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A B S T R A C T

Background: The study aimed to analyze aberrantly methylated genes, relevant pathways and transcription
factors (TFs) in osteosarcoma (OS) development.
Methods: Based on the DNA methylation microarray data GSE36002 that were downloaded from GEO database,
the differentially methylated genes in promoter regions were identified between OS and normal samples.
Pathway and function enrichment analyses of differentially methylated genes was performed. Subsequently,
protein-protein interaction (PPI) network was constructed, followed by identification of cancer-associated dif-
ferentially methylated genes and significant differentially methylated TFs.
Results: A total of 1379 hyper-methylation regions and 169 hypo-methylation regions in promoter regions were
identified in OS samples compared to normal samples. The differentially hyper-methylated genes were sig-
nificantly enriched in Neuroactive ligand-receptor interaction pathway, and Peroxisome proliferator activated
receptor (PPAR) signaling pathway. The differentially hypo-methylated genes were significantly enriched in
Toll-like receptor signaling pathway. In PPI network, signal transducers and activators of transcription (STAT3)
had high degree (degree=21). MAX interactor 1, dimerization protein (MXI1), STAT3 and T-cell acute lym-
phocytic leukemia 1 (TAL1) were significant TFs enriched with target genes in OS samples. They were found to
be cancer-associated and hyper-methylated in OS samples.
Conclusion: Neuroactive ligand-receptor interaction, PPAR signaling, Toll-like receptor signaling pathways are
implicated in OS. MXI1, STAT3, and TAL1 may be important TFs involved in OS development.

1. Introduction

Osteosarcoma (OS) is the most common primary malignant bone
tumor in children and adolescents. More than 15% of patients with OS
develop metastases, frequently to lung [1]. For patients with metastasis
or recurrence, the long-term survival rate is less than 20% [2,3]. Un-
derstanding of the molecular mechanisms of OS would provide a basis
for developing new therapeutic strategies.

It has been demonstrated that genetic alternations in the status of
DNA methylation count among the most common molecular alterations
in human neoplasia [4]. DNA methylation usually results in obstruction
of the promoter region, hampering gene transcription and causing gene
silencing [5]. Quite a few studies have reported findings related to DNA
methylation in OS. It has been reported that methylation of frizzled-
related proteins (SFRPs) may promote Wnt signaling pathway, thereby
enhancing OS cell invasion [6]. Hyper-methylation of p14ADP-ribosy-
lation factor (ARF) and estrogen receptor 1 (ESR1) have been found in
OS as well, and may have implications in the prognosis of OS patients
[7]. Moreover, Lu et al. [8] have reported that iroquois homeobox 1
(IRX1) enhances OS metastasis and may be a potential molecular

marker. Recent study [9] suggests that promoter hyper-methylation of
reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a
causative factor in metastasis of OS. Despite some advances have been
achieved in this field, certain mechanisms underlying OS remain largely
unknown. Microarray analysis has been applied to identify the gene
alterations and screen potential targets in human OS cell lines [10].
Kresse et al. [11] integrated genomewide genetic and epigenetic pro-
files from the EuroBoNeT panel, a European Network of Excellence on
bone tumors (http://www.eurobonet.eu), of 19 human osteosarcoma
cell lines based on microarray technologies, and deposited the DNA
methylation dataset in the Gene Expression Omnibus (GEO) data re-
pository (accession number GSE36002). In their study, they have
comprehensively analyzed the relationships of DNA copy number, DNA
methylation and mRNA expression in OS. Additionally, they screened
out the differentially methylated genes and performed functional en-
richment analysis. However, the interaction between differentially
methylated genes, and the classification of these genes have not been
analyzed.

Since methylation of CpG islands in promoter regions is a me-
chanism for inactivating genes, we estimated the differentially
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methylated genes in promoter regions between OS and normal samples
from GSE36002 in this study. Pathway and functional enrichment
analyses of differentially methylated genes was then performed.
Subsequently, protein-protein interaction (PPI) network was con-
structed to analyze the interactions between differentially methylated
genes. Furthermore, the classifications of differentially methylated
genes, including tumor suppressor (TS) genes, oncogenes and TFs were
investigated.

