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While antimicrobial drug development has historically mitigated infectious diseases that are known, COVID‐19
revealed a dearth of ‘in‐advance’ therapeutics suitable for infections by pathogens that have not yet emerged.
Such drugs must exhibit a property that is antithetical to the classical paradigm of antimicrobial development:
the ability to treat infections by any pathogen. Characterisation of such ‘pan‐pathogen’ antimicrobials requires
consolidation of drug repositioning studies, a new and growing field of drug discovery. In this review, a
previously‐established system for evaluating repositioning studies is used to highlight 4 therapeutics which
exhibit pan‐pathogen properties, namely azithromycin, ivermectin, niclosamide, and nitazoxanide.
Recognition of the pan‐pathogen nature of these antimicrobials is the cornerstone of a novel paradigm of
antimicrobial development that is not only anticipatory of pandemics and bioterrorist attacks, but cognisant
of conserved anti‐infective mechanisms within the host‐pathogen interactome which are only now beginning
to emerge. Ultimately, the discovery of pan‐pathogen antimicrobials is concomitantly the discovery of a new
class of antivirals, and begets significant implications for pandemic preparedness research in a world after
COVID‐19.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. The host-pathogen interactome model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. Host-modulating antimicrobials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4. Host anti-infective responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
5. Challenging the antimicrobial lexicon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
6. Bioterrorism and pandemics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
8. Conclusion and future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Availability of data and material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Authors’ contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Code availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Conflict of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Consent to participate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Consent for publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Ethics approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Funding statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

http://crossmark.crossref.org/dialog/?doi=10.1016/j.medidd.2022.100120&domain=pdf
https://doi.org/10.1016/j.medidd.2022.100120
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:praveen.prathapan@trinity.ox.ac.uk
https://doi.org/10.1016/j.medidd.2022.100120
http://www.sciencedirect.com/science/journal/25900986
http://www.elsevier.com/locate/medid


Host response

Death

Disease

Latency

Colonisation

Commensalism

H
os

t d
am

ag
e

H
os

t b
en

ef
it

StrongWeak

Fig. 1. Casadevall and Pirofski’s damage-response framework of micro-
bial pathogenesis. The y-axis denotes host damage as a function of the host
response. Damage can occur throughout the host response, which is
represented by a continuum from ‘weak’ to ‘strong’. Therapeutic intervention
can shift the curve towards benefiting the host, as denoted by the arrow.
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1. Introduction

At the close of the 19th century, the work of Louis Pasteur and
Robert Koch led to the ‘germ theory’ of disease, which stated that
pathogens, too small to see without magnification, can cause disease
[1]. This was reciprocated by Paul Ehrlich’s ‘magic bullet’, which
described the need for chemical drugs that target the pathogen with-
out harming the host [2]. The magic bullet hypothesis was successfully
realised in the 20th century as antibiotics, antifungals, antiparasitics,
and antivirals: therapeutics which treat infectious disease by targeting
the disease‐causing pathogen [3].

Nevertheless, over the ensuing decades, several limitations of the
germ theory for disease have arisen, chief amongst which is the need
to consider the host in determining disease outcome, encapsulated by
the growing success of immunomodulatory therapies in treating infec-
tious diseases [4]. Even today, an increased understanding of the
immune system has facilitated the discovery and development of novel
drug targets and approaches for immunomodulatory interventions [5].
This has led to more advanced types of immune therapies, such as
monoclonal antibodies and cytokines, entering clinical use [6]. During
COVID‐19, a paucity of antivirals led to the most effective treatments
emerging from anti‐inflammatory drugs like dexamethasone [7,8]. A
further limitation of germ theory is the lack of consideration of muta-
ble pathogen properties, such as antigenic determinants, replicative
rates, and tropism, which stimulate immune responses to pathogens
and in turn affect pathogenicity. A more inclusive approach to investi-
gating pathogenesis must consider both the pathogen and host as com-
plex systems that dynamically affect each other [9,10].

Today, these limitations have been consolidated by the ‘host‐
pathogen interactome’ model, which recognises the contributions of
both the host and pathogen in disease outcome [11]. This review high-
lights the development of host‐modulating antimicrobials and the
recent discovery of general anti‐infective signalling pathways such as
STING and MAPK, and contends that deliberation of the host‐
pathogen interactome model requires that antimicrobials should be
defined not merely by their ability to inhibit a pathogen, but by their
propensity to treat disease. This conception, argued henceforth, gives
rise to a new class of antimicrobial, with significant implications for
bioterrorist and pandemic preparedness research in the 21st century.
2. The host-pathogen interactome model

The use of immunomodulatory therapies to treat infectious disease,
such as the recent success of dexamethasone to treat COVID‐19, is
indicative of the need for therapeutic development to consider not
only the disease‐causing pathogen but contributions of the host too.
Casadevall and Pirofski’s seminal damage‐response framework was
propounded as an alternative to host‐based and pathogen‐based sys-
tems; it stated that microbial pathogenesis, whether bacterial, fungal,
parasitic or viral is the outcome of interactions between host and
microorganism [12]. Host damage is identified as a common principle
with which to define and measure this interaction (Fig. 1) [13–15].

