
RESEARCH ARTICLE

Temporal Dynamics and Developmental

Maturation of Salience, Default and Central-

Executive Network Interactions Revealed by

Variational Bayes Hidden Markov Modeling

Srikanth Ryali1☯*, Kaustubh Supekar1☯*, Tianwen Chen1, John Kochalka1, Weidong Cai1,

Jonathan Nicholas1, Aarthi Padmanabhan1, Vinod Menon1,2,3*

1 Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States of

America, 2 Department of Neurology and Neurological Sciences, Stanford University, Stanford, United

States of America, 3 Stanford Neurosciences Institute, Stanford University, Stanford, United States of

America

☯ These authors contributed equally to this work.

* sryali@stanford.edu (SR); ksupekar@stanford.edu (KS); menon@stanford.edu (VM)

Abstract

Little is currently known about dynamic brain networks involved in high-level cognition and

their ontological basis. Here we develop a novel Variational Bayesian Hidden Markov Model

(VB-HMM) to investigate dynamic temporal properties of interactions between salience

(SN), default mode (DMN), and central executive (CEN) networks—three brain systems

that play a critical role in human cognition. In contrast to conventional models, VB-HMM

revealed multiple short-lived states characterized by rapid switching and transient connec-

tivity between SN, CEN, and DMN. Furthermore, the three “static” networks occurred in a

segregated state only intermittently. Findings were replicated in two adult cohorts from the

Human Connectome Project. VB-HMM further revealed immature dynamic interactions

between SN, CEN, and DMN in children, characterized by higher mean lifetimes in individual

states, reduced switching probability between states and less differentiated connectivity

across states. Our computational techniques provide new insights into human brain network

dynamics and its maturation with development.

Author Summary

Characterizing the temporal dynamics of functional interactions between distributed

brain regions is of fundamental importance for understanding human brain organization

and its development. Progress in the field has been hampered both by a lack of strong

computational techniques to investigate brain dynamics and an inadequate focus on core

brain systems involved in higher-order cognition. Here we address these gaps by develop-

ing a novel variational Bayesian Hidden Markov Model (VB-HMM) that uncovers non-

stationary dynamical functional networks in human fMRI data. In two cohorts of adults,

VB-HMM revealed multiple short-lived states characterized by rapid switching and
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transient connectivity between the salience (SN), default mode (DMN), and central execu-

tive (CEN) networks—three brain systems critical for higher-order cognition. In children,

relative to adults, VB-HMM revealed immature dynamic interactions between SN, CEN,

and DMN, characterized by higher mean lifetimes in individual states, reduced switching

probability between states and less differentiated connectivity across states. Our findings

suggest that the flexibility of switching between distinct brain states is weaker in child-

hood, and they provide a novel framework for modeling immature brain network organi-

zation in children. More generally, the approach used here may prove useful to the

investigation of dynamic brain organization in neurodevelopmental and psychiatric

disorders.

Introduction

Our ability to adapt to a constantly changing environment is thought to depend on the

dynamic and flexible organization of intrinsic brain networks [1,2]. Characterizing the tempo-

ral dynamics of interactions between distributed brain regions is fundamental to our under-

standing of human brain organization and its development [2–8]. However, most of our

current knowledge of functional brain organization in adults and children is based on investi-

gations of time-independent functional coupling. Progress in the field has been impeded by

both a lack of appropriate computational techniques to investigate brain dynamics as well as

an inadequate focus on core brain systems involved in higher-order cognition [3,4,9,10]. In

particular, progress has been limited by weak analytical models for identifying time-varying

brain states, and their occurrence rates and mean lifetimes, for quantifying transition probabil-

ities between brain states, and for characterizing the dynamic evolution of functional connec-

tivity patterns over time [9–11].

Here we overcome limitations of extant methods by developing and applying novel compu-

tational techniques for characterizing dynamic functional interactions between distributed

brain regions and address two key neuroscientific goals. The first scientific goal of our study

was to investigate the dynamic functional connectivity of the salience network (SN), the cen-

tral-executive network (CEN) and the default mode network (DMN), three core neurocogni-

tive systems that play a central role in cognitive and affective information processing [1,12].

Our second scientific goal was to characterize the maturation of the dynamic functional con-

nectivity of the SN, CEN and DMN between childhood and adulthood in order to address

important gaps in the literature regarding the nature of dynamic cross-network interactions

over development and the question of how brain systems become more flexible during the

period between childhood and adulthood.

The SN is a limbic-paralimbic network anchored in the anterior insula and dorsal anterior

cingulate cortex with prominent subcortical nodes in affective and reward processing regions

including the amygdala and ventral striatum [13,14]. The SN plays an important role in orient-

ing attention to behaviorally and emotionally salient and rewarding stimuli and facilitating

goal-directed behavior [12,14–16]. The fronto-parietal CEN is anchored in the dorsolateral

prefrontal cortex and supramarginal gyrus and is critical for actively maintaining and manipu-

lating information in working memory [17,18]. The DMN is anchored in the posterior cingu-

late cortex, medial prefrontal cortex, medial temporal lobe, and angular gyrus [19–21] and is

involved in self-referential mental activity and autobiographical memory [22]. In adults, task-

based fMRI studies have consistently demonstrated that SN, CEN and DMN nodes are

involved in a wide range of cognitive tasks, with the strength of their responses increasing or
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decreasing proportionately with task demands [12,23,24]. Analysis of causal interactions

between these networks has also shown that high-level attention and cognitive control pro-

cesses rely on dynamic interactions between these three core neurocognitive networks [16,25–

27]. Thus, far from operating independently, these three brain networks, which have only been

probed using static time-invariant connectivity analysis, must form transient dynamic func-

tional networks (DFNs) allowing for flexible within- and cross-network interactions.