2. Materials and methods

2.1. DNA methylation microarray data

The GSE36002 DNA methylation microarray data [11] were
downloaded from GEO database in National Center of Biotechnology
Information (NCBI) (http://www.ncbi.nlm.nih.gov/gds/), based on the
platform of Illumina Human Methylation 27 BeadChip (Illumina Inc.,
California, USA). GSE36002 dataset is comprised of 25 samples: 19
osteosarcoma cell lines samples and 6 normal control samples (four
normal bone samples and two osteoblast cultures).

2.2. Identification of differentially methylated genes

DNA methylation microarray data were processed with simple
scaling normalization using Lumi package (http://bioconductor.org/
packages/release/bioc/html/lumi.html) [12,13] in Bioconductor [14].
Subsequently, the differentially methylated regions (DMR) between
osteosarcoma and normal samples were identified using methyAnalysis
with M-value>1 and false discovery rate (FDR)<0.01.

M-values were calculated by the formula:

− =M value log 2
methylated probe intensity

unmethylated probe intensity (1)

FDR method is also called Benjamini and Hochberg (BH) method
[15], used to adjust p value. In detail, the original p values of all genes
were ranked in descending order. The maximum p value was assigned
as n, and the minimum was assigned as 1. The adjusted p value (FDR)
was calculated as followed:

=FDR original p value*(n/i) (2)

where n represents the number of all genes; i represents the ith p value
(from minimum to maximum).

The identified DMR were performed gene annotation to screen the
differentially methylated sites located in promoter region. Dkhil et al.
[16] have reported that most of the promoters display the changes of
DNA methylation in their Ups-regions, which are between +500 and
+2000 bp upstream from the transcription start site of genes. There-
fore, in consideration of numerous genes in the dataset, the promoter
region was defined as 2000 bp upstream of the transcription start site in
this study.

2.3. Functional enrichment analysis of differentially methylated genes

Functional enrichment analyses included Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways, Reactome pathways and Gene
Ontology (GO) terms analyses. The differentially methylated genes
were performed functional enrichment analysis using GOFunction
(http://www.bioconductor.org/packages/release/bioc/html/
GOFunction.html) in R package. P value<0.05 and count (number of
significantly enriched genes)≥2 were used as thresholds.

2.4. PPI network construction

PPI analysis can provide new insights into protein function, and
uncover the generic organization principles of functional cellular net-
works [17]. Therefore, we constructed PPI network to further analyze

the functions of differentially methylated gene. The Search Tool for the
Retrieval of Interacting Genes (STRING) database (http://www.
mybiosoftware.com/pathway-analysis/7789) provides the information
of both experimental and predicted interactions [18]. With this tool, the
differentially methylated gene pairs with significant interactions
(combine score> 0.9) were identified and used for construction of PPI
network which was visualized using Cytoscape (http://cytoscape.org/)
[19]. In the network, the nodes with higher degrees were defined as
hub nodes.

2.5. Gene classification analysis

Based on tumor suppressor (TS) genes database [20] and tumor
associated genes (TAG) database [21], the known TS genes and onco-
genes were selected from the obtained differentially methylated genes.

2.6. TF analysis

On the basis of the TF-target gene pairs in Encode [22,23], the
differentially methylated genes corresponding to the differentially
methylated TFs were identified. Then according to the obtained TF-
target gene interaction pairs, significant TFs (p value<0.01) were
screened using hypergeometric analysis. The formula of hypergeo-
metric distribution was shown as follows:

= = ∈ …
−

−

kP(X k)
C C

C
{0, 1, 2, m}M

k
N M
n k

N
n (3)

where N represents the total number of genes; n represents the number
of target genes regulated by TF; M represents the number of differen-
tially methylated genes; k represents the number of differentially me-
thylated genes regulated by TF.

3. Results

3.1. Identification of differentially methylated genes

In the study, a total of 2845 differentially methylated loci were
identified in OS samples relative to normal samples, including 1379
hyper-methylation regions and 169 hypo-methylation regions in the
promoter region. Additionally, the numbers of hyper- and hypo-me-
thylated loci in enhancers are shown in Table 1, and in exons and other
regions are shown in Table 2.