The need to consider both the host and pathogen in pathogenesis
has implications for disease characterisation and antimicrobial devel-
opment, the former of which has been addressed by Casadevall and
Pirofski. Currently, classifications of microorganisms are based on phy-
logenetic groups (bacteria, fungi, parasites, viruses) [16,17]. Casade-
vall and Pirofski argue this system is limited as most members of
any group are not pathogenic in a host; of 150,000 fungal species,
for example, only around 150 are pathogenic for humans [17]. How-
ever, classifications based on the perceived capacity of a microorgan-
ism to cause disease are equally inadequate as changes in host immune
function, ecology, and/or behaviour can render them obsolete [18].
Similarly, as discussed later, classifying pathogens based on phyloge-
netic groups has been mirrored by the antimicrobial lexicon, which
2

currently classifies antimicrobials according to their inhibitory activity
against microbial phylogenetic groups (antibiotics, antifungals,
antiparasitics, antivirals), encouraging a bias of therapeutic develop-
ment towards pathogen‐killing as opposed to host‐pathogen interac-
tome targeting and modulation [19].

The use of host damage as the common denominator with which to
categorise pathogens allows pathogens that cause similar types of dis-
eases to be grouped together despite differences in phylogeny and
growth characteristics. According to Casadevall and Pirofski, patho-
gens grouped in a single ‘Class’ can share similarities with regard to
the shape of the damage‐response curve as a function of the host
immune response [20,21]. Ultimately, the host‐pathogen interactome
model crystallises the contemporary view of disease outcome as being
determined both by the contributions of the host as well as the patho-
gen, a marked departure from the classical pathogen‐centred view pro-
pounded in the early 20th century, with ramifications for microbial,
immunological, and antimicrobial studies.
3. Host-modulating antimicrobials

The success of magic bullets and immunomodulatory therapies in
the 20th century and the recent induction of the host‐pathogen interac-
tome model have propelled convergent research into antimicrobials
with host‐modulating properties over the last few decades [22]. Such
‘host‐modulating antimicrobials’ have become a desideratum for all
disciplines of modern antimicrobial development due to lower proba-
bilities of drug interactions associated with higher patient compliance
(compared to the use of immunomodulatory therapies in conjunction
with antimicrobials), increased therapeutic range, and reduced contri-
butions to antimicrobial resistance [23].

The last few years have seen a number of reviews describing vari-
ous ways the host response can be modulated to maximise bacterial
killing whilst minimising inflammatory tissue damage, reflecting a
need for an orthogonal view of treating bacterial infection [24–27].
Host‐directed therapies for bacterial infections have also long been
argued as a strategy to overcome antimicrobial resistance, even emerg-
ing as a promising approach to treat tuberculosis [28–29].

In tandem with antibiotics, canonical antiviral drug development
has been challenged, even before COVID‐19. Traditional antivirals
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target viral proteins, incur higher development costs relative to antibi-
otics, offer limited therapeutic range, and are liable to escape mutant
selection [30]. RNA viruses like SARS‐CoV‐2 are particularly limited in
informational size, and have adapted to subvert multitasking host pro-
teins [31]. Such solutions to the viral information economy paradox
are conserved, offering the chance to leverage dependency on host
proteins with host‐directed antiviral therapies that are more effective,
broad‐acting, and inexpensive [32]. Furthermore, host‐directed thera-
pies can synergise with increased availability of bioactive compounds
(as with the development of nitazoxanide), and recent advances in pre-
cision medicine, such as genome editing, targeted delivery methods,
and RNAi [33]. These advances have been driven by a growing appre-
ciation of host‐virus interactions, the cornerstone of the emerging field
of neo‐virology [34]. Particularly in light of the recent pandemic, a
successful antiviral development paradigm must complement rather
than replace vaccine development for emerging viruses [35]; host‐
directed antivirals can reduce replication and tissue tropism whilst
maintaining viral antigenicity for vaccines [36,37].

As viruses are obligate parasites, similarities exist between antiviral
and antiparasitic development [38]. For example, antimicrobials that
directly target Leishmania parasites have been limited by the evolution
of drug‐resistant phenotypes, a property linked to its genome plasticity
[39]. New strategies that are more refractory to the emergence of drug
resistance target Leishmania viability indirectly via mechanisms target-
ing host‐parasite interactions, including parasite‐released ectokinases
and host epigenetic regulation, which modulate host cell signalling
and transcriptional regulation respectively [40]. Interestingly, several
purported antivirals, including ivermectin, niclosamide, and nitazox-
anide, were discovered as host‐modulating antiparasitic agents.