While the SN, CEN and DMN can be reliably identified in most individuals using static net-

work analysis of rs-fMRI data [26,28], progress in characterizing their dynamic temporal prop-

erties has been limited by currently available computational tools and procedures. Most

current studies of dynamic brain connectivity use a sliding window approach [29,30], which is

problematic because of arbitrary parameters such as window size, which can lead to erroneous

estimates of dynamic connectivity [7,9,11]. Furthermore, extant methods do not provide infor-

mation about the occurrence and lifetimes of individual dynamic brain states, transition prob-

abilities between network states or unique dynamic network configurations associated with

each brain connectivity state.

To address these weaknesses, we developed a novel variational Bayesian hidden Markov

model (VB-HMM) [31] to uncover time-varying functional connectivity. HMM uses a state-

space approach to model multivariate non-stationary time series data [32,33] and cluster them

into distinct states, each with a different covariance matrix reflecting the functional connectiv-

ity between specific brain regions. Importantly, VB-HMM automatically prunes redundant

states, retaining only those that significantly contribute to the underlying dynamics of the

fMRI data, and provides the posterior distribution of parameters rather than point estimates of

maximum likelihood-based methods.

We then used VB-HMM to characterize dynamic functional interactions between the SN,

CEN and DMN to address our two neuroscientific goals. VB-HMM allowed us to examine for

the first time several important metrics of brain dynamics: the number of distinct brain states,

their occupancy rates and mean lifetimes, and switching probabilities between brain states and

DFNs. Crucially, VB-HMM enabled us to investigate the temporal dynamics and evolution of

states where the SN, DMN and CEN are fully segregated from each other, and states where

they interact with each other. We hypothesized that segregation of the SN, DMN and CEN

would constitute a dominant state with high occupancy rates and mean lifetimes. We further

hypothesized that states with high occupancy rates would be temporally stable and marked by

a higher probability of switching within the state compared to switching across states. We use

sub-second resting-state fMRI (rs-fMRI) datasets acquired as part of the Human Connectome

Project (HCP) (http://www.humanconnectome.org) and demonstrate the robustness of our

findings across two independent cohorts of healthy adults.

Next, we used VB-HMM and insights from our analyses of the adult brain to characterize

the maturation of dynamic functional networks and connectivity associated with the SN,

DMN and CEN between childhood and adulthood. Flexible and dynamic cross-network func-

tional interactions are essential for mature brain function [5,34], yet little is known about the

nature of dynamic organization and time-varying connectivity in children relative to adults.

Studies using static connectivity analyses suggest that functional brain networks undergo sig-

nificant reconfiguration from childhood to adulthood, with analysis of time-averaged whole-

brain connectivity patterns suggesting prominent increases as well as decreases in connectivity

between childhood and adulthood. In a previous study we showed that time-averaged connec-

tivity within key nodes of the SN and DMN as well as their inter-network interactions is

weaker in children relative to adults [28]. Recent reports suggest that time-varying connectivity

between distributed brain areas changes significantly with age, with greater temporal variabil-

ity of connection strengths in children compared to adults[34]. Based on these observations,
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we hypothesized that compared to adults, children would show immature and less flexible

patterns of dynamic connectivity between the SN, CEN and DMN. Crucially, VB-HMM

allowed us to, for the first time, probe developmental changes in dynamic networks proper-

ties including the occurrence rates and mean lifetimes of distinct brain states, such as those

in which the SN, CEN and DMN are fully segregated from each other with decreased

switching probabilities.

Materials and Methods

Ethics statement

This study was approved by the Stanford University Institutional Review Board. Written

informed consent was obtained from all the subjects.

VB-HMM

We first describe a novel VB-HMM framework we developed for characterizing dynamic

brain networks in human fMRI data. In the following sections, we represent matrices by using

uppercase letters while scalars and vectors are represented using lowercase letters. Let Y ¼

ffystg
T
t¼1
g
S

s¼1
be the observed voxel time series, where T is the number of time samples and S is

the number of subjects. yst is an M dimensional time sample at time t for subject s, where M is

the number of brain regions or nodes of the dynamic functional network under investigation.

Let Z ¼ ffzstg
T
t¼1
g
S

s¼1
be the underlying hidden/latent discrete states, where zst is the state label

at time t for subject s. Let Z be a first order Markov chain, with stationary transition (A) and

initial distributions (π) defined as:

pðzst ¼ kjzst� 1
¼ jÞ ¼ Ajk ð1Þ

pðzs
1
¼ kÞ ¼ pk ð2Þ

where 0 � Ajk � 1;
PK

k¼1
Ajk ¼ 1, and pk � 0;

PK
k¼1

pk ¼ 1.

We assume the probability of the observation yst given its state zst ¼ k to be a multivariate

normal distribution with parameters mean μk and covariance Sk:

pðyst jz
s
t ¼ kÞ ¼ Nðmk;SkÞ ð3Þ

Here we assume that the number of possible states K is not known a priori. Each state k has

M μk and an M x M Sk.