3.2. Functional enrichment analyses of differentially methylated genes

Pathway enrichment analysis revealed that the differentially hyper-
methylated genes were significantly enriched in KEGG pathways in-
cluding Pathways in cancer, Bladder cancer, Neuroactive ligand-re-
ceptor interaction, and Peroxisome proliferator-activated receptor
(PPAR) signaling pathways (Table 3). The differentially hypo-methy-
lated genes were significantly related to Cytokine-cytokine receptor
interaction and Toll-like receptor signaling pathways (Table 4). With
regard to Reactome pathways, the differentially hyper-methylated
genes were primarily enriched in Gastrin-CREB signaling pathway via
PKC and MAPK, and G alpha (q) signaling events pathway, while the
differentially hypo-methylated genes were mainly enriched in De-
fensins, and Alpha-defensins pathways (Table 5). For GO function, the

Table 1
The numbers of hyper- and hypo-methylated loci in enhancer region.

Enhancer Hyper Hypo Total

TRUE 43 163 206
FALSE 1490 1071 2561
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differentially hyper-methylated genes were predominately enriched in
developmental process and anatomical structure development
(Table 6), while the differentially hypo-methylated genes were pri-
marily enriched in extracellular region (Table 7).

3.3. PPI network construction

In this study, a PPI network with 442 nodes and 693 PPI pairs was
constructed (Fig. 1). In this network, adenylate cyclase 2 (ADCY2)
(degree=34), proopiomelanocortin (POMC) (degree=29), signal
transducers and activators of transcription (STAT3) (degree=21), neu-
ropeptide Y (NPY) (degree=20), and somatostatin (SST) (degree=18)
with degrees more than 17 were regarded as hub nodes. The sub-net-
work modules that contained the five hub nodes are shown in Fig. 2A–E.

3.4. Gene classification analysis

Among the identified differentially hyper-methylated genes, 27
were found to be oncogenes, 78 were TS genes and 22 were tumor-
associated genes (oncogenes or TS genes). The identified differentially
hypo-methylated genes contained one oncogene, five TS genes and one
tumor-associated gene.

3.5. TF analysis

A total of 76 TFs that were significantly enriched in target genes
were identified (Supplementary material Fig. 1). Among these TFs,
MAX interactor 1, dimerization protein (MXI1), STAT3, and T-cell acute
lymphocytic leukemia 1 (TAL1) were also cancer-associated TFs. In-
terestingly, STAT3 was a hub node in the PPI network. Furthermore, the
methylation levels of the three TFs were up-regulated in OS samples
relative to control samples (Fig. 3).

Table 2
The numbers of hyper- and hypo-methylated loci in exon, promoter and other regions.

Regions Hyper Hypo Total

1stExon 57 489 546
3'UTR 3 8 11
Body 84 619 703
IGR 12 25 37
Promoter 1379 169 1548

UTR: untranslated regions; IGR: intergenic region.

Table 3
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (top 10) of the differentially
hyper-methylated genes.

KEGG ID Name Gene count P value

5200 Pathways in cancer 40 0.002712
4080 Neuroactive ligand-receptor interaction 34 0.004135
3320 PPAR signaling pathway 12 0.007642
4974 Protein digestion and absorption 13 0.009805
4512 ECM-receptor interaction 13 0.014496
5219 Bladder cancer 8 0.014911
4920 Adipocytokine signaling pathway 11 0.015917
5414 Dilated cardiomyopathy 13 0.022575
4916 Melanogenesis 14 0.025452
4340 Hedgehog signaling pathway 9 0.028947

Gene count represents the number of gene enriched in the pathway.

Table 4
The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (top 10) of the dif-
ferentially hypo-methylated genes.

KEGG ID Name Gene count P value

4740 Olfactory transduction 10 0.004797
5320 Autoimmune thyroid disease 3 0.015042
4060 Cytokine-cytokine receptor interaction 7 0.016163
4620 Toll-like receptor signaling pathway 4 0.018845
4950 Maturity onset diabetes of the young 2 0.025692
830 Retinol metabolism 3 0.026061
4622 RIG-I-like receptor signaling pathway 3 0.034039
982 Drug metabolism - cytochrome P450 3 0.036526
4140 Regulation of autophagy 2 0.045367

Gene count represents the number of gene enriched in the pathway.

Table 5
The reactome pathways (top 5) of the differentially hyper- and hypo-methylated genes.

