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Tumor-infiltrating immune cells (TIICs) have become an important source of markers for
predicting the clinical outcomes of cancer patients. However, measurements of cellular
heterogeneity vary due to the frequently updated reference genomes and gene
annotations. In this study, we systematically collected and evaluated the infiltration
pattern of 65 immune cells. We constructed the Immune Cell Pair (ICP) score based on
the cell pair algorithm in 3,715 samples and across 12 independent cancer types, among
which, the ICP score from six cancer types was further validated in 2,228 GEO samples.
An extensive tumorigenic and immunogenomic analysis was subsequently conducted. As
a result, the ICP score showed a robust reliability and efficacy in predicting the survival of
patients with gliomas, in pan-cancer samples, and six independent cancer types. Notably,
the ICP score was correlated with the genomic alteration features in gliomas. Moreover,
the ICP score exhibited a remarkable association with multiple immunomodulators that
could potentially mediate immune escape. Finally, the ICP score predicted
immunotherapeutic responses with a high sensitivity, allowing a useful tool for
predicting the overall survival and guiding immunotherapy for cancer patients.

Keywords: immune cell, glioma microenvironment, cell pair algorithm, immunotherapy, prognostic model
Abbreviations: TIICs, tumor-infiltrating immune cells; ICP, immune cell pair; NK, natural killer; GEO, Gene Expression
Omnibus; TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; RMA, robust multichip average; FPKM,
fragments per kilobase million; TPM, transcripts per kilobase million; SNV, single-nucleotide variant; SNP, single-nucleotide
polymorphism; INS, insertion; DEL, deletion; ROC, receiver operating characteristic; AUC, area under the curve; CNV, copy
number variation; MSI, microsatellite instability; HRD, homologous recombination deficiency; CTA, cancer testis antigen;
APM, antigen processing and presenting machinery; TCR, T cell receptor; IFNG, interferon gamma; ISG.RS, interferon
stimulated genes resistance signature; IFNG.GS, IFNG hallmark gene set; CYT, cytotoxic activity; GEP, T cell-inflamed gene
expression profile; ICB, immune checkpoint blockage.
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INTRODUCTION

Tumor-infiltrating immune cells (TIICs), including T cells, B
cells, macrophages, and natural killer (NK) cells, represent the
major components of immune response against a tumor (1).
TIICs not only regulate the immunosurveillance and survival of
cancer (2), but also accelerate tumor progression by creating a
permissive microenvironment that stimulates tumor growth (3).
Accumulating evidences have demonstrated that TIICs were
associated with the clinical outcomes in various cancer types,
including breast cancer (4), ovarian cancer (5), pancreatic tumor
(6), lung adenocarcinoma (7), head and neck squamous
cell carcinoma (8), and melanoma (9). However, efforts are
still needed for a deep understanding of the immune
activity of TIICs in the tumor microenvironment. So far,
classic methods estimating TIICs include flow cytometry,
immunofluorescence, and RNAseq. However, unified results
may appear due to the different intervention factors in each
method or different reference genomes. It should be noted
that the fraction of each TIICs is within a relatively stable
range. Thus, investigating the ratio of different TIICs is
interesting and promising in optimizing the research about
tumor microenvironment.

Previous studies have elucidated the tumor microenvironment
in different cancer types, among which, glioma is one of the most
common and malignant brain tumor with leading cancer-caused
death rates. Currently, the clinical outcome of glioma patients is
still dismal (10). Notably, glioma patients with similar clinical
features tend to have a different prognosis due to the high level of
heterogeneity, which greatly sets back the prospect for the
prognosis of glioma patients. Previous studies have successfully
extracted the TIICs from gliomas, aiming to provide a convincing
evidence of the existence of abundant TIICs in gliomas
microenvironment and provide important insights into
immunotherapeutic approaches (11). The abundant available
datasets of gliomas also facilitate the investigation on gliomas.
Altogether, developing a TIIC-based signature in glioma and
some other malignant cancer types can help in determining the
prognostic value of TIICs, furthermore, improve the efficiency of
immunotherapeutic approaches that activate the tumor-specific
immune response.