Let F = {π,A,Θ} (where Y ¼ fmk;Skg
K
k¼1

) be the unknown parameters of the HMM model.

Using the factorization property [35] of the Bayesian network shown in Fig 1A, the joint prob-

ability distribution of the observations, hidden states, and parameters can be written as

pðY;Z;FÞ ¼
YS

s¼1

pðzs
1
jpÞ
YTs

t¼2

pðzst jz
s
t� 1
;AÞ

YTs

t¼1

pððyst jz
s
t ;YÞPðFÞ ð4Þ

In maximum likelihood methods, the parameters F of the model are assumed to be

unknown deterministic quantities, whereas in the Bayesian approach they are treated as ran-

dom variables with prior probability distributions. Here we assume that conjugate priors [35]

for F and Z are defined as in [31] with the goal of estimating the joint posterior distribution

p(Z,F|Y) of the hidden states and parameters. Estimating this posterior distribution is
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Fig 1. (a) Generative model for Hidden Markov Model (HMM). HMM is a state-space model consisting of latent discrete variables zst and observed rs-

fMRI time series yst for each subject S. The discrete variables zst form a Markov chain with transition probabilities given by a multinomial distribution Ai,j. For a

given state k, we model the rs-fMRI time series as a multi-normal distribution N(μk,Ck), with mean μk and covariance Ck. Given rs-fMRI datasets for S

subjects, we estimate the posterior probabilities of the latent states and model parametersΦ = {π,A,Θ} (where, Y ¼ fmk ;Skg
K
k¼1

) using variational Bayes

methods. (b) Flowchart for VB-HMM. (i) Extract time series from M ROIs of S subjects; (ii) Use VB-HMM to estimate the posterior probabilities of states and

model parametersΦ = {π,A,Θ}; (iii) Apply Viterbi decoding to estimate the most probable states; (iv) Compute the occupancy rate and mean lifetime of each

state; and (v) Apply Louvain community detection on the estimated partial correlations to find network communities within each state. In the left panel, each

of the 25 colors depicts a different state. The colors in the left panel match the colors used in the partial correlation matrices on the right.

doi:10.1371/journal.pcbi.1005138.g001

Large-Scale Brain Network Dynamics and its Developmental Maturation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005138 December 13, 2016 5 / 29



analytically intractable but inference methods, such as sampling or variational methods, can

instead be used [31,35]. Here, to estimate p(Z,F|Y), we use a variational Bayesian (VB) method

[31], which not only provides an elegant analytical approximation to the required posterior

distribution but is also computationally faster than sampling approaches.

Let q(Z,F|Y) be any arbitrary probability distribution and p(Z,F|Y) be the true posterior

probability distribution. Then the log of the marginal distribution of observations Y can be

written as

logPðYÞ ¼ FðqÞ þ KLðqjjpÞ ð5Þ

where F(q) is known as the negative free energy and KL(q||p) is the Kullback-Leibler (KL)

divergence between the approximate and true posterior. These quantities are given by

F qð Þ ¼
Z

dZdFqðZ;FjYÞ log
pðY;Z;FÞ
qðZ;FjYÞ

ð6Þ

KL qjjpð Þ ¼ �

Z

dZdFqðZ;FjYÞ log
pðZ;FjYÞ
qðZ;FjYÞ

ð7Þ

Since KL(q||p) is nonnegative, F(q) serves as the strict lower bound on log P(Y). F(q) and

log P(Y) are equal if and only if the approximate posterior q(Z,F|Y) is equal to the true poste-

rior p(Z,F|Y) for which KL(q||p) = 0. The goal of VB approximation is to find the approximate

posterior for which the lower bound F(q) is maximized. We make a mean field approximation

on the approximate posterior [31] wherein it factorizes as

qðZ;FjYÞ ¼ qðZ;A;Y; pjYÞ ¼ qðZjYÞqðpjYÞqðAjYÞqðYjYÞ ð8Þ

The functional forms of these factors are defined by the priors on the parameters and the

likelihood of the data. We assume conjugate priors for the priors, which results in elegant ana-

lytical approximations to the required posterior distributions of the Eq (8). Accordingly, the

conjugate prior for π and rows of A is the Dirichlet (Dir) distribution, while the prior over the

parameters of the Gaussian distribution Θ is the Normal-Wishart (NW) distribution. We fur-

ther assume that the prior distribution over F factorizes as

PðFÞ ¼ pðpÞpðAÞpðYÞ ð9Þ

The forms of the Dirichlet and Normal-Wishart distributions are defined in [31]. We pro-

vide the values of the hyper-parameters of these distributions in the Appendix.

Since we define conjugate priors on the model parameters, q(π|Y) and q(A|Y) follow multi-

nomial distributions and q(Θ|Y) follows the Normal-Wishart distribution [31]. The update

equations for the posterior parameters are provided in the Supplementary Material. The poste-

rior distribution of the hidden states can be estimated using an efficient forward-backward

method similar to the Baum-Welch algorithm for ML-HMM [33,35]. Furthermore, our

VB-HMM estimates the parameters of Normal-Wishart distribution for each state. VB-HMM

therefore discovers states for which the parameters of the Normal-Wishart distributions are

distinct for each state. A new state will be discovered if either mean or covariance or both are

different in that state with respect to other states. In task-based fMRI studies it is important to

discover states with both mean and covariance differences. However, in resting-state fMRI

studies, as in the current study, differences in absolute signal levels are not relevant and states

are based solely on changes in covariance over time. This can be accomplished elegantly in our

Bayesian framework using the hyperparameter λk in the joint Normal-Wishart distribution. A

non-informative prior value (say, λk = 0.001) allows the data to determine the joint posterior
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distributions for the mean and covariance. However, setting it to a very high value (λk = 1000)

biases the posterior to the prior mean which is 0 in our case (equation S.10). This ensures

that our states are discovered only by the changes in covariance/inverse covariance in each

state.