The past 15 years have seen an acceleration in antifungal drug
development, culminating in an armamentarium of systemic antifun-
gal agents including including amphotericin B (AmB), the azoles,
and the echinocandins [41]. Although their in vitro inhibitory and
direct fungicidal effects are well characterised, antifungals also have
indirect, immune system‐mediated effects on fungi, which are only
now coming to light [42]. Considering the substantial role of the host’s
immune response in regulating fungal infection, a better understand-
ing of these immunopharmacological properties have been argued to
be potentially instrumental in designing rational drug therapies for
invasive fungal infection (IFI) [43,44].

Overall, Casadevall and Pirofski envisioned that a consequence of
the host‐pathogen interactome model would be the unification of a
lexicon which emphasised differences between microbes and specific
microbial attributes instead of highlighting commonalities. Without
this unification, the disciplines of bacteriology, mycology, parasitol-
ogy, and virology become increasingly insular, despite asking similar
questions about the nature of infection. Yet, despite a concerted move-
ment towards host‐modulation in each of these disciplines, unification
has been impeded by the antimicrobial lexicon, which has cemented
the disciplines of antibiotic, antifungal, antiparasitic, and antiviral
development by classifying antimicrobials according to the associated
inhibited pathogen. Promisingly, however, the discovery of conserved
targetable moieties within the host‐pathogen interactome across
pathogen classes may reignite the campaign for unification.
4. Host anti-infective responses

Recent biotechnological advancements have made possible the
characterisation of signalling pathways that are conserved across
infection types [45,46]. For example, profiling global gene expression
and aligning sequences to reference genomes have enabled isolation of
differentially expressed genes pre‐ and post‐infection [47,48]. Selected
genes are assessed against repositories and online databases to probe
enrichment of functional biological pathways, and subnetworks are
constructed by comparing and connecting identified genes to curated
3

protein–protein interaction databases [49]. Traditional monolayer cell
cultures have also been supplanted by human in vitro 3D models which
probe functional multicellular interactions of epithelial and immune
cells (dendritic cells, neutrophils) [50]. A consequence of such highly
detailed mapping techniques is the discovery of general anti‐infective
signalling pathways that may be therapeutically targeted, particularly
STING and MAPK.

To protect against infectious agents, the first line of defence by the
host is activation of innate immune signalling pathways. Such path-
ways are multifactorial, primarily resolving to recognise pathogen‐
associated molecular patterns (PAMPs) [51,52]. For example, detec-
tion of viral RNA particles, such as those associated with COVID‐19,
is achieved by RIG‐I‐like receptors (RLRs) [53]. Host defence counter-
measures, including production of type I interferons (IFNs), are simi-
larly triggered by microbial DNA from bacteria, viruses, and perhaps
parasites, and are regulated by the cytosolic sensor, stimulator of inter-
feron genes (STING) [54,55]. The discovery of STING signalling has
provided considerable insight into microbial pathogenesis, mecha-
nisms of host defence, and causes of inflammatory disease and even
cancer [56]. Regulation of the STING pathway has therefore been sug-
gested as a pan‐pathogen antimicrobial strategy [57]. Given the impor-
tance of STING as a modulator of both antiviral and pro‐inflammatory
responses to viral infection, it is interesting to consider last year it was
shown to have a crucial role in RV‐A and RV‐C rhinoviral replication
[58]. STING also exhibits tissue‐specific localisation of expression in
the lung, thus potentially contributing to protection against respiratory
tract infection [59]. Considering the ability of azithromycin, a pan‐
pathogen antimicrobial, to upregulate virus‐induced type I interferon
responses, its use as a therapeutic for pulmonary bacterial infections,
and the fact that it has been described as a ‘holy grail’ to prevent exac-
erbations in chronic respiratory disease, a molecular mechanism of azi-
thromycin and similar macrolides via STING is conceivable, with
exciting implications for developing future pan‐pathogen antimicro-
bials with well‐characterised host targets [60,61].