In this study, 65 immune cell types were incorporated into the
construction of the prognostic signature, the abundance of which
was estimated in the glioma cohort and six independent cancer
types to identify the immune cell types with an optimal
prognostic value. Then, the immune cell pair (ICP) score was
constructed based on the infiltration level of the identified
results. ICP score was found to significantly correlate with the
overall survival in glioma patients, six independent cancer types,
and pan-cancer samples. Moreover, the ICP score profoundly
correlates with various tumorigenic mutations in glioma patients
and could sensitively predict the response to immunotherapy
targeting immune checkpoints. This novel immune scoring
system enables an in-depth understanding of tumor infiltrating
immune cells and improves the clinical management of
glioma patients.
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MATERIALS AND METHODS

Datasets Collecting and Preprocessing
Pan-cancer data and the corresponding clinical datasets were
collected from the Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas
(TCGA; https://xenabrowser.net/). The glioma gene expression
profiles and the corresponding clinical datasets were collected
from the GEO, TCGA, and Chinese Glioma Genome Atlas
(CGGA; http://www.cgga.org.cn/). A total of 5,230 pan-cancer
samples of 12 independent cancer types were included in this
study. A total of 3,715 glioma patient samples were collected
from 14 cohorts. Cohorts with more than 50 glioma samples
were included and cohorts with incomplete information on the
overall survival of patients were excluded. In total, 2,228 samples
of 12 cohorts consisting of 6 independent cancer types were from
the GEO. The information of the platforms and numbers of
samples of each cohort is provided in Table S1.

Raw data from the GEO datasets were generated using
Affymetrix and Agilent. The robust multichip average (RMA)
algorithm was used to perform quantile normalization and
background correction of the raw data from Affymetrix. The
consensus median polish algorithm was used for the final
summarizing of oligonucleotides for each transcript in the
Affymetrix software. Limma software was used for processing
the raw data from Agilent. RNA-sequencing data were
downloaded from the TCGA and CGGA data portals, and the
fragments per kilobase million (FPKM) values were transformed
into transcripts per kilobase million (TPM) values that had a
similar signal intensity with the RMA-standardized values from
the GEO datasets (12). R package sva was used to remove the
computational batch effect among each cohort. Each cohort was
processed and normalized independently.

Immune Cell Signature Collection
Immune cell signatures were collected from diverse publicly
available resources through a manually extensive literature
search (13–22). Literatures with the reference genome of
immune cells over the last 15 years were screened out. A total of
65 immune cell signatures were finally integrated by combining
the gene sets of the same immune cell type from different
literatures and excluding non-immune and non-stromal cell
types. These 65 immune and stromal cells included B cells, CD8
T cells, DCs, Macrophages, Neutrophils, Th1 cells, Th2 cells, Mast
cells, NK cells, Erythrocytes, Melanocytes, Megakaryocytes,
Fibroblasts, Astrocytes, Basophils, Monocytes, Endothelial cells,
et al. (Table S2). Thus, this immune cell signature was considered
to be reliable and comprehensive.

Development of a Reliable Prognostic
Signature in Glioma
A prognostic signature was constructed based on stable immune
infiltrating cells. The R package GSVA was applied to implement
the single sample gene set enrichment analysis (ssGSEA) for
calculating the immune enrichment score of 65 immune cell
signatures in three glioma datasets, TCGALGGGBM-RNAseq
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(656 samples), CGGA311 (311 samples), and GSE108474 (414
samples), respectively (23). Univariate Cox analysis was
performed on the 65 immune cell signatures to select the
overlapped prognosis-associated immune cell types whose
expression was significantly associated with patient OS
(P < 0.05) in these three glioma datasets. Prognosis-associated
immune cell types (Ci) were paired with all immune infiltrating
cell types (Cj). For a cell pair started with Ci, Ci and Cj,
Score_ij = 1 (exp_Ci – exp_Cj > 0) and Score_ij = 0 (exp_Ci –
exp_Cj < 0). C-index was adopted to estimate the performance of
each Score_ij and find out the Score_ij with the statistically
significant p-value and highest C-index (16). For each Ci,
Score_ij was identified with the highest C-index. For the
obtained cell pairs, cell pairs were sorted with the HR > 1 and
duplicate cell pairs were removed. Then, the ICP score was
calculated as the sum of these selected Score_ij:

ICP score = S Score_ij

ICP score was then validated in all included 14 glioma cohorts
and the Xiangya cohort.