Reactome ID Name Gene
count

P value

Differentially hyper-methylated genes
881907 Gastrin-CREB signaling pathway via

PKC and MAPK
34 6.26E−06

416476 G alpha (q) signaling events 29 8.10E−05
163685 Integration of energy metabolism 19 0.000224877
500792 GPCR ligand binding 51 0.000330922
1474244 Extracellular matrix organization 35 0.000489987
Differentially hypo-methylated genes
1461973 Defensins 7 4.84E−07
1462054 Alpha-defensins 3 0.000113
1592389 Activation of Matrix

Metalloproteinases
4 0.000245

381753 Olfactory Signaling Pathway 11 0.000577
1461957 Beta defensins 4 0.000602

Gene count represents the number of gene enriched in the pathway.

Table 6
The gene ontology (GO) of the differentially hyper-methylated genes.

GO categories Name Gene
count

P value

BP Developmental process 483 1.11E−16
Anatomical structure development 436 2.22E−16
System development 387 4.44E−16
Cell differentiation 323 2.00E−15

CC Extracellular region part 141 1.79E−10
Plasma membrane part 211 1.14E−09
Proteinaceous extracellular matrix 60 1.29E−09
Extracellular matrix 64 1.22E−08

MF Sequence-specific DNA binding 92 3.03E−08
Sequence-specific DNA binding RNA
Polymerase II transcription factor
activity

46 8.37E−07

Voltage-gated cation channel activity 28 9.45E−07
Sequence-specific DNA binding
transcription factor activity

118 1.16E−06

BP: biological process; CC: cellular component; MF: molecular function; Gene count re-
presents the number of gene enriched in GO term.

Table 7
The gene ontology (GO) of the differentially hypomethylated genes.

GO categories Name Gene count P value

BP Keratinocyte differentiation 9 3.54E−07
Epidermal cell differentiation 10 7.98E−07
Keratinization 6 1.88E−06
Defense response 29 3.62E−06

CC Extracellular region 50 3.73E−11
Extracellular space 23 1.18E−06
Extracellular region part 27 1.81E−06
Extracellular region 50 3.73E−11

MF Serine-type endopeptidase activity 8 2.01E−05
Serine-type peptidase activity 8 5.12E−05
Serine hydrolase activity 8 5.56E−05
Monooxygenase activity 6 8.15E−05

BP: biological process; CC: cellular component; MF: molecular function; Gene count re-
presents the number of gene enriched in GO term.
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4. Discussion

OS is a rare malignant tumor with a high tendency of metastasis.
Aberrant methylation of tumor-related genes in the promoter region is
associated with human tumors [24]. In the current study, a total of
2845 differentially methylated loci were identified in OS samples
compared to normal samples, including 1379 hyper-methylation re-
gions and 169 hypo-methylation regions in the promoter region. Al-
though so many differentially methylated loci were identified, not all of
them may involve in OS progression. Further analyses revealed that the
differentially hypo-methylated genes were significantly enriched in
Toll-like receptor signaling pathway, while differentially hyper-me-
thylated genes were significantly enriched in Neuroactive ligand-re-
ceptor interaction pathway, and PPAR signaling pathway. Additionally,
ADCY2 and POMC had the top two highest degrees in the PPI network.

Moreover, MXI1, STAT3, and TAL1 were significant TFs enriched with
target genes, and they were also tumor-associated TFs.

Toll-like receptors play important roles in the innate immune
system, especially in inflammatory response, which is considered to be
an important epigenetic factor contributing to neoplasia and tumor
progression [25,26]. Triggering of toll-like receptor 4 (TLR4) on me-
tastatic breast cancer cells has been found to promote adhesion and
invasive migration of tumor cells [27]. There is evidence that in-
flammatory cytokines, such as TNF-α and IL-1 are required for pro-
moting the tumorigenesis of osteosarcoma [28]. The present study
found that the differentially hypo-methylated genes in OS samples were
related to Toll-like receptor signaling pathway. These findings led to a
speculation that the differentially hypo-methylated genes and the Toll-
like receptor signaling pathway might be involved in OS-related in-
flammation. A recent microarray analysis reported that Neuroactive

Fig. 1. A protein-protein interaction network of dif-
ferentially methylated genes. Red nodes stand for
differentially hyper-methylated genes, while green
nodes stand for differentially hypo-methylated
genes.
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ligand-receptor interaction pathway and PPAR signaling pathway were
associated with OS metastasis [29]. Moreover, it has been established
that PPAR agonists can suppress OS proliferation and growth, and in-
duce apoptosis [30]. Results of this study suggest that the roles of
Neuroactive ligand-receptor interaction pathway and PPAR signaling
pathway in OS may be partly due to hyper-methylation of genes.

It has been reported that PPI network can organize all protein-
coding genes into a large network which provides a better under-
standing of the functional organization of the proteome [17]. In the
present study, PPI analysis found that ADCY2 and POMC had the top
two highest degrees in the constructed PPI network. Genome-wide
studies have shown that deletion of a hub protein is more likely to be
lethal than deletion of a non-hub protein. As a result, hub nodes may
play more important roles in OS than the other nodes. Presently, we
focused on the top two nodes with higher degrees for discussion. In-
terestingly, they have been reported to be implicated in the progression
of OS. Recently, Sun et al. [31] performed gene expression profiling

analysis of OS cell lines, and found that ADCY2 was involved in purine
metabolism pathway in OS. POMC has been found in osteoclasts [32],
which is a precursor of β-endorphin. Baamonde et al. [33] reported that
endogenous β-endorphin involved in the initial stages of murine OS.
Taken together, our study may further suggested the role of ADCY2 and
POMC in OS.

STAT3 is a member of STAT protein family and plays a critical role
in cell growth and apoptosis [34]. Increasing studies have established that
STAT3 activation promotes the development of OS [35,36]. STAT3 was
found to be hyper-methylated in OS samples in the present study, sug-
gesting that STAT3 might play a role in OS. It has been reported that
STAT3 had an oncogenic or a tumor suppressor role in human brain
tumor depending on the mutational profile of the tumor [37]. It indicates
that STAT3 may also play dual roles in promoting or discouraging the
development of OS. Moreover, STAT3was a hub node (degree=21) in the
PPI network of this study, suggesting that the role of STAT3 in OS might
be associated with its interactions with other proteins.

Fig. 2. The networks that contained five hub genes of adenylate cyclase 2 (ADCY2), proopiomelanocortin (POMC), signal transducers and activators of transcription (STAT3), neuro-
peptide Y (NPY), and somatostatin (SST). Red nodes stand for differentially hyper-methylated genes, while green nodes stand for differentially hypo-methylated genes.

Fig. 3. The methylation levels of MXI1, STAT3 and TAL1 in all
samples. Horizontal axis represents 25 samples, and vertical axis
represents the M value of methylation level of MXI1, STAT3 and
TAL1.
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MXI1 is a member of theMAD gene family, which plays a key role in
regulating cell proliferation and growth [38,39]. It is located at 10q24-
25, where loss of heterozygosity occurs in several human cancers, in-
cluding endometrial cancers, prostate tumors, gliomas, renal cell car-
cinomas, and small-cell lung cancers [40]. Importantly, numerous ex-
periments have verified that MXI1 functions as a tumor suppressor gene
via negatively modulating the promoter of oncogene c-Myc, which is
involved in the control of cell proliferation and apoptosis [41–44]. To
our knowledge, the role of MXI1 in OS remains unclear. The study re-
vealed hyper-methylation of MXI1 in OS. In light of these results, we
speculate that MXI1 may inhibit progression of OS by compromising
cell proliferation and inducing apoptosis. TAL1 is a basic helix-loop-
helix TF required for blood cell development [45]. In the study of
Kresse et al. [46], TAL1 was found to be significantly differentially
methylated between OS and normal control samples. In agreement with
the study above, the present study also revealed that it was a differ-
entially methylated gene and a tumor-associated TF. Therefore, TAL1
might be an important TF associated with OS.

In this study, some limitations have to be acknowledged. First, the
sample size was a little small. Second, no experiment was conducted to
validate the expression level of these methylated genes, includingMXI1,
STAT3 and TAL1. Therefore, further studies with more samples and
experimental validations are needed to validate our results.

Taken together, microarray analysis of epigenetic alterations re-
vealed that Neuroactive ligand-receptor interaction pathway, PPAR
signaling pathway and toll-like receptor signaling pathway may be
implicated in tumorigenesis of OS. MXI1, STAT3, and TAL1 might be
critical TFs in development of OS. Results of the study provide more
enlightening insights concerning the association of DNA methylation
with tumorigenesis of OS. More studies are warranted to verify these
results.
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