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Abstract: In this work, we study two different approaches to defining the entropy of a quantum
channel. One of these is based on the von Neumann entropy of the corresponding Choi–Jamiołkowski
state. The second one is based on the relative entropy of the output of the extended channel relative to
the output of the extended completely depolarizing channel. This entropy then needs to be optimized
over all possible input states. Our results first show that the former entropy provides an upper
bound on the latter. Next, we show that for unital qubit channels, this bound is saturated. Finally,
we conjecture and provide numerical intuitions that the bound can also be saturated for random
channels as their dimension tends to infinity.

Keywords: quantum channels; random matrices; entropies of quantum states

1. Introduction

One of the important areas of quantum information theory refers to an entropic
picture of quantum states and operations. It is well known that the entropic uncertainty
principle can be applied in quantum key distribution protocols [1,2] in order to quantify the
performance of these protocols. Another possible area where such an approach prevails is
resource theory [3]. The entropic approach in the description of quantum states can also be
useful in studies of quantum phenomena such as correlations or non-locality [4–7]. Another
essential aspect of quantum information theory is studying the time evolution of quantum
systems interacting with the environment. Entropic characterization of quantum operations
can be helpful in the investigation of decoherence induced by quantum channel [8,9]
and in the study of quantum testers [10]. There exists also numerous approaches to the
formulation of entropic uncertainty principles [11–15], which can be useful in the analysis
of quantum key distribution, quantum communication or characterization of generalized
measurements. In [8,9] entropy of quantum channel is defined as the entropy of the state
corresponding to the channel by the Jamiołkowski isomorphism.

In quantum information theory, the relative entropy D(ρ‖σ) = Tr(ρ log ρ− ρ log σ)
plays an important role [16] and can be useful in quantifying the difference between two
quantum states. In terms of quantum distinguishability, relative entropy can be interpreted
as a distance between two quantum states. Nevertheless, it is crucial to remember that it
is not a metric as it does not fulfill the triangle inequality. It can be noticed that quantum
transformation Φ cannot increase of a distinguishability between quantum states ρ, σ
what can be written as D(ρ‖σ) ≥ D

(
Φ(ρ)‖Φ(σ)

)
. This fact, sometimes called the data

processing inequality plays an important role in the context of hypothesis testing [17]. The
quantum relative entropy can also be useful in the quantification of quantum entanglement.
In this context, the amount of the entanglement of a quantum state ρ can be defined as an
optimal distinguishability of the state ρ from separable states e.g., min

σ∈SEP
D(ρ||σ), where

minimization is performed over separable states. It can be noticed that the relative entropy
can also be used to define of von Neumann entropy of ρ as S(ρ) = log d− D(ρ‖1l/d). This
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definition shows that the entropy of a quantum state is related to its distance from the
maximally mixed state.

The first approach to defining the entropy of a quantum channel was proposed by
Życzkowski [8], where the entropy of a quantum operation was defined as the von Neu-
mann entropy of its corresponding Choi–Jamiołkowski state. A decade later, the approach
discussed in the previous paragraphs, useful for defining the entropy of quantum states
was utilized by Gour and Wilde [18], where relative entropy of quantum channels was
introduced. According to their approach, the von Neumann entropy of the quantum
channel is given by an optimized relative entropy of the output from an extended channel
relative to the output of the extended depolarizing channel. The optimization is performed
over all possible input states. Moreover, there is also a possibility to define other infor-
mation measures, e.g., conditional entropy or manual information, in terms of relative
entropy. Recently the relative entropy of quantum channel and its generalizations are used
in resource theory [19], studies of quantum channels e.g., distinguishability [20], quantum
channel discrimination [21] or channel capacity [22,23].