Genomic Alterations in the Immune Cell
Pair Score
Somatic mutations and somatic copy number alternations
(CNAs) which corresponded to the glioma samples with RNA-
seq data were downloaded from TCGA. GISTIC analysis was
adopted to determine the genomic event enrichment. CNAs
associated with the two ICP score groups and the threshold
copy number at alteration peaks were obtained using GISTIC 2.0
analysis (https://gatk.broadinstitute.org). The R package
TCGAbiolinks was used for downloading the somatic mutation
data derived from the WES data acquired by Mutect2 (24).
Somatic mutations including the single-nucleotide variant
(SNV), single-nucleotide polymorphism (SNP), insertion
(INS), and deletion (DEL) were analyzed and visualized using
the R package maftools (25). Based on the ascending order of the
p-value, 30 most differentially mutated genes were detected using
Fisher’s exact test. CoMEt algorithm was used to detect the co-
occurrence and mutually exclusive mutations.

Prediction of the Immune Cell Pair Score
in Immunotherapy Response
The IMvigor210 cohort, a urothelial carcinoma cohort treated
with the anti‐PD‐L1 antibody atezolizumab, was included for the
prediction of response to immunotherapy (26). The melanoma
dataset (GSE78220) was also used to predict the response to anti-
PD-1 (pembrolizumab or nivolumab) immunotherapy (27).
Based on the Creative Commons 3.0 License, complete
expression data and clinical data were downloaded from http://
research-pub.Gene.com/IMvigor210CoreBiologies. Raw data
were normalized using the DEseq2 R package, and the count
value or FPKM normalized value were transformed into the
TPM value. ICP score was then constructed independently in
these two datasets.
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Development of a Reliable Prognostic
Signature in Other Cancer Types
Subsequently, the prognostic signature was constructed
independently based on stable immune infiltrating cells in 12
cancer types from the pan-cancer data in TCGA. Univariate Cox
analysis was used to select the prognosis-associated immune cell
types whose expression was significantly associated with patient
OS in each of the 12 cancer types (P < 0.05), respectively.
Prognosis-associated immune cell types (Ci) were paired with
all immune infiltrating cell types (Cj). For a cell pair starting with
Ci, Ci and Cj, Score_ij = 1 (exp_Ci – exp_Cj > 0) and Score_ij = 0
(exp_Ci – exp_Cj < 0). C-index was adopted to estimate the
performance of each Score_ij and find out the Score_ij with the
statistically significant p-value and highest C-index (16). For
each Ci, Score_ij was identified with the highest C-index. For the
obtained cell pairs, cell pairs were sorted with the HR > 1 and
duplicate cell pairs were removed. Then, the ICP score was
calculated as the sum of these selected Score_ij:

ICP score = S Score_ij

Twelve datasets of six representative cancer types were selected
for further validation of the ICP score established in each
cancer type.

RNA Sequencing
RNAstore-fixed tumor tissues from 48 glioma patients were
collected for sequencing. RNA was sheared followed by
sequencing library preparation using the NEBNext Ultra RNA
Library Prep Kit. The Phusion High-Fidelity RNA polymerase, the
Index (X) Primer and the Universal PCR primers. After target
region capture by biotin-labeled probes, the captured libraries
were sequenced on an Illumina Hiseq platform to generate 125/
150 bp paired-end reads. In-house perlscripts were used to process
raw data (raw reads). Then, reads containing adapter and ploy-N,
and low-quality reads were removed to obtain clean data (clean
reads). Reference genome and gene model annotation files were
obtained from the genome website. Index of the reference genome
was built using Hisat2 v2.0.5 and paired-end clean reads were
aligned to the reference genome. FeatureCounts v1.5.0-p3 was
then used to count the read numbers mapped to each gene. TPM
value of each gene was calculated on the basis of the gene length
and reads count.

Statistical Analysis
Kaplan-Meier curves with log-rank test were used to assess
survival difference between groups. The univariate and
multivariate Cox regression analyses were performed to detect
the prognostic factors. Pearson correlation analyses were used to
calculate correlation coefficients. The cutoff value of ICP scores
was calculated using the R package survminer. Based on the
dichotomized ICP scores, patients were grouped as with high or
low ICP score in each data set. Data was visualized using the R
package ggplot2. OncoPrint was used to delineate the mutation
landscape of TCGA by the maftools R package (28).
September 2021 | Volume 12 | Article 694490
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All survivorship curves were generated using R package
survminer. All statistical analyses were conducted using R
software. P < 0.05 was considered statistically significant.
RESULT