Similar to the expectation maximization algorithm for ML-HMM, the posterior distribu-

tions for the latent and model parameters are iteratively updated in VB-HMM as follows:

1. Initialize the latent variable Z

2. Update q(Θ|Y) given q(Z|Y) (M-step)

3. Update q(Z|Y) given q(Θ|Y) (E-step)

4. Iterate steps (b) and (c) until convergence

We iterate steps (b) and (c) until the fractional lower bound F(q) between two consecutive

thresholds is below a set threshold value of tol = 10−3. We initialize the states using the K-

means algorithm with the number of clusters/states K set to a high value (K = 25). The sparsity

property of VB-HMM prunes away unwanted clusters/states in the model. Like ML-HMM,

VB-HMM provides suboptimal estimates of the posterior distributions, and these estimates

are sensitive to the initial estimates of states using K-means initialization. To account for this,

we repeat VB-HMM with 100 different random initializations and choose the solution for

which the lower bound F(q) is maximum.

Dynamic network properties

Occupancy rate and mean lifetime of each state. We computed the mean lifetime and

occupancy of each state based on the posterior distribution of each state q(Z|Y) estimated by

VB-HMM. We first applied the Viterbi algorithm [35] to estimate the most probable sequence

of states z�. The occupancy of each state k is the amount of time spent in the state, which is

computed by counting the number of time points in which a given state k occurs:

Occupancy rate kð Þ ¼
PSTs

t¼1
Iðz�ðtÞ ¼ kÞ
STs

� 100 ð10Þ

where I(z�(t) = k) is a Kronecker delta, which is 1 if the current state z�(t) is k. The mean life-

time of a state k is the average time for which that particular state is continuously present and

is computed by counting how long that state continuously persists and then taking an average

of those counts. We calculated both the occupancy rate and the mean lifetime of each state at

the group level as well as at the single subject level.

State transition probability. The posterior distribution of state transition probability

matrix q(A|Y) is estimated as part of the M step of VB-HMM. Note that VB-HMM estimates

posterior probabilities q(Zs = k|Y) of each state k and subject s while estimating the posterior

distribution of model parameters q(Θ|Y) (including q(A|Y)), which are the same for the given

set of subjects. Therefore, to estimate subject-specific state transition probabilities, we can take

the following frequentist approach:

1. Apply the Viterbi algorithm to estimate the most-likely discrete states for each subject q(Zs =
k|Y).

2. For each subject, let (Cs(i,j)) be the number of times the state 0i0 and 0j0 occur consecutively at
time 0t − 10 and 0t0 (1� t� T and 2� t − 1� T and every state 1� i,j� K).

3. For each subject s, let Cs(i) be the number of times that state i occurs in that subject.

Large-Scale Brain Network Dynamics and its Developmental Maturation
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4. Compute the joint probability of states i and j for subject s as

psðz�ðt � 1Þ ¼ i; z�ðtÞ ¼ jÞ ¼
Csði; jÞ

CsðiÞCsðjÞ
ð11Þ

and the marginal probability of state i as

ps z�ðtÞ ¼ ið Þ ¼
CsðiÞ
T

ð12Þ

The state transition probability As(i,j) for subject s is then given by

As i; jð Þ ¼
psðz�ðt � 1Þ ¼ i; z�ðtÞ ¼ jÞ

psðz�ðtÞ ¼ iÞ
ð13Þ

Identification of time-varying networks. We first computed the partial correlations

from the estimated covariance matrices for each state and then determined the dynamic func-

tional community structure under each state by applying the Louvain community detection

algorithm [36] on the estimated partial correlations. A Louvain algorithm that takes into con-

sideration positive and negative relationships/values was applied to the unthresholded partial

correlation matrix. Negative values were treated asymmetrically. Specifically, we used the

Matlab function community_louvain made available in the widely-used Brain Connectivity

ToolBox (www.brain-connectivity-toolbox.net). Network representation of states provides a

level of abstraction that is easy to interpret and more importantly allows us to relate our find-

ings to extant literature that mostly describes intrinsic functional connectivity findings in

terms of within- and between- network coupling.

Note that in our Bayesian framework, for each state k, the posterior distribution for mean

μk and covariance Sk is a Normal-Wishart distribution. We estimate the parameters for this

joint posterior distribution in each state. More specifically, the Wishart distribution gives the

probability distribution over the inverse covariance (precision) matrix (S� 1

k ) for each state.

The expected value of the covariance matrix for each state k is given by b0k=a
0
k (Eqs S.11 and

S.13). More importantly, the covariance matrix estimation in our Bayesian framework is regu-

larized by the prior parameters and the degree of regularization is determined automatically

from the data (Eqs S.10–S.15). This regularization ensures that the covariance (or inverse

covariance) matrix is full rank. The required partial correlations for each state k are then com-

puted by properly scaling the estimated inverse covariance matrix.