2. Preliminaries

Let X , Y denote complex Euclidean spaces, let dim(X ) denote the dimension of the
space X and L(X ,Y) denotes a set of linear operators from X to Y . For simplicity we will
write L(X ) ≡ L(X ,X ). If ρ ∈ L(X ) is Hermitian (ρ = ρ†), positive semi-definite (ρ ≥ 0)
and a trace-one (Trρ = 1) linear operator then ρ is called as density operator. To keep
our expressions simple, we will write the density operator corresponding to a pure states
as lowercase Greek letters φ ≡ |φ〉〈φ|. In order to keep track of subspaces of composite
systems we will write ρAB ∈ L(XA ⊗XB).

The set of all such mapping Φ : L(X ) → L(Y) will be denoted by T(X ,Y) and for
brevity, we will write T(X ) ≡ T(X ,X ). A mapping that is completely positive and trace-
preserving is called a quantum channel. The set of all quantum channels will be denoted
C(X ,Y). There exists a well-known bijection between the sets C(X ,Y) and L(Y ⊗X ), the
Choi–Jamiołkowski isomorphism. It is given by the relation

DΦ = (Φ⊗ 1l)(φ+) (1)

where |φ+〉 = ∑dimX
i |ii〉 and DΦ is called the dynamical matrix or Choi matrix. Normal-

ized DΦ known as the Choi–Jamiołkowski state. It will be denoted as JΦ = DΦ/TrDΦ.
The von Neumann entropy of ρ ∈ L(X ) is defined by the following formula

H(ρ) = −Trρ log ρ, (2)

similarly to the classical Shannon entropy. This equation can be rewritten using the
notion of relative entropy, which is defined for states ρ and σ analogously to its classical
counterpart [24].

D(ρ‖σ) = Trρ(log ρ− log σ). (3)

Here we use the convention that D(ρ‖σ) is finite when supp(ρ) ⊆ supp(σ). Otherwise,
we put D(ρ|σ) = ∞. Thus, we can rewrite Equation (2) as

H(ρ) = log dim(X )− D(ρ‖ρ∗), (4)

where ρ∗ = 1l/ dim(X ).
The definition of quantum relative entropy can be extended to the case of quantum

channels in the following manner [18].

D(Φ‖Ψ) = sup
ρAR∈L(XA⊗XR)

D
(
(Φ⊗ 1l)(ρAR)‖(Ψ⊗ 1l)(ρAR)

)
. (5)
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The state ρAR can be chosen as a pure state and the space XR can be isomorphic to XA.
Utilizing Equation (5) we get the following definition of the entropy of a quantum channel

Definition 1 ([18]). Let Φ ∈ C(XA,XB). Then its entropy H(Φ)is defined as

H(Φ) = log dimXB − D(Φ||R), (6)

whereR ∈ C(XA,XB) is the depolarizing channelR : ρ 7→ (Trρ) 1l/ dim(XB).

The quantum entropy was also defined in the same matter in [17]. However, there
exists an earlier definition of entropy of a quantum channel. In [8,9], the quantum channels
was characterized by the map entropy, which was defined as the entropy of corresponding
Jamiołkowski state. It reads

Definition 2 ([8]). Let Φ ∈ C(XA,XB). Its entropy H(Φ) is given by the entropy of the
corresponding Choi-Jamiołkowski state

HK(Φ) = H(JΦ). (7)

The above entropy achieves its minimal value of zero for any unitary channel and the
maximal value of 2 log dimXB for the completely depolarizing channel. Based on these
two definition we arrive at the following observation.

Lemma 1. Let Φ ∈ C(XA,XB). The two possible definitions of quantum channel entropy H(Φ)
and HK(Φ) fulfill the following relation

H(Φ) ≤ HK(Φ)− log dimXB (8)

Proof. The proof follows from a direct inspection

H(Φ) = log dimXB − sup
|ψ〉∈XA⊗XR

D((Φ⊗ 1l)(ψ)‖(R⊗ 1l)(ψ)). (9)

Let us denote σBR = (Φ⊗ 1l)(ψ). Now we note that (R⊗ 1l)(ψ) = 1l/ dim(XB)⊗ TrAψ
and we use the well known identity log(1l⊗ ρ) = 1l⊗ log ρ and we have

H(Φ) = logXB − sup
|φ〉∈XA⊗XR

(
− H(σBR)− TrσBR

( 1l
dim(XB)

⊗ log TrAψ
))

. (10)

Finally we note that TrσBR
(
1l ⊗ log(TrAψ)

)
= TrTrBσBR log TrAψ and TrBσBR = TrAψ.