Construction of the Immune Cell Pair
Score and Its Prognostic Value
A total of 65 immune cell types were collected from publicly
available resources and analyzed for the construction of ICP score.
In total, 38 overlapped prognosis-associated immune cell types
were identified by univariate Cox analysis performed on the 65
immune cell types in TCGA, CGGA, and GSE108474, respectively
(Table S3). ICP score was calculated based on the predictive
performance of each cell pair constituted from 38 prognosis-
associated immune cell types and all 65 immune cell types
(Figure 1A). Glioma patients were classified into high ICP score
group and low ICP score group based on the cutoff value of the
ICP scores calculated using the R package survminer. High ICP
score was a prognostic marker for poor clinical outcomes in pan-
glioma samples from TCGA, CGGA, and GSE108474 (log-rank
test, p < 0.001; Figures 1B–D, respectively). High ICP score was
also a prognostic marker for poor clinical outcomes in LGG, and
GBM samples from TCGA (log-rank test, p < 0.001, p = 0.00195,
respectively; Figure S2A), CGGA (log-rank test, p < 0.001,
respectively; Figure S2B), and GSE108474 (log-rank test,
p < 0.001, p = 0.05947; Figure S2C). Moreover, a high ICP
score correlated with a worse survival probability in the Xiangya
cohort (log-rank test, p < 0.001; Figure 1E, Table S4). The receiver
operating characteristic (ROC) analyses with the Area Under the
Curve (AUC) of 0.795 confirmed that ICP score was a prognostic
biomarker in predicting the survival status of glioma patients
(Figure 1F). Further, ICP score was a prognostic biomarker in
predicting the 1-year, 3-year, and 5-year survival of glioma
patients, which the AUC of ROC curve was 0.868, 0.879, and
0.801, respectively (Figure 1G). The prognostic value of ICP score
was further verified in all 3,715 glioma samples included in this
study (Figure 2A) and in each of the glioma datasets (Figure 2B).
ICP score could significantly stratify the survival of glioma
patients. The univariate Cox analyses confirmed that ICP score
was a hazardous factor in glioma (Figure 3A).

Validation of the Immune Cell Pair Score
in Other Cancer Types
To further confirm the efficacy and stability of the prognostic
signature from the 65 immune cell types, ICP score was
developed in 12 cancer types from TCGA, respectively. ICP
score predicted a worse survival outcome in all of the 12 cancer
types included (Figure 3C), and the univariate Cox analyses
confirmed that ICP score was a hazardous factor in all of the 12
cancer types (Figure 3B). We then performed the validation of
ICP score in six most representative cancer types (Table S5). As
expected, ICP score was associated with a worse overall survival
in breast cancer (Figure 4A), melanoma samples (Figure 4B),
Head and Neck squamous cell carcinoma samples (Figure 4C),
Frontiers in Immunology | www.frontiersin.org 4
Pancreatic adenocarcinoma samples (Figure 4D), Lung
adenocarcinoma samples (Figure 4E), and Liver hepatocellular
carcinoma samples (Figure 4F).

Genomic Features of the Immune Cell Pair
Score Groups in Glioma
Somatic mutation analysis and copy number variation (CNV)
were performed using the TCGA dataset to explore the genomic
traits of the two ICP score groups. A global CNV profile was
obtained by comparing the two ICP score groups (Figure 5A,
Table S6). According to somatic mutation analysis, mutations in
EGFR (30%), TTN (24%), PTEN (29%), and TP53 (23%) were
most highly enriched in the high ICP score group (Figure 5B). In
comparison, IDH1 (77%), TP53 (48%), ARTX (33%), and CIC
(20%) mutations were enriched in the low ICP score group
(Figure 5C). Missense mutation was the predominant gene
alteration type in all these genes except for ATRX, in which
frame-shifting deletion was the most common type.