The MAP kinases (MAPKs), which include ERK, JNK, and p38 fam-
ilies, comprise an integral part of the host intracellular signalling net-
work, essential for signal transduction from receptors and stimuli to
biological reaction [62–65]. Appropriate functioning of MAPK sig-
nalling is critical to mount effective immune responses, and presents
a broad‐spectrum therapeutic target across pathogen classes, which
drugs like macrolides may exploit [66,67]. Macrolides, including azi-
thromycin, are a class of diverse compounds which span antibiotics,
antifungals, prokinetics, and immunosuppressants. The non‐
antimicrobial properties of macrolides have been suspected as far back
as the 1960s and their successful treating of hyperinflammatory dis-
eases such as diffuse panbronchiolitis (DPB) has served to extend their
use to a number of chronic inflammatory diseases [68]. Macrolides
have been shown to modulate intracellular MAPK, especially
ERK1/2, and the NF‐κB pathway downstream of ERK [69]. As these
pathways exert plethoric cellular functions, including inflammatory
cytokine production, cell proliferation, and mucin secretion, modula-
tion of ERK1/2 and NF‐κB can explain the majority of the reported
immunomodulatory effects of macrolides [70,71]. Intriguingly, how-
ever, specific proteins and receptors targeted by macrolides that affect
MAPK/NF‐κB signalling have not yet been identified, offering an ave-
nue for experimental verification. Indeed, putative binding molecules
may have multiple mechanisms of action. Overall, macrolide treat-
ment of DPB, asthma, bronchiectasis, rhinosinusitis, and CF is made
possible by polymodal modulation exerted at different levels of cellu-
lar signalling; yet among these, modulation of ERK1/2 and transcrip-
tion factors is prominent, consistent, and clearly unrelated to
antimicrobial properties [72].

Due to its broad‐spectrum anti‐infective effect against bacteria, par-
asites, and viruses, several studies have sought to delineate the under-
lying molecular mechanism of nitazoxanide, a thiazolide drug [73].
Tizoxanide, the main active metabolite of nitazoxanide, exerts anti‐



Table 1
Oprea and Overington’s DREL assessment of repositioning studies. A pan-
pathogen antimicrobial is DREL 4 for two or more antimicrobial classes.

Drug repositioning
evidence level

Quality of scientific evidence

0 No evidence; includes in silico predictions without
confirmation

1 In vitro studies with limited value for predicting in vivo/
human situation

2 Animal studies with hypothetical relevance in humans
3 Incomplete studies in humans at the appropriate dose e.g.

proof of concept; few cases from medical records; some
clinical effects observed

4 Well-documented clinical end points observed for
repositioned drug at doses within safety limits
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inflammatory effects by inhibiting the production of pro‐inflammatory
cytokines and suppressing activation of the NF‐κB and the MAPK sig-
nalling pathways in LPS‐treated macrophage cells [74]. Similarly,
niclosamide, a potential pan‐pathogen antimicrobial, was found to
inhibit MAPK/ERK in human glioblastoma studies, indicative of cross-
talk between anti‐infectives and anti‐cancer therapeutics [75]. More-
over, ivermectin, a potential treatment for COVID‐19, reverses drug
resistance in cancer cells via the EGFR/ERK/Akt/NF‐κB pathway
[76]. During viral pathogenesis, signalling pathways governing apop-
tosis, mitogenesis, cell proliferation, metabolism, and cytoskeletal
reorganisation, which are regulated by ERK/MAPK signalling, are
co‐opted for biologic needs of the virus [77]. Development of new
antiviral therapeutics based on clinical trials of ERK/MAPK inhibitors
has thus been suggested for both DNA and RNA viruses, including for
SARS‐CoV‐2 recently [78,79].

As a corollary, it is of no surprise that host‐directed anti‐cancer
therapies exhibit promising anti‐infective properties with pan‐
pathogen potential; these include heat shock protein 90 (Hsp90) inhi-
bitors, tamoxifen, and tyrosine kinase inhibitors such as diarylureas
[80–82].

Autophagy signalling has also emerged as a host pharmacological
target with broad‐spectrum anti‐infective potential. Recently, the Cen-
ters of Excellence for Translational Research (CETR) Program was
founded to develop host‐directed broad‐spectrum anti‐infective agents
against pathogens with pandemic potential. According to their grant
proposal, later funded by the National Institute of Allergy and Infec-
tious Diseases (NIAID), ‘broad‐spectrum host‐directed therapeutics,
once approved for clinical use, can be deployed for emerging patho-
gens, new outbreaks, and pathogens engineered with ill‐intent’ [83].
The goal of this proposal is to generate autophagy pathway‐directed
compounds that are active against a range of taxonomically‐
unrelated pathogens. To accomplish this, a multitude of strategies
are being employed including targeting of Beclin‐1 complexes, genes
and pathways for autophagy‐dependent inhibition of bacterial infec-
tion, and Atg gene‐dependent immunity [84,85].