Putting this into Equation (10) along with the fact that JΦ is normalized we get the de-
sired result.

The main focus of this work is to find instances that saturate the inequality in Lemma 1.
We will mainly focus on the study of unital qubit channels.

3. Quantum Unital Qubit Channels

In this section we will focus our attention on unital qubit channels, that is Φ ∈ C(C2)
such that Φ(1l) = 1l. Our goal here is to show that the supremum present in Equation (5)
is achieved for the maximally entangled state |φ+〉. This can be formally written as the
following theorem

Theorem 1. Let Φ ∈ C(C2), such that Φ(1l) = 1l. Then

H(Φ) = HK(Φ)− log 2. (11)
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We need to stress here that a non-unital quantum channel Φ still might achieve
H(Φ) = HK(Φ) − log dimXB. Let us consider as a simple example a channel which
creates an arbitrary state σ

Φσ(X) = Tr(X)σ. (12)

We observe that for any input state ρAB ∈ Ł(XA ⊗XB) it holds that

D((Φσ ⊗ 1l)(ρAB)‖(R⊗ 1l)(ρAB)) =

=D(σ⊗ ρB‖1l/ dim(XB)⊗ ρB) = D(σ‖1l/ dim(XB)).
(13)

Hence, the supremum in Equation (5) is achieved for any input state. In particular, we
might choose it to be the maximally entangled state φ+, which gives us the equality. In fact,
the equality will hold when the supremum is achieved for a maximally entangled state.

The remainder of this section contains technical lemmas which combined give the
proof of Theorem 1.

A generic two-qubit state can be written as

|ψAR〉 = U ⊗V(
√

p|00〉+
√

1− p|11〉), (14)

for some qubit unitary matrices U, V. Let us note that the quantum relative entropy is
unitarily invariant D(ρ‖σ) = D(UρU†‖UσU†). Moreover, we use the same the fact that
the Jamiołkowski matrix of channel ΦW(ρ) = Φ(WρW†) has the same spectrum as the
Jamiołkowski matrix of channel Φ, where W is a unitary matrix. Thus, we can skip the
unitary operations in our further investigations. We may perform the optimization taking
into account only the parameter p which quantifies the amount of entanglement between
the input qubits. In order to further simplify notation we will write

|ψAR〉 =
√

p|00〉+
√

1− p|11〉 = |
√

P〉〉 (15)

where |X〉〉 denotes the vectorization of the matrix X and
√

P = diag(
√

p,
√

1− p) and
we define

φP = |
√

P〉〉〈〈
√

P| (16)

In the next step we will check the symmetry of D(Φ‖R) with respect to the parameter
p. Hence, we formulate the first lemma.

Lemma 2. Let Φ ∈ C(C2) and let φP be a two-qubit state as in Equation (16). Then D(Φ‖R) is
symmetric in the parameter p.

Proof. Let us denote Q = diag(1− p, p). It can be checked that(
(σy ⊗ σy)(1l⊗

√
P)DΦ(1l⊗

√
P)(σy ⊗ σy)

)∗
= (1l⊗

√
Q)DΦ(1l⊗

√
Q), (17)

where σy is the Pauli matrix

σy =

(
0 −i
i 0

)
.

This observation combined with the fact

(Φ⊗ 1l)(φP) = (1l⊗
√

P)DΦ(1l⊗
√

P), (18)

gives the symmetry of the entropy

H
(
(Φ⊗ 1l)(φP)

)
= H

(
(Φ⊗ 1l)(φQ)

)
. (19)
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As for the term Tr
(
(Φ⊗ 1l)(φP) log(R⊗ 1l)(φP)

)
observe that

log
(
(R⊗ 1l)(φP)

)
= 1l⊗ log(P/2). (20)

Finally

(σy ⊗ σy)
(

log
(1

2
1l⊗ P

))
(σy ⊗ σy) = log

(1
2

1l⊗Q
)
. (21)

Combining all of these observations yields the lemma.