Different types of somatic mutations, including the single-
nucleotide variant (SNV), single-nucleotide polymorphism
(SNP), insertion, deletion, and intergenic region (IGR), were
analyzed using the R package maftools. Silent, nonsense,
missense, intronic, 5’ and 3’ UTR mutations were more common
in the high ICP score group than in the low ICP score group
(Figure S3A). While the frequencies of insertion and deletion were
not statistically different between the two ICP score groups, SNPs
were significantly more common in the high ICP score group
(Figure S3B). Among the detected SNVs, C>T appeared to be the
most commonmutation in the high ICP score group (Figure S3C).
The T to A, C to T,t and C to A mutations occurred more
frequently in the high ICP score group than in the low ICP score
group. The top 30 most differentially expressed mutated cancer-
related genes between the two ICP groups are listed in Figure S3D.
Common carcinogenic pathways were more active in the high ICP
score group (Figure S3E). The strongest co-occurrent pairs of gene
alteration in the high ICP score group were PTEN-TP53, RB1-
TP53, TTN-CALN1, and TTN-FLG, which showed that TP53,
PTEN, RB1, and TTN are functionally linked (Figure S3F). On the
other hand, the most mutually exclusive pairs in the low ICP score
group were CIC-TP53 and EGFR-IDH1 (Figure S3F).
Furthermore, the AUC of ICP score for predicting the mutation
status of IDH, CALN1, RB1, EGFR, and PTEN were 0.936, 0.826,
0.835, 0.81, and 0.841, respectively (Figure 5D).

Potential Intrinsic Immune Escape
Mechanisms Related to the Immune
Cell Pair Score
The intrinsic immune escape mechanism was reported to mainly
include three aspects: immune checkpoint molecules, tumor
immunogenicity, and antigen presentation capacity (29). We
first explored the association between ICP score and immune
checkpoint molecules which are classified into seven groups,
including antigen-presenting, co-stimulator, co-inhibitor, and
cell adhesion proteins and receptors, ligands, and others (3, 26).
The increasing ICP score positively correlated with the expression
of most immune checkpoint molecules (Figure 6A). In addition,
September 2021 | Volume 12 | Article 694490
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FIGURE 1 | (A) Flow diagram of the cell pair algorithm. Kaplan–Meier curves for the two ICP score groups in (B) TCGA, (C) CGGA, and (D) GSE108474,
respectively. Log-rank test, P < 0.001. (E) Kaplan–Meier curves for the two ICP score groups in the Xiangya cohort. Log-rank test, P < 0.001. (F) ROC curve
measuring the sensitivity of ICP score in predicting the survival status of the patients. The area under the ROC curve was 0.795. (G) ROC curve measuring the
sensitivity of ICP score in predicting the 1-year, 3-year, and 5-year survival of the patients. The area under the ROC curve was 0.868, 0.879, and 0.801, respectively.
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ICP score had a significant positive relationship with some classical
immune checkpoint molecules, including PDCD1, CD274,
PDCD1LG2, TIGIT, HAVCR2, IDO1, and LAG3 in Xiangya
cohort (Figure 6B).

A series of factors associated with tumor immunogenicity was
then assessed (Table S7). The high ICP score group exhibited a
Frontiers in Immunology | www.frontiersin.org 6
lower microsatellite instability (MSI) and homologous
recombination deficiency (HRD) (Figure 7A, Figure S4A).
High ICP score group presented a higher level of intratumor
heterogeneity, nonsilent mutation rate, number of segments,
aneuploidy score, and fraction altered, all of which were
significant indicators for genome alteration (Figure 7B,
A B