Virulence factors secreted by pathogens have co‐evolved to manip-
ulate host signalling pathways via a range of mechanisms, including
constitutive pathway activation and subversion of critical signalling
molecules. A major challenge is to discern the orchestra of factors
within the host‐pathogen interactome involved in successful infection,
as well as their spatio‐temporal regulation. Ultimately, the discovery of
conserved anti‐infective pathways is a landmark discovery, not only
for the unification of the microbiological disciplines, but to mechanis-
tically confirm the therapeutic success of existing antimicrobials which
treat diseases pertaining to multiple pathogen classes.
5. Challenging the antimicrobial lexicon

The current taxonomy for antimicrobial drugs does not consider
modern repositioning studies probing orthogonal uses of existing ther-
apeutics. The term antibiotic – literally ‘opposing life’, derives from the
Greek αντι anti, ‘against’ and βίoς bios, ‘life’. This terminology has been
extended to antifungal, antiparasitic, and antiviral drugs, reflecting a
lexicon based on Ehrlich’s magic bullet. Though the lexicon does not
accurately reflect the array of interactions of modern antimicrobials
with the host‐pathogen interactome, this has not been problematic.
Macrolide antibiotics, for example, have been used to treat bacterial
infections with the knowledge that their host‐modulating properties
play a crucial role in pathogen clearance and disease management.
The lexicon is challenged, however, when 1) antimicrobials of one
class exhibit inhibitory or host‐modulating properties characteristic
of another class or 2) antimicrobials are used clinically to treat dis-
eases pertaining to another pathogen class. The ‘antibiotic’ azithromy-
cin and the ‘antiparasitic’ agent nitazoxanide are examples of
antimicrobials that have done both [86–89]; azithromycin is clinically
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deployed against malarial parasites and nitazoxanide treats bacterial
infections like H. pylori [90,91].

Both azithromycin and nitazoxanide are immunomodulatory
agents. Nitazoxanide treatment increases IFNγ‐ and IL‐2‐secreting
CD4+ cells, TLR8‐expressing monocytes, IFNα‐ and IFNβ‐mRNA
expression, mRNA specific for type I IFN inducible genes, and mRNA
specific for genes involved in MHC class I presentation [92,93]. The
antiviral effects of nitazoxanide and its metabolite derivative tizox-
anide result from stimulation of a strong antiviral immune response
mediated by both native and acquired mechanisms. In its over 10 years’
clinical use there has been no reported drug resistance by nitazoxanide
treatment, and attempts to produce resistance under laboratory condi-
tions have failed [94]. The immunomodulatory effects of azithromycin
are more well‐established [95,96]: treatment with azithromycin leads
to reduced pro‐inflammatory cytokine production and inflammation
[97]. Consequently, azithromycin has been repositioned against a
plethora of chronic pulmonary disorders including chronic obstructive
pulmonary disease (COPD), cystic fibrosis (CF), non‐CF bronchiectasis,
bronchiolitis obliterans syndrome, diffuse panbronchiolitis, and
asthma [98]. It is conceivable that the immunomodulatory properties
of azithromycin and nitazoxanide underpin their treatment of a range
of infection types.

With such efficacy against a range of infectious diseases, to define
azithromycin as an antibiotic or nitazoxanide as an antiparasitic agent
oversimplifies their antimicrobial efficacy, precluding discovery of
general infection mechanisms, rapid consideration for pandemics,
and constructive unification of antimicrobial studies. Indeed, in the
present pandemic, several studies addressed this by compiling pan‐
pathogen repositioning histories of therapeutic candidates [99]. In
order to more accurately describe a candidate’s properties as well as
hasten their consideration for pandemics, we previously propounded
a system used to define antimicrobials based on both their ability to
inhibit a pathogen in vitro and treat the corresponding disease in the
clinical setting [100]. This system is based on Oprea and Overington’s
Drug Repositioning Evidence Level (DREL) classification scheme,
which assigns a numerical value to the quality of pharmacological evi-
dence (Table 1) [101]. From this system we determined four antimi-
crobial types (antibiotics, antifungals, antiparasitics, and antivirals)
can correspond to four DREL numbers for a given antimicrobial. An
antimicrobial that is used clinically as an antimalarial and an antiviral
but has no evidence of efficacy against bacteria or fungi is a 0:0:4:4
antimicrobial. The order of the DREL numbers here are: antibiotic = 0,
antifungal = 0, antiparasitic = 4, antiviral = 4. If no investigations
have been conducted for an antimicrobial class of a given therapeutic,
an ‘X’ may be used to denote this.