Validation datasets

We validated VB-HMM using three different simulation models; the details of each are pro-

vided in the Supplementary Materials. Briefly, in Simulation-1, we created datasets with two

nodes and two hidden states. The hidden states were constructed using a typical block design

with two conditions (or states): “OFF” and “ON” as shown in S2A Fig. We simulated observa-

tions with two nodes where the nodes are negatively correlated in the “OFF” state and uncorre-

lated in the “ON” state. In Simulation-2, we simulated data with six nodes and two hidden

states using the HMM generative model given by Eqs 1–3. In this case, the two hidden states

were constructed using a specified state transition matrix A and six nodes/ROIs with observa-

tions drawn from a zero-mean multivariate Gaussian distribution and state specific covariance

matrices (S3A Fig). Simulation-3 also consisted of six nodes and two hidden states. Here,
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however, the first three nodes/ROIs were correlated in the first half (116 samples) of the exper-

iment (state 1) while the other three ROIs were correlated in the second half (116 samples) of

the experiment (state 2) (S4A Fig). Five datasets were simulated (akin to a group size of five

subjects in fMRI studies) for each simulation type.

HCP rs-fMRI datasets

Data description. Minimally preprocessed rs-fMRI data were obtained from the HCP

(http://www.humanconnectomeproject.org) under the Q1-Q6 Data Release. Forty individuals

(first session, left-right encoded, ages: 22–35, 28 males) were selected from 500 individuals

based on the following criteria: (1) individuals were unrelated; (2) range of head motion in any

translational direction was less than 1 mm; (3) average scan-to-scan head motion was less than

0.2 mm; and (4) maximum scan-to-scan head motion was less than 1 mm. For each individual,

1,200 frames were acquired using multiband, gradient-echo planar imaging with the following

parameters: TR, 720 ms; echo time, 33.1 ms; flip angle, 52˚; field of view, 280 × 180 mm;

matrix, 140 × 90; and voxel dimensions, 2 mm isotropic. During scanning, participants kept

their eyes open and fixated on a crosshair on the center of the screen. We divided the group

into two cohorts of 20 participants each (hereafter referred to as Cohorts 1 and 2); the two

cohorts did not differ on age, gender, IQ, or other demographic measures (p> 0.5).

Data pre-processing. Spatial smoothing with a Gaussian kernel of 6mm FWHM was first

applied to the minimally preprocessed data [37] to improve the signal to noise ratio as well as

the anatomy correspondence between individuals. A multiple linear regression approach with

12 realignment parameters (3 translations, 3 rotations, and their first temporal derivatives)

was applied to the smoothed data to reduce head motion-related artifacts. Additionally, low

frequency drifts were removed.

Regions of Interest (ROIs). Key nodes of the triple network model, involving the SN,

CEN, and DMN, were determined based on a model of their differential roles in saliency detec-

tion and cognitive control [38,39]. Meta-analyses of cognitive control tasks have consistently

reported right-hemisphere dominant activation, most notably in the right anterior insula [40–

42]. Accordingly, our analysis focused on right anterior insula and anterior cingulate nodes of

the SN, right dorsolateral and supramarginal gyrus nodes of the CEN, and the precuneus and

ventromedial prefrontal cortex nodes of the DMN, similar to previous studies [12,26,43,44]. The

six ROIs were determined in an unbiased manner using an independent dataset and a previously

published study [45]; the ICA maps are shared through brainmap.org and FMRIB’s website

(http://fsl.fmrib.ox.ac.uk/analysis/brainmap+rsns/). Crucially, these procedures allowed us to

characterize network dynamics in the context of canonical static networks identified by ICA.

From the SN map, we identified peak activations in the right anterior insula (AI, MNI coor-

dinates: x = 36; y = 22; z = 8) and anterior cingulate cortex (ACC, MNI coordinates: x = 2;

y = 12; z = 44). From the ICA map of the CEN, we identified peaks in the right dorsolateral

prefrontal cortex (DLPFC, MNI coordinates: x = 34; y = 18; z = 60) and posterior parietal cor-

tex (PPC, MNI coordinates: x = 44; y = -54; z = 58). From the ICA map of the DMN, we identi-

fied peaks in the precuneus (Prec, MNI coordinates: x = -10; y = -62; z = 20) and ventromedial

prefrontal cortex (VMPFC, MNI coordinates: x = 4; y = 54; z = -8). ROIs were constructed

using spheres with centers as the local peaks and a radius of 6 mm. S1 Fig shows the anatomi-

cal locations of these nodes.

For each individual, the first eigenvariate of the voxel time series from each ROI was

extracted. The first 8 frames were discarded to minimize the non-equilibrium effects in fMRI

signal. The resulting time series were further high-pass filtered (f> 0.008 Hz) to remove low-

frequency signals related to scanner drift.
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VB-HMM analysis. We applied VB-HMM on rs-fMRI data from the first 20 participants

(Cohort 1) and then conducted a replication analysis on rs-fMRI data from the second inde-

pendent group of 20 participants (Cohort 2). VB-HMM finds an optimal model while pruning

away redundant states. The estimated model consists of (a) switching probabilities between

states for each subject in the cohort and (b) estimated covariance matrices for each state. We

then apply the following steps on the estimated model to infer the underlying dynamic net-

work structures in the rs-fMRI data.