FIGURE 2 | (A) Kaplan–Meier curves for the two ICP score groups in all glioma samples. Log-rank test, P < 0.001. (B) Kaplan–Meier curves for the two ICP score
groups in all collected glioma datasets. Log-rank test, P < 0.05.
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FIGURE 3 | (A) Univariate cox regression analyses to estimate the clinical prognostic value between the low/high ICP score groups in independent glioma datasets.
(B) Univariate cox regression analyses to estimate clinical prognostic value between low/high ICP score groups in 12 independent cancer types in TCGA. The length of
the horizontal line represents a 95% confidence interval for each group. The vertical dotted line represents the hazard ratio (HR) in all patients. (C) ICP score was
developed in 12 independent cancer types in TCGA. Kaplan–Meier curves for two ICP score groups in 12 cancer types. Log-rank test, P < 0.001. BLCA, Bladder
Urothelial Carcinoma; BRCA, breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; HNSC, Head and Neck squamous
cell carcinoma; KIRC, Kidney renal clear cell carcinoma; LAML, Acute Myeloid Leukemia; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC,
Lung squamous cell carcinoma; MESO, Mesothelioma; PAAD, Pancreatic adenocarcinoma; SARC, Sarcoma; SKCM, Skin Cutaneous Melanoma.
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FIGURE 4 | Validation of ICP score in 6 representative cancer types. (A) Kaplan–Meier curves for the two ICP score groups in the BRCA dataset, GSE103091. Log-
rank test, P = 0.01615. (B) Kaplan–Meier curves for the two ICP score groups in the SKCM dataset, GSE65904. Log-rank test, P < 0.001. (C) Kaplan–Meier curves
for the two ICP score groups in the HNSC dataset, GSE65858. Log-rank test, P = 0.00921. (D) Kaplan–Meier curves for the two ICP score groups in the PAAD
datasets, GSE57495, GSE71729, and GSE79668. Log-rank test, P = 0.00541, P = 0.01145, and P < 0.001, respectively. (E) Kaplan–Meier curves for the two ICP
score groups in the LUAD datasets, GSE30219, GSE31210, GSE37745, GSE68465, and GSE72094. Log-rank test, P = 0.01055, P = 0.00141, P = 0.02505,
P = 0.01457, and P < 0.001, respectively. (F) Kaplan–Meier curves for the two ICP score groups in the LIHC dataset, GSE76427. Log-rank test, P = 0.01108.
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A
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D

FIGURE 5 | Genomic features of ICP score. (A) GISTIC 2.0 distribution of gain or loss of function mutation in gliomas with high and low ICP score. Chromosomal
locations of peaks of significantly recurring focal amplifications (red) and deletions (blue) are presented. (B) List of the most frequently altered somatic mutation
genes in the high ICP score group. (C) List of the most frequently altered somatic mutation genes in the low ICP score group. (D) ROC curve measuring the
sensitivity of ICP score in predicting IDH, CALN1, RB1, EGFR, and PTEN mutation status. The area under the ROC curve was 0.936, 0.826, 0.835, 0.81, and
0.841, respectively.
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Figures S4B–D). Cancer testis antigen (CTA) and neoantigens
were a vital source of tumor-specific antigens, and they were
significantly different between the ICP score groups (Figures
S4F–H). In term of antigen presentation capacity (Table S7), the
high ICP score group presented a higher antigen processing and
presenting machinery (APM) score and T cell receptor (TCR)
(Figure 7C, Figures S4I, J). Stroma signatures including TGF-
beta response, leukocyte fraction, CD8, interferon gamma
(IFNG), interferon stimulated genes resistance signature
(ISG.RS), and IFNG hallmark gene set (IFNG.GS) were higher
in the high ICP score group (Figures S4K–P).
Frontiers in Immunology | www.frontiersin.org 10
Immune Cell Pair Score Predicted
Immunotherapeutic Responses
Immunotherapy is innovating the treatment of several solid cancer
types. The response rates of tumor to PD-1 inhibition are reported
to be correlated with the TMB (30), Cytotoxic activity (CYT) (31),
and T cell-inflamed gene expression profile (GEP) (32). To explore
the predictive value of ICP score in immunotherapeutic response,
we analyzed the correlation between ICP score and the above three
immune markers. High ICP score group was found to have a
higher TMB level (Figure 7D), CYT level (Figure 7E), and GEP
level (Figure 7G). Furthermore, ICP score had a significantly
A

B

FIGURE 6 | ICP score correlated with immune checkpoints. (A) Heatmap illustrating the expression pattern of immune checkpoints in ICP score. (B) Scatter plots
depicting a positive correlation between ICP score and eight classical immune checkpoints, including PDCD1, CD274, PDCD1LG2, TIGIT, CTLA4, HAVCR2, IDO1,
and LAG3. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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positive correlation with CYT (Figure 7F) and GEP (Figure 7H).
The ability of the ICP score to predict the response of patients to
immune-checkpoint therapy was explored by assigning the
IMvigor210 cohort patients (urothelial carcinoma dataset) to
different ICP score groups (Table S8). Patients receiving
atezolizumab as the anti‐PD‐L1 therapy with a high ICP score
exhibited a significantly shorter OS compared to patients with a
low ICP score (Figure 7I). Patients with a low ICP score exhibited
Frontiers in Immunology | www.frontiersin.org 11
better immunotherapeutic responses (Figure 7J). ICP score was a
prognostic biomarker in predicting patient survival status in the
IMvigor210 cohort (Figure 7K). In the melanoma dataset,
GSE78220, patients receiving either pembrolizumab or
nivolumab as the anti-PD-1 therapy with a high ICP score also
exhibited a significantly shorter OS compared to patients with a
low ICP score (Figure 7L; Table S9). Likewise, patients with a low
ICP score exhibited better immunotherapeutic responses
A B C D