With an increasing number of repositioning studies being con-
ducted worldwide, particularly in the midst of the current pandemic,
a concomitant taxonomic structure can not only classify potential gen-
eral antimicrobials, but also direct future repositioning studies, facili-
tate comparative therapeutic investigations, and inform treatment



Table 2
BFPV classification of potential pan-pathogen antimicrobials. Each number represents a DREL score for a particular antimicrobial class for a given therapeutic. ‘X’
denotes no investigations conducted. As repositioning studies ensue, DREL numbers for any given therapeutic are subject to change. DREL numbers highlight areas
where more repositioning studies are needed. Cumulative repositioning of an antimicrobial against orthogonal infection types is an indicator of ‘pan-pathogen’
properties. All listed antimicrobials are broad-spectrum therapeutics (i.e. exhibit pan-pathogen pharmacological properties), but azithromycin is the first formally-
recognised pan-pathogen antimicrobial. DREL values listed here are current as of July 2021.

Antibiotic Antifungal Antiparasitic Antiviral

Azithromycin 4 [103] X 4 [104] 3 [105–107]
Ivermectin 1 [108] X 4 3 [109,110]
Niclosamide 2 [111–113] X 4 2 [114]
Nitazoxanide 3 [115,116] X 4 3 [117]
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application in global health emergencies [102]. From our classification
system based on DREL we determined azithromycin is a 4:0:4:3
antimicrobial (Table 2) [103–117]. Pan‐pathogen antimicrobials can
therefore simply be defined as antimicrobials that are DREL 4 for
two antimicrobial classes. Previously we propounded the term
‘broad‐spectrum therapeutic’ to denote this; ‘pan‐pathogen antimicro-
bial’ and ‘broad‐spectrum anti‐infective’ are preferred alternatives
[118]. However, the term ‘broad‐spectrum therapeutic’ may be used
to describe a drug with pan‐pathogen pharmacological properties that
have not been fully tested in a clinical setting.

Our system, hereby termed ‘BFPV classification’ (for antiBiotic,
antiFungal, antiParasitic, antiViral; alternatively: Bacterial infection,
Fungal infection, Parasitic infection, Viral infection) scores the effec-
tiveness of an antimicrobial for a particular pathogen type against
three major parameters: in vitro activity, in vivo activity, and clinical
effectiveness. This represents a departure from the magic bullet‐
oriented lexicon by defining an antimicrobial not solely by its ability
to inhibit a pathogen but by its ability to shift the damage‐response
curve towards mitigating damage within the physiological context.
As the Casadevall‐Pirofski model for disease considers contributions
from both the pathogen and host, so the BFPV classification considers
the ability of a given antimicrobial to treat a disease, not merely its
capacity to inhibit a pathogen. This classification would also consider
the effectiveness of non‐antimicrobial therapeutics in treating infec-
tions, such as dexamethasone for COVID‐19. As pan‐pathogen antimi-
crobial development matures as a discipline in its own right, the DREL
system can be replaced by a more accurate framework that classifies
drugs according to the degree to which they reduce damage resulting
from the host‐pathogen interaction as a function of the host immune
response, perhaps based on Casadevall and Pirofski’s ‘Class’ scheme
for host‐pathogen interactomes [20]. The inauguration of the term
‘pan‐pathogen antimicrobial’ results from considering the contempo-
rary view of disease and not only sequesters a novel set of drugs, but
marries them with a particular application: to prepare for pandemics.
6. Bioterrorism and pandemics

The key advantage of pan‐pathogen antimicrobials over single‐
target antimicrobials is the ability to account for diseases that have
not yet emerged either by natural or engineered means. By being
preparatory to pandemics and bioterrorism, the health and economic
value of such drugs are of significance both for governments and
enterprise.

Bioterrorism is a unique subject in the literature, appearing at the
confluence of research publications and government mitigation strat-
egy reports. The term ‘bioterrorism’ is distinct from ‘biowarfare’ with
regard to the origin of the threat being from terrorist groups rather
than nation states. In contrast to conventional warfare, where the
mode of warfare is known, terrorism is more difficult to predict. While
bioterrorism is often taken to mean acts that involve the use of biolog-
ical materials such as bacteria, bacterial spores, and viruses, this is a
limited definition. Indeed, terrorists can deploy a range of agents
5

including classical chemical agents. However, for the scope of this
review and in consideration of the ongoing COVID‐19 pandemic, the
definition is herein limited to biologically viable particles i.e. bacteria,
fungi, parasites, and viruses.

In 2004, the British Association for Lung Research organised a sym-
posium entitled ‘Bioterrorism: The Lung Under Attack’ in which the
lung was identified as a physiological target for gaseous and aerosol‐
based compounds [119]. Understanding the effects of these substances
on the lung was identified as a key consideration in the mitigation of
bioterrorist threats [120]. In 2020, COVID‐19 emerged as a respiratory
viral pandemic, leading to the use of steroid treatments to curb acute
respiratory distress and lung hyperinflammation in affected patients.
Even prior to the pandemic the use of potential pan‐pathogen antimi-
crobials to treat inflammation of the lung was increasing. For example,
in vivo studies showed that ivermectin is an effective suppressor of
inflammation, rationalising its use as a treatment for non‐infectious
respiratory inflammatory diseases such as allergic asthma, similar to
azithromycin [121]. By inhibiting mucus and cytokine release, as well
as inducing bronchorelaxation, niclosamide, another potential pan‐
pathogen antimicrobial, has also emerged as a therapeutic candidate
for inflammatory airway diseases including cystic fibrosis, COPD,
and asthma [122].

A novel mechanism of bronchodilating airways has emerged
through the discovery of antagonists of the Ca2+‐activated Cl‐ channel,
TMEM16A, offering a new mechanism to block multiple contractiles
operating in severe disease [123]. A recent screen of 580,000 com-
pounds identified niclosamide and nitazoxanide as powerful
TMEM16A antagonists preventing depolarisation and contraction of
airway smooth muscle [124]. While isoproterenol, a canonical β‐
agonist, only showed partial bronchodilation of airways, niclosamide
and nitazoxanide showed full effects, representing an important treat-
ment for patients with severe asthma and COPD, in addition to
rationalising current clinical trials against COVID‐19. That current
potential pan‐pathogen antimicrobials are repositioned for a multitude
of respiratory diseases is a further reason to consider their pharmacol-
ogy for future outbreaks and emphasises the need for further research
to unearth underlying mechanisms in relation to physiological context.

The concept of ‘general’ drugs for pandemics is not new. In 2007,
the Strategic Plan for Biodefense Research by the U.S. Department of
Health and Human Services (HHS) and NIAID stated that ‘anti‐
infectives with broad‐spectrum activity directed at common, invari-
able, and essential components of different classes of microbes could
potentially be effective against both traditional and non‐traditional
threats’ [125]. Similarly, the Transformational Medical Technologies
(TMT) initiative, established by the U.S. Department of Defense in
2006, was conceived as a five‐year, USD $1.5‐billion project that
would accelerate the development of countermeasures such as
‘broad‐spectrum’ therapies that would work against multiple bacterial
and viral pathogens, particularly haemorrhagic fever viruses such as
Ebola and Marburg [126]. However, developing broad‐spectrum drugs
has been superseded by the industry‐wide status quo of producing
therapeutics that target a specific infectious disease i.e. ‘one drug‐
one bug’. There are no pan‐pathogen inhibitors that target conserved



Fig. 2. Pharmacological profile of azithromycin, ivermectin, niclosamide, and nitazoxanide during COVID-19 pneumonia pathogenesis. Establishment
of pan-pathogen antimicrobials facilitates discovery of conserved pharmacological properties against multiple pathogen types. For example, lysosomotropicity has
emerged as a desideratum for both antimalarial and antiviral therapeutics. Drug-disease interactions of each pan-pathogen antimicrobial can further provide
mechanistic insights into the general nature of infection. In so doing, pan-pathogen antimicrobials can drive the unification of microbiological and immunological
disciplines, first envisioned by Casadevall and Pirofski. Immunomodulation by cytokine suppression is a prospective hallmark of pan-pathogen antimicrobial
pharmacology.
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properties across pathogen classes (the magic bullet paradigm). How-
ever, by targeting the host‐pathogen interactome, host‐modulating
antimicrobials overcome this limitation, being able to treat diseases
across infection types. This property is what makes host‐modulating
antimicrobials the first to display ‘pan‐pathogen’ properties. Pan‐
pathogen antimicrobials, owing to their clinical safety profile for a
myriad of diseases and anti‐infective efficacy against a range of patho-
gens, satisfy the requirements for a new ‘general’ class of antimicro-
bials for pandemics (‘one drug‐many bugs’), as stipulated by the
current director of NIAID and chief medical advisor to the current U.
S. President, Anthony Fauci (Fig. 2) [127].

7. Discussion

For over a century, drug development has tailored to known dis-
eases and pathogens. To prepare for a novel pathogen, a generalised
drug development strategy is required, au courant with a range infec-
tion types. In theory, both magic bullet and ‘magic blanket’ paradigms
can yield pan‐pathogen antimicrobials. In reality, only one has; host‐
directed therapies that interfere with host cell mechanisms, enhance
immune responses, reduce exacerbated inflammation, and balance
host reactions at the site of pathology hold promise for the selective
and symptomatic treatment of emerging infectious diseases. The suc-
cess of host‐modulating therapies alone represents a century‐
spanning, Kuhnian paradigm shift from the magic bullet. This review
is not a rejection of Paul Ehrlich’s paradigm. Instead, as Einstein expli-
cates: ‘the larger view encompasses rather than rejects the more
restricted view’; azithromycin is still a magic bullet antibiotic, yet its
host‐modulating properties offer undetermined repositioning
potential.

