2 for details.

FIGURE 3 | (Left) “Point A” identified with a 93.6% accuracy using an SSD trained on the pdf chart images. (Right) Numerous occurrences of “Point A” with high

confidence in green. Red indicates the true “Point A” duration.

Based on our observations of ∼5,000 cases with brain
injury as the birth outcome, 20% of normal patients reach
Point A. About 25% of these revert to normal. Point B
is reached in about 0.5% of the population and in about
30–40% of our observations on brain-injured babies with
subsequent handicaps. We leave it to future work to implement
the prediction of Point B, as this will require training on
larger datasets. These points, together with other key signs in
the FHR, can be displayed for the obstetrical care provider
as part of an early alert and decision support system.
Consequently, the visual signature for training the SSD is
extracted similarly to the method utilized by the physician.
The time-series nature of the FHR may be exploited with an
additional application of a long short-term memory (LSTM)
(24) model for consistent identification and tracking as a
function of event duration. However, to date, only the SSD has
been deployed.

It is important to emphasize that the training of the model
was not based on the detection of acidosis or even low Apgar
score, but whether or not conservative intervention based on the
cardiotocographic pattern (Point A) was deemed necessary and
whether criteria were met for the presumptive diagnosis of fetal
neurological injury (Point B) as described previously (17). There
was no attempt to correlate the outcome results with either pH or
Apgar score of the newborn.

It may be seen as a limitation of the study that we did
not seek correlations with fetal acidosis, Apgar scores, need
for resuscitation, or NICU admission for HIE. However, the
objective of our study was to use DL to prevent urgent
intervention (“rescue”) by identifying the point in the previously
normal tracing before fetal acidosis has developed and where
conservative measures can be expected to restore the tracing to
normal. We see no benefit in employing an artificial intelligence
system to detect acidosis and, simultaneously, the need to rescue
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the fetus that may have already become injured. The system is
designed to work with fetuses with initially normal tracings as no
real benefit can be calculated from an algorithm that begins with
an abnormal tracing where the options for prevention are limited
and early delivery is likely (25).

Another limitation is that here we deliver a proof of concept
only, using a convenience sample of 36 tracings in singleton
pregnancies only. We leave a validation on the larger dataset and
in multiple pregnancies, preterm deliveries, or IUGR fetuses for
future work.

The approach to presenting and interpreting existing
clinical data and annotating the EFM record during labor
can dramatically reduce the need for urgent deliveries and
significantly improve the outcomes of babies and mothers in
labor and for the neonate in the nursery. Improved outcomes,
less urgency, fewer rescues, and better documentation could be a
game-changer for the care of pregnant women and children and
the defense of allegations of obstetrical malpractice.

In future work, to boost the present performance results,
alternatively or additionally, RCNN, LSTM, RNN, support
vector machine, random forest, instance segmentation, image
classification techniques, and/or other DL algorithms and/or
other machine learning techniques can be applied.

The new EFM data can be supplied to the trained model in a
format different from the format of the original training/testing
images. For example, the EFM data can be supplied in the format
of digitized charts, tabularly represented data, a signal received
from one or more devices, etc. In other words, once the model
has been trained, it can be configured to work on similar features

provided in the same and/or other data formats, including live
data. Such an approach allows the model to identify one or more
features of interest and also the location of those features in the
chart(s). This location can be correlated with a time and/or other
dependent variables within the chart and/or a set of charts.

These features of our approach make it attractive to electronic
medical record and physiological monitoring applications well
beyond EFM.

We have shown the feasibility of a DL approach to scan and
detect the ability of the fetus to handle the trial of labor using
standard FHR and uterine activity chart tracings presented to
artificial intelligence in the form of images, the format in which
the majority of such tracings are still stored and presented to the
experts for the determination of the need for intervention and the
timing of the fetal injury. Our DL approach detects these factors
with over 90% accuracy (compared to expert scoring).
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