E F G

I J K

H

L M N O

FIGURE 7 | The predictive value of ICP score in immunotherapy. (A) MSI score in high and low ICP score. (B) APM score in high and low ICP score. (C) Intratumor
Heterogeneity in high and low ICP score. (D) TMB expression differences in high and low ICP score. Differences between groups were compared through the
Wilcoxon test (Wilcoxon, P < 0.001). (E) CYT and (G) GEP expression differences in high and low ICP score. Differences between groups were compared through
the Wilcoxon test (Wilcoxon, P < 0.001). Scatter plots depicting a positive correlation between ICP score and (F) CYT and (H) GEP. Pearson Correlation Coefficient
R = 0.529 and 0.727, respectively. (I) Kaplan–Meier curves for the two ICP score groups in the IMvigor210 dataset. Log-rank test, P < 0.001. (J) ICP score in
groups with different anti–PD-1 clinical response status (CR, PR, SD, PD). Differences between groups were compared by Kruskal-Wallis test (Kruskal-Wallis,
P = 0.0053). (K) ROC curve measuring the sensitivity of ICP score in predicting the survival status of patients in the IMvigor210 dataset. The area under the ROC
curve was 0.642. (L) Kaplan–Meier curves for the two ICP score groups in the GSE78220 dataset. Log-rank test, P < 0.001. (M) ICP score in groups with different
anti–PD-1 clinical response status (CR/PR and SD/PD). Differences between groups were compared by Wilcoxon test (Wilcoxon, P = 0.0014). (N) ROC curve
measuring the sensitivity of ICP score in predicting the survival status of patients in the GSE78220 dataset. The area under the ROC curve was 0.863. (O) TIDE
value and response to immunotherapy of patients with ICP score. Fisher’s test, P < 0.001.
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(Figure 7M). ICP score was also a prognostic biomarker in
predicting patient survival status in the GSE78220 dataset
(Figure 7N). Meanwhile, the TIDE analyses proved that a high
ICP score was less sensitive to anti-PD1 therapy and anti-CTLA4
therapy (Figure 7O).
DISCUSSION

Tumor infiltrating immune cells have been critical in
tumorigenesis by exerting the two-sided effect that both
regulates the immunosurveillance of cancer and creates a
favorable microenvironment for cancer cell survival. Previous
studies have demonstrated the prognostic value of several TIICs
in different cancer types (33, 34). However, the overall survival
under the influence of TIICs in cancers have not been adequately
determined and a consensus-oriented prognostic signature
regarding TIICs has not been reached. Moreover, considering
the differences in the reference genomes and gene signatures of
immune cells used for quantifying RNA-sequencing data, multiple
previous prognostic models may have limitations in the cross-
validation of different transcriptional datasets or different cancer
types. The measurements of cellular heterogeneity vary due to the
frequent updated version of annotation for immune cells and
reference genome, which may impede their extensive application
and set back the prospect for clinical practice (Figure S5) (35, 36).
To resolve this issue, we collected and integrated 65 immune cells
to establish a robust and comprehensive prognostic signature with
the concept of cell pair. As mentioned in the method section, we
focused on the relative expression level of immune cells for the
quantification of the ICP score, which extensively reduced the
effect of the updated annotation of the reference genome,
eliminated the need for data normalization, and increased the
accuracy in designing the signature.