1. Apply the Viterbi algorithm to find an optimal sequence of the discrete states from the switch-
ing probabilities.

2. Compute the mean and standard deviations of occupancy rate and mean lifetime of each state
across all subjects.

3. Compute partial correlations from the estimated covariance matrices for each state.

4. Apply modularity-based community detection on the partial correlations of each state.

5. Merge states having the same community structure into one state.

6. Recompute the mean and standard deviations of occupancy rate and mean lifetime of the
merged states across all subjects.

Fig 1B shows the flow chart of the various steps involved in inferring dynamic functional

networks using VB-HMM.

Community detection and state merging. Though VB-HMM identifies different states

based on differences in the covariance/partial correlations between brain regions, the underly-

ing community structures for the estimated partial correlations can be the same. Since we are

interested in identifying the functional community structure for each state, we merge those

states that have the same functional community structure into one state.

Stanford rs-fMRI data from children and adults

Data description. To investigate developmental changes in dynamic functional interac-

tions across the three networks between childhood and adulthood, we used rs-fMRI data from

twenty-four healthy children (12 males, 12 females, ages 7–9) and twenty-four healthy young

adults (12 males, 12 females, age: 19–22) [46]. Participant demographics and statistics, includ-

ing age, IQ and gender, are summarized in S1 Table. Children and adults were recruited from

the San Francisco Bay Area as part of ongoing studies of brain and cognitive development. All

participants were right-handed, had no history of neurological or psychiatric diseases, and

were not currently taking any medication. All participants had an intelligence quotient (IQ)

between 95 and 135 as measured by the Wechsler Abbreviated Scales of Intelligence (WASI).

The study protocol was approved by the Stanford University Institutional Review Board. Writ-

ten informed consent was obtained from each participant as well as the child’s legal guardian

before participation.

fMRI data acquisition. For each individual, 240 frames were acquired from a 3T GE

Signa scanner (General Electric) using a custom-built head coil with a T2�-sensitive gradient

echo spiral in-out pulse sequence based on blood oxygenation level-dependent (BOLD) con-

trast. Twenty-nine axial slices (4.0 mm thickness, 0.5 mm skip) parallel to the anterior and pos-

terior commissure (AC-PC) line and covering the whole brain were imaged with the following

parameters: volume repetition time (TR) = 2.0 s, echo time (TE) = 25 ms, 80˚ flip angle, matrix

size 64 × 64, field of view 200 × 200 mm, and an in-plane spatial resolution of 3.125 mm. To

reduce blurring and signal loss arising from field inhomogeneities, an automated high-order
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shimming method based on spiral acquisitions was used before acquiring functional images. A

linear shim correction was applied separately for each slice during reconstruction using a mag-

netic field map acquired automatically by the pulse sequence at the beginning of the scan. Chil-

dren and adults did not differ on movement (S1 Table).

Data preprocessing. Images were preprocessed using Statistical Parametric Mapping

(SPM8, http://www.fil.ion.ucl.ac.uk/spm). The first eight volumes were discarded for stabiliza-

tion of the MR signal. The remaining functional images were realigned to correct for rigid

body motion. Subsequently, images were slice timing corrected, normalized into a standard

stereotactic space, and resampled into 2 mm isotropic voxels. Finally, images were spatially

smoothed by convolving an isotropic 3D Gaussian kernel (6 mm full width at half maximum).

VB-HMM analysis. ROIs and analysis procedures were the same as above.

Results

VB-HMM analysis of simulated datasets

We first validated VB-HMM using computer-simulated datasets generated from three differ-

ent simulation models. Here we briefly summarize the results from these simulations; details

are in the Supplementary Materials. For all three simulations, we applied VB-HMM with the

number of hidden states (K) initialized to 25 and used VB-HMM to automatically determine

the optimal number of states from the data. S2 Fig shows the actual states, the estimated poste-

rior probabilities and the Viterbi decoded states for Simulation-1. Among the 25 states, the

occupancy rates of 18 states are zero suggesting that VB-HMM penalizes redundant states.

Further analysis suggests that among the seven with non-zero occupancy rates, four states

together constitute 98% of the total occupancy rate and these states match the underlying true

states in terms of their associated estimated Pearson correlation matrices and their occurrences

with respect to their respective true states. Similarly, 21 out of the 25 states in Simulation-2 had

zero occupancy rates (S3 Fig). The top two most dominant states comprise 98% of the total

occupancy rate and are well matched with the temporal occurrence of the underlying actual

states. Lastly, Simulation-3 yielded 21 out of 25 states with an occupancy rate of zero (S4 Fig).

Of the four states with non-zero occupancy rates, the top two account for 99.2% of the total

occupancy rate and match the true states used to generate the data. These simulations demon-

strate that VB-HMM can accurately discover the optimal number of states and the underlying

dynamic connectivity across different models of simulated data.

Dynamic SN, DMN and CEN connectivity in multi-cohort HCP data

We applied VB-HMM on rs-fMRI data to uncover dynamic functional interactions between

the SN, CEN and DMN in two cohorts of HCP data. Our first goal here was to identify

dynamic brain states and their associated functional networks. We computed the occupancy

rates and mean lifetimes of each state as well as the switching probabilities between states. A

particular theoretical focus was on the occurrence of brain states in which the three networks

were disconnected from each other. We conducted separate analyses on Cohorts 1 and 2 and

investigated the robustness and consistency of our key findings across the two cohorts.