Subsequently, we prove in next lemma the concavity D(Φ‖R) with respect to the
parameter p.

Lemma 3. Given a unital channel Φ ∈ C(C2) and let φP be a two-qubit state as in Equation (16).

Then the function f (p) = D
(
(Φ⊗ 1l)(φP)||(R⊗ 1l)(φP)

)
is concave.

Proof. For the purpose of this proof let us denote ρ(p) = (Φ⊗ 1l)(φP). Let us also denote

g(p) =Trρ(p) log ρ(p),

l(p) =Trρ(p) log(R⊗ 1l)(φP).
(22)

A direct calculation shows that l(p) = h(p) + log 2, where h(p) = −p log p − (1 −
p) log(1− p) is the point entropy. From this it follows that

d2l
dp2 = − 1

p(1− p)
< 0. (23)

For g(p) we calculate

dg
dp

=Tr
(

ρ′(p) log ρ(p)
)
+ Tr

(
ρ(p)

d
dp

(
log ρ(p)

))
=Tr

(
ρ′(p) log ρ(p)

)
+ Tr

(
ρ(p)ρ−1(p)ρ′(p)

)
.

(24)

Observing that ρ′(p) =
√

JΦ(1l⊗ ρ(p))
√

JΦ we see that the second term in Equation (24) is
equal to zero. Hence, we have

d2g
dp2 = Tr

(
ρ′(p)

d
dp

(log ρ(p))
)

. (25)

From Taylor expansion of derivative formulae for matrix logarithms [25] we get

d
dt

log ρ(p) =
∫ 1

0

(
s(ρ(p)− 1l) + 1l

)−1
ρ′(p)

(
s(ρ(t)− 1l) + 1l

)−1
ds. (26)

Thus,

d2g
dp2 =Tr

(
ρ′(p)

∫ 1

0

(
s
(
ρ(p)− 1l

)
+ 1l
)−1

ρ′(p)
(

s
(
ρ(p)− 1l

)
+ 1l
)−1

ds

)

≤Tr

(
ρ′(p)2

∫ 1

0

(
s
(
ρ(p)− 1l

)
+ 1l
)−2

ds

)
.

(27)
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Now we will focus on the last integral above,

∫ 1

0

(
s ρ(p) + (1− s) 1l

)−2
ds = U

( ∫ 1

0

(
s λ(A) + (1− s) 1l

)−2
ds

)
U† =

= Uλ−1(ρ)U† = ρ(p)−1,

(28)

where λ(ρ) is a diagonal matrix with eigenvalues of ρ on a diagonal and U is a unitary
matrix. According to the above considerations

d2g
dp2 ≤Tr

((
ρ′(p)

)2
ρ−1(p)

)
=Tr

√
DΦ

(
1l⊗ ρ(p)

)√
DΦ
(√

DΦ
)−1(1l⊗ P

)−1(√DΦ
)−1√DΦ

(
1l⊗ ρ(p)

)√
DΦ

=TrJ(1l⊗ ρ(p)P−1ρ(p)) = Tr(TrA J)ρ(p)P−1ρ(p) = TrP−1 =
1

p(1− p)
.

(29)

Combining this with Equation (23) we see that f (p) is concave.

Based on the above lemmas, it can be concluded that supremum in D(Φ‖R), where
Φ(1l) = 1l, is obtained for p = 1

2 , which indicates it is achieved for the maximally entangled
state |φ+〉. Thus, combination of the lemmas proves Theorem 1.

4. Asymptotic Case

In this section, we will show that Equation (8) is saturated in the case of large system
size. Firstly, let us denote dim(XA) = dim(XB) = d. Numerical investigations lead us to
formulate the following conjecture.