In viral infections such as COVID‐19, targeting host cell factors and
pathways that are required for productive replication and proliferation
offers an opportunity for broad‐acting treatments against both viral
annexation of host cellular processes and ensuing pathophysiology.
Indeed, all four highlighted antimicrobials exhibit host‐directed,
broad‐spectrum antiviral properties, the desideratum of post‐COVID‐
19 antiviral development [9]. In the future, knowledge of host cell fac-
tors and pathways commonly used by different pathogens can be
greatly enhanced by probing host targets of the potential pan‐
pathogen antimicrobials identified in this review. Similarly, identifica-
tion of conserved chemical moieties can lead to synthesis of novel,
more potent pan‐pathogen antimicrobials with reduced contributions
to antimicrobial resistance. As antibiotics and antivirals of the 20th

century became more specific for the bacterium and virus, so antimi-
crobials of the 21st will be increasingly specific for the host (Table 3).

Development of drugs which target the host‐pathogen interactome
has more opportunity for growth relative to magic bullet development
due to the number of target factors yet to be discovered and the need
to curb antimicrobial resistance. In contrast to non‐infectious disease
Table 3
Comparison of two antimicrobial paradigms. Classical antimicrobials con-
tending with a single target exploit phenotypic differences between host and
pathogen. Host-modulating antimicrobials target pathogen properties as devel-
oped through co-evolution with the host. Consequently, while broad-spectrum
antivirals like remdesivir are magic bullets exclusively targeting viruses, host-
directed properties of azithromycin, ivermectin, niclosamide, and nitazoxanide
have rationalised their use against bacterial, parasitic, and viral infections. Pan-
pathogen antimicrobials, therefore, have emerged from magic blanket, not
magic bullet, development.

Magic bullet Magic blanket

Drug class Antimicrobial Host-modulating antimicrobial
Target Pathogen Host-pathogen interactome
Pan-pathogen antimicrobials No Yes
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types, great therapeutic potential also derives from the fact that phar-
macological modulation of infectious diseases is considered within an
acute, not chronic, pathological context, allowing for clinical applica-
tion of more powerful modulators. A caveat, however, is the dynamic
nature of the host‐pathogen interactome across disease pathogenesis.
Indeed, a crucial difference between targeting the host‐pathogen inter-
actome and targeting the pathogen is temporality, and great emphasis
has been placed on the need to develop biomarkers that accurately
reflect the host immunological signature in order to effectively inform
clinical application of host modulators. Biomarkers indicate the stage
of infection, allow the monitoring of treatment success or failure, pro-
vide information on organ involvement and type of inflammation, and
permit patient stratification for selected immunomodulatory therapies.
As biomarkers become increasingly accurate at reflecting immune sta-
tus, so the effects of host‐modulating antimicrobials can be better pre-
dicted. That being said, most immunomodulatory strategies have been
developed without understanding the full complexity of their interac-
tions with the host and hence the fact that we do not yet fully under-
stand the complexity of the host‐drug interaction of host‐modulating
antimicrobials need not preclude development and application of
host‐modulating therapies; rather identification of successful magic
blankets can inspire further investigations into the nature and context
of their pharmacological targets. As was the case for magic bullets a
century ago, current understanding of host‐modulating antimicrobials
is still in its infancy, and offers an exciting avenue for further research.
8. Conclusion and future directions

This review represents the first time ‘pan‐pathogen’ has been recog-
nised as a pharmacological property. Azithromycin, ivermectin, niclo-
samide, and nitazoxanide assert an advantage over traditional
antibiotics and antivirals in their ability to treat a wider range of infec-
tious diseases by regulating the host‐pathogen interactome, evidenced
by their extensive repositioning history and recent spotlighting during
the pandemic. While this review cannot endorse the use of these drugs
either for the current pandemic or future biological events, such broad‐
acting drugs are nonetheless a terminus a quo for the research and
development of ‘emergency drugs’ for future global health crises.
The growing practice of repositioning existing drugs for infectious dis-
eases can alternatively be considered the sole method of pan‐pathogen
antimicrobial discovery, such that modern antimicrobial repositioning
programmes have profound contributions to 21st century antiviral
development. Indeed, pan‐pathogen antimicrobials are a novel antivi-
ral class, one that is associated with pandemic preparedness research.
Formal recognition of pan‐pathogen antimicrobials can catalyse the
long‐campaigned unification of the disparate fields of bacteriology,
fungology, parasitology, and virology, all while heralding a paradigm
of antimicrobial development conceptually distinct from the antibiotic
era of the 20th century. Finally, pan‐pathogen antimicrobials are the
most powerful antimicrobials ever conceived.
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