Dynamic brain states, occurrence rates and mean lifetimes

HCP Cohort 1. VB-HMM identified 16 dynamic functional states, their time evolution,

and the functional connectivity between nodes of the SN, CEN and DMN in each state (Fig 2A

and 2B). All 16 functional states had non-zero occupancy rates and among them only three

had rates above 10% (Fig 2C). The mean lifetime of the top three high-occupancy states was

Large-Scale Brain Network Dynamics and its Developmental Maturation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005138 December 13, 2016 11 / 29

http://www.fil.ion.ucl.ac.uk/spm


Large-Scale Brain Network Dynamics and its Developmental Maturation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005138 December 13, 2016 12 / 29



7–9 s (Fig 2D), indicating temporal persistence over durations much shorter than the length of

the scan (864 s). The occupancy rate and mean lifetime of states were not significantly corre-

lated with age, gender, and mean framewise displacement (q> 0.05). Additionally, we did not

find a state or a subset of states that was consistently related to high or low motion periods

across subjects (q> 0.05).

HCP Cohort 2. We repeated the same analyses using data from HCP Cohort 2.

VB-HMM identified 19 states with non-zero occupancy rates, of which, again, only three had

occupancy rates above 10% (Fig 2E–2G). As with Cohort 1, the mean lifetime of the top three

states was 6–10 s (Fig 2H), confirming temporal persistence over durations much shorter than

the length of the scan. Similar to cohort 1, the occupancy rate and mean lifetime of states were

not significantly correlated with age, gender, and mean framewise displacement (q> 0.05).

Additionally, we did not find a state or a subset of states that was consistently related to high or

low motion periods across subjects (q> 0.05).

Occurrence rates, mean lifetimes, and connectivity in dynamic functional

networks (DFNs)

To characterize the connectivity patterns associated with each functional state, we used a com-

munity detection algorithm on the estimated partial correlations in each state and examined

the functional connectivity between ROIs. Below we describe the salient features of the

dynamic functional network structure in each cohort. Given our focus on the temporal prop-

erties of the state in which the SN, CEN, and DMN were disconnected from each other, we

combined states with a similar community structure into distinct DFNs (see S1 Text). We

then examined the occupancy rates, mean lifetimes and switching probabilities of these DFNs.

HCP Cohort 1. We identified two DFNs with distinct community structures (Fig 3A and

3B). In DFN-1, the SN, CEN and DMN were disconnected from each other and formed three

independent communities (States 1 and 5 in S5 Fig). Notably, this disconnected network con-

figuration had an occupancy rate of 31% ± 1.58% and a mean lifetime of 8.3s ± 0.29s (Fig 3C).

The network configuration that showed the next highest occupancy rate was one in which the

CEN and DMN were connected with each other while the SN formed an independent commu-

nity (States 2 and 3 in S5 Fig). This connected network configuration (DFN-2 in Fig 3B) had

an occupancy rate of 36% ± 2.9% with a mean lifetime of 8.2s ± 0.47s (Fig 3C). All other net-

work configurations had occurrence rates of 10% or less (S5 Fig). We then compared DFN-1

and DFN-2 connectivity profiles by examining two different types of links: cross-network, in

which links spanned different static networks (SN, CEN, and DMN), and within-network, in

which links did not span across nodes of the three static networks. We found a significant two-

way interaction (F1,19 = 4.943, p = 0.039, S7A Fig), such that the connectivity of cross-network

Fig 2. Dynamic states discovered by VB-HMM in two adult HCP cohorts. Adult HCP Cohort 1: (a) Time

evolution of dynamic states in each subject. VB-HMM uncovers states at the group level thereby eliminating the

matching of states across subjects. The state with the highest occupancy rate was assigned the first color in the jet

colormap, the state with the second highest occupancy rate was assigned the second color in the jet colormap, and

so on.; (b) Estimated partial correlations; (c) Occupancy rate. The occupancy of the top 5 states was significantly

different from chance-level occupancy rate (data plotted; see SI for details); and (d) Mean lifetimes of each state.

The mean lifetime of all states was significantly different from chance-level mean lifetime (data not plotted; see SI for

details). Adult HCP Cohort 2: (e) Time evolution of dynamic states in each subject. The states coloring procedure

was same as Adult HCP Cohort 1; (f) Estimated partial correlations; (g) Occupancy rate. The occupancy of the top 5

states was significantly different from chance-level occupancy rate (data plotted; see SI for details); and (h) Mean

lifetimes of each state. Among the 25 initial states, only 16 states and 19 states have non-zero occupancy rates in

Adult HCP Cohorts 1 and 2, respectively. In each cohort, only the first three states have occupancy rates above

10%. These high-occupancy states have mean lifetimes of about 7-10s, suggesting that the temporal persistence of

these states is much shorter than the length of the scan.

doi:10.1371/journal.pcbi.1005138.g002
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Fig 3. Dynamic functional networks identified in two adult HCP cohorts. Adult HCP Cohort 1: (a) Time evolution of merged dynamic networks in each

subject; (b) Dynamic functional networks (DFNs) for the merged states 1 and 2 and the mixed state; (c) Occupancy rates and mean lifetimes of the DFNs;

and (d) Switching probabilities between the DFNs. Adult HCP Cohort 2: (e) Time evolution of merged dynamic networks in each subject; (f) Dynamic
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links was greater in DFN-2 compared to DFN-1 (p< 0.001) while no significant difference

was observed between DFN-1 and DFN-2 for within-network links (p = 0.461). These results

demonstrate that the two DFNs differ significantly in their connectivity profiles.