Conjecture 1. Let Φ ∈ C(X ) and d = dim(X ). Then as d→ ∞

H(Φ) ' HK(Φ)− log d ' log d− 1
2
+ o(1), (30)

where Φ chosen randomly according to measures introduced in [26].

To provide some intuition behind this conjecture, we first state a theorem which tells
us about the distribution of eigenvalues of the output of an extended random quantum
channel, when the input is also chosen randomly.

In order to properly state the theorem, we will utilize the notion of free multiplicative
convolution of two distributions, µ and ν, denoted µ � ν. This convolution is defined
for two independent random Hermitian matrices A and B, such that at least one of them
is invariant, under conjugation by unitaries. If limiting eigenvalue distributions of the
aforementioned matrices are µ and ν respectively, then free multiplicative convolution gives
us the asymptotic distribution of eigenvalues of the product AB. For a formal definition
and an algorithm for calculating µ � ν we refer the reader to [27].

Theorem 2. Let Φ be a random channel with Jamiołkowski matrix DΦ, we assume that the limiting
distribution of eigenvalues of DΦ is given by µ. Let φ be a random pure state with the limiting
distribution of Schmidt values given by ν. We define

σ = (Φ⊗ 1l)(|φ〉〈φ|), (31)

then the limiting distribution of eigenvalues of σ is given by µ � ν.
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Proof. Note that
|φ〉 = (W ⊗ 1l)∑

i

√
λi|i, i〉, (32)

where W is a random unitary matrix and {|i〉} is the computational basis.

σ = (Φ⊗ 1l)(|φ〉〈φ|) = ∑
ij

√
λiλj(Φ⊗ 1l)((W ⊗ 1l)|i, i〉〈j, j|(W† ⊗ 1l))

= ∑
ij

√
λiλj(ΦW ⊗ 1l)(|i, i〉〈j, j|),

(33)

where ΦW(ρ) = Φ(WρW†), note that Jamiołkowski matrix of channel ΦW has the same
spectrum that the Jamiołkowski matrix of channel Φ. Next we write

σ = ∑
ij

√
λiλj(ΦW ⊗ 1l)(|i, i〉〈j, j|)

= ∑
ij

√
λiλjΦW(|i〉〈j|)⊗ |i〉〈j|

= (1l⊗ diag(
√

λ))DΦW (1l⊗ diag(
√

λ)).

(34)

Now note, that the eigenvalues of σ are the same as eigenvalues of DΦW (1l⊗ diag(λ)),
which gives the result.

Now, we have the following intuition behind our conjecture. Combining the results
from [28,29] with [26,30] we have for large d and uniform distribution of channels

HK(Φ) = 2 log d− 1
2
+ o(1). (35)

Next, we have the following result. Let |φ〉 be a random pure state with the Schmidt
numbers chosen according to some measure ν and let |φ〉 be free from Φ. Then the output
state has its spectrum given by the free multiplicative convolution µ � ν, where µ is the
distribution of eigenvalues of DΦ.

Let us consider following optimization target

D(Φ‖R) = sup
|φ〉∈L(XA⊗XR)

D
(
(Φ⊗ 1l)(|φ〉〈φ|)‖(R⊗ 1l)(|φ〉〈φ|)

)
, (36)

where |φ〉 = (U ⊗V)∑i
√

λi|i, i〉 for some unitary matrices U, V. Note that optimization
result is invariant under local operations U, V on |φ〉, but it depends on λi. It can be
checked that

σ = (Φ⊗ 1l)(|φ〉〈φ|) = (1l⊗ diag(
√

λ))DΦ(1l⊗ diag(
√

λ)) (37)

and
γ = (R⊗ 1l)(|φ〉〈φ|) = 1l/d⊗ diag(λ). (38)

Next consider D(Φ‖R) = sup|φ〉∈L(XA⊗XR)
Trσ log σ− Trσ log γ. Moreover,

Trσ log γ = TrDΦ · 1l⊗ diag
(

λ log
λ

d

)
= TrTrADΦ · diag

(
λ log

λ

d

)
= −H(λ)− log d

(39)
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The above expression reaches minimum for uniform distributed λ and then is equal to
Trσ log γ = −2 log d. Since σ has spectrum given by µ � ν, then

Trσ log σ ' −H(µ � ν), (40)

where � denotes the multiplicative free convolution of measures µ and ν [27]. Assuming
maximal entropy H(λ) = log(d) implies ν = δ(1/d), which behaves like an identity in the
operation �. Here, δ(1/d) denotes the Dirac distribution (i.e., a distribution with all of its
mass localized in 1/d). Hence, we have

H(µ � ν) = H(µ), (41)

which gives us

D(Φ‖R) = 1
2

. (42)

Now, going back to the entropy of the channel Φ we have

H(Φ) ' log(d)− 1
2
+ o(1). (43)

Let us denote by Dir(d, a) a Dirichlet distribution on a d − 1 dimensional simplex
with all parameters equal to a. Then, the intuition behind our assumption that µ = δ(1/d)
is presented in Figure 1. In it, we present the quantity D(σ‖γ) where σ and γ are as in
Equations (37) and (38) respectively. The plots are presented for various distributions ν of
the Schmidt numbers of the input state |ψ〉. The red line shows the case ν = Dir(d, 1), the
blue line shows the case when ν = Dir(2, 1), the yellow line is the case ν = Dir(d, 2) and
finally, the green line shows the case ν = δ(1/d). The dashed line is the quantity log(d)− 1

2 .
As can be seen, the more non-zero Schmidt numbers and the more they are concentrated
in the center of the simplex ∆d−1, the closer we get to the quantity we conjecture. Finally,
when we choose a deterministic distribution in the center of the simplex, we achieve the
optimal value.

10 15 20 25 30

d

1.75

2.00

2.25

2.50

2.75

3.00

3.25

lo
g
(d

)
−
D

(σ
‖γ

)

Figure 1. The quantity D(σ‖γ) where σ and γ are as in Equations (37) and (38) respectively. The
plots are for ν = Dir(d, 1) (red), ν = Dir(2, 1) (blue), ν = Dir(d, 2) (yellow) and ν = δ(1/d) (green).
The dashed line is the quantity log(d)− 1

2 .

5. Conclusions

In this paper, we discuss two approaches to entropic quantification of quantum
channels. We begin our studies with a formulation of a lemma, which describes a relation
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between the entropy of quantum channels proposed by Gour and Wilde [18] and entropy
of Jamiołkowski matrix of quantum channels [8,9]. We show that both definitions give the
same value up to an additive constant in the case of the quantum unital qubit channels.
This part of our considerations uses the mathematical language of distinguishability of
quantum states and channels. Therefore we assume that obtained results can be used
to study resource theories and hypothesis testing. Yet, we need to stress that there exist
non-unital channels which saturate the inequality Equation (8), as shown in the discussion
after Theorem 1.

We also provide a conjecture backed by numerical experiments that both formulas
provide the same results up to an additive constant in the case of large system size.
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30. Kukulski, R.; Nechita, I.; Pawela, Ł.; Puchała, Z.; Życzkowski, K. Generating random quantum channels. J. Math. Phys. 2021,

62, 062201. [CrossRef]

http://dx.doi.org/10.1007/s11128-021-02992-7
http://dx.doi.org/10.1103/PhysRevLett.124.100501
http://dx.doi.org/10.1103/PhysRevA.97.012332
http://dx.doi.org/10.1007/s00220-021-04064-4
http://scipp.ucsc.edu/~haber/webpage/MatrixExpLog.pdf
http://scipp.ucsc.edu/~haber/webpage/MatrixExpLog.pdf
http://dx.doi.org/10.1063/1.5019322
http://dx.doi.org/10.1063/1.3595693
http://dx.doi.org/10.1103/PhysRevA.93.062112
http://dx.doi.org/10.1063/5.0038838

	Introduction
	Preliminaries
	Quantum Unital Qubit Channels
	Asymptotic Case
	Conclusions
	References