In this study, given the malignancy of gliomas and abundant
publicly available datasets, ICP score was first established in
glioma samples. ICP score could significantly stratify the overall
survival of glioma patients from TCGA and CGGA. Based on the
sequencing data from Xiangya, high ICP score was associated with
a worse survival in glioma patients. Consistently, high ICP score
predicted a worse survival in the other 15 external glioma datasets.
The independent establishment of ICP score was performed in 12
representative cancer types including BLCA, BRCA, CESC,
HNSC, KIRC, LAML, LIHC, LUAD, LUSC, MESO, PAAD,
SARC, and SKCM, all of which proved the predictive value of
ICP score. The univariate cox regression analysis proved that ICP
score was a hazardous marker in both glioma samples and 12
independent cancer types. Furthermore, six most representative
cancer types including BRCA, SKCM, HNSC, PAAD, LUAD, and
LIHC were selected for the validation of the ICP score. As
expected, ICP score served as a hazardous marker, and the
predictive value of ICP score was stable in all of the 12 GEO
datasets. The findings above proved the generality and reliability of
ICP score in predicting the prognosis of cancer patients.
Frontiers in Immunology | www.frontiersin.org 12
Furthermore, the genomic features of ICP score were
annotated in gliomas. The present study finds that the IDH1
missense mutations are overrepresented in the low ICP score
group (77%), in accordance with previous findings that IDH
mutations are more enriched in low grade gliomas and confer
better survival outcomes in glioma patients (37). Likewise, tumor
suppressor TP53, inhibiting GBMmalignancy (38), was found to
be more frequently mutated in the low ICP score group (48%).
Conversely, EGFR, which is the most enriched mutated gene in
the high ICP score group (30%) and whose alteration occurs in
less than 6% of the low ICP score group as identified by somatic
mutation analysis, has been reported to be frequently activated in
GBM and predict worse survival outcomes in glioma patients
(39). Another critical oncogene, PTEN (33), also had higher
mutation rates in the high ICP score group (29%), implying a
more malignant feature of the high ICP score group. Commonly
mutated cancer-related genes were found to be more frequently
expressed in high ICP score group, with PTEN-TP53, RB1-TP53,
TTN-CALN1, and TTN-FLG being the strongest co-occurrent
pairs of gene alteration. PTEN (40), TP53, RB1 (41), CALN1
(42), EGFR (43), and TTN (44) have been previously reported to
play a role in tumorogenesis, in which ICP score exhibited a high
sensitivity in predicting the mutation status of IDH, CALN1,
RB1, EGFR, and PTEN. Thus, ICP score may be a potential
predictor for the oncogenic process.

The potential immune escape mechanisms of ICP score were
summarized and underlined. Immune checkpoint blockage (ICB)
therapy targeting immune checkpoint molecules have demonstrated
remarkable benefits (45). The significant correlation between ICP
score and classical immune checkpoint molecules such as PDCD1,
CD274, TIGIT, and LAG3 suggested that ICP score could be an
effective indicator for immune checkpoint blockage (ICB) therapy
(46–49). Moreover, high ICP score prominently participated in the
regulation of immunomodulators for tumor immunogenicity and
antigen presentation capacity. Low MSI, a diagnostic phenotype
with more malignancy of cancer (50), was more significantly
correlated with a high ICP score. High ICP score was also
detected with higher Intratumor Heterogeneity, a diagnostic
phenotype with more malignancy of cancer (51). Additionally, a
high ICP score had the distinct biological characteristics regarding
stroma signatures such as TGF-beta response, leukocyte fraction,
and ISG.RS compared with a low ICP score, and these stroma
signatures have previously been proved to facilitate the immune
escape of cancer (52). The findings above suggested a novel
orientation for the inclusion of ICP score as the indicators
of immunosuppression.

Immunotherapy, represented by ICB, has become increasingly
promising in tumor treatment. Notably, the IMvigor210 cohort
and the melanoma dataset (GSE78220) treated with the anti‐PD‐
L1 antibody atezolizumab have demonstrated remarkable clinical
outcomes (26, 27). ICP score was then validated in these two
datasets regarding its predictive value of the response to
immunotherapy. As expected, a high ICP score correlated with a
worse survival in both cohorts and predicted a worse response to
immunotherapy. Further, high ICP score correlated with higher
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levels of TMB, CYT, and GEP, all of which are valuable markers in
predicting immunotherapeutic response. Taken together, our
findings revealed the robust value of ICP score in predicting
immunotherapy efficacy.

Of note, more comprehensive analysis of multi-omics
analysis about the functional annotation of immune signature
will greatly complement the findings in this study and ensure the
prospective application of the ICP scoring system. To the best of
our knowledge, we are the first one to collect the comprehensive
immune cell types in cancer and introduce the concept of cell
pair for the establishment of a robust immune signature. The
relative stable ratio of TIICs regarding their abundance in tumor
microenvironment ensures the extensive application and high
sensitivity of this immune signature, and will undeniably help
understand tumor microenvironment and TIICs effects
on immunotherapy.
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