HCP Cohort 2. We repeated the same analysis using data from Cohort 2. We identified

two DFNs with distinct community structures (Fig 3E and 3F). In DFN-1, the SN, CEN and

DMN were disconnected from each other and formed three independent communities (States

2 and 3 in S6 Fig). This disconnected network configuration (DFN-1 in Fig 3F) had an occu-

pancy rate of 27% ± 1.2% (Fig 3G) and a mean lifetime of 8.8s ± 0.31s (Fig 3G). The network

configuration that showed the next highest occupancy rate was one in which the CEN and

DMN were connected with each other, while the SN formed an independent community

(States 1 and 14 in S6 Fig). This connected network configuration (DFN-2 in Fig 3F) had an

occupancy rate of 18% ± 1.27% with a mean lifetime of 8.0s ± 0.48s (Fig 3G). All other network

configurations had occurrence rates of 10% or less (S6 Fig). As in Cohort 1, we then compared

DFN-1 and DFN-2 connectivity profiles by examining two different types of links: cross-net-

work and within-network as described in the previous section. We found a significant interac-

tion between DFN and link type (F1,19 = 40.87, p< 0.001, S7B Fig) such that the strength of

cross-network links was greater in DFN-2 compared to DFN-1 (p< 0.001), while the reverse

was true for within-network links (p< 0.001). These results confirm different connectivity

profiles across the two DFNs.

In spite of differences in the occupancy rate and mean lifetimes of the mixed DFN-M across

the cohorts (Fig 3C and 3G), a noteworthy feature of the results is that in both Cohorts 1 and

2, DFN-1 and DFN-2 have the same underlying community structure, occupancy rates of 15–

35% (Fig 3C and 3G), and the mean lifetimes of about 8 seconds (Fig 3C and 3G).

Transitions between dynamic functional networks

Based on our primary goal of characterizing the network structure associated with segregated

SN, CEN and DMN as encapsulated by DFN-1 (Fig 3B) and the common patterns of network

structure involving DFN-1 and DFN-2 in both cohorts (see previous sections), we next exam-

ined state transitions between these networks. In each cohort, network structures correspond-

ing to all other functional states were combined together into a mixed DFN-M. As in previous

sections, these analyses were conducted separately in the two cohorts with the aim of elucidat-

ing replicable findings.

HCP Cohort 1. Fig 3D shows the average transition probabilities within and between the

three network configurations: DFN-1, DFN-2, and DFN-M. We found that the self-transition

probabilities from a DFN to itself were high (0.85 ± 0.01) while transitions between DFNs

were low (0.08 ± 0.01). The high self-transition probabilities could be attributed to the Mar-

kovian aspect of the model and the temporal autocorrelations in fMRI timeseries data [47].

HCP Cohort 2. We repeated the above analysis on data from Cohort 2. Fig 3H shows the

transition probabilities between DFN-1, DFN-2, and DFN-M. As in the case of Cohort 1, self-

functional networks (DFNs) for the merged states 1 and 2 and the mixed state; (g) Occupancy rates and mean lifetimes of the DFNs; and (h) Switching

probabilities between the DFNs. In both cohorts, the most dominant DFN (DFN-1) consists of nodes in the SN, CEN, and DMN, which constitute three

independent communities. DFN-1 has an occupancy rate of 31% (SEM: ± 1.58%) with a mean lifetime of 8.3s (SEM: ± 0.29s) for Adult HCP Cohort 1 and an

occupancy rate of 27% (SEM: ± 1.2%) with a mean lifetime of 8.8s (SEM: ± 0.31s) for Adult HCP Cohort 2. In the second most dominant DFN (DFN-2) in

both cohorts, the nodes of the SN form an independent community, while the nodes of the CEN and DMN interact and form one community. DFN-2 has an

occupancy rate of 36% (SEM: ± 2.9%) with a mean lifetime of 8.2s (SEM: ± 0.47s) in Adult HCP Cohort 1 and an occupancy rate of 18% (SEM: ± 1.27%)

with a mean lifetime of 8.0s (SEM: ± 0.48s) in Adult HCP Cohort 2. In both cohorts, the self-transition probabilities from a DFN to itself are high (0.85 ± 0.01

for Adult HCP Cohort 1 and 0.9 ± 0.05 for Adult HCP Cohort 2), while the transitions between DFNs are low (0.08 ± 0.01 for Adult HCP Cohort 1 and

0.06 ± 0.02 for Adult HCP Cohort 2).

doi:10.1371/journal.pcbi.1005138.g003
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transitions from a network to itself were greater (0.9 ± 0.05) than transitions across networks

(0.06 ± 0.02).

These findings suggest that DFN-1 and DFN-2 are relatively stable over time and that tran-

sitions within the same DFNs are much more likely than transitions between DFNs.

Maturation of dynamic SN, DMN, and CEN connectivity in Stanford

developmental data

We next used VB-HMM to characterize the maturation of dynamic functional interactions

between the SN, CEN and DMN in a Stanford cohort of IQ- and gender-matched adults and

children. We used the same analytic procedures as described above on data from adults and

children and then compared dynamic network properties between the two groups.

Occurrence and lifetime of dynamic brain states

Adults. VB-HMM identified dynamic functional states, their time evolution and the func-

tional connectivity between nodes of the SN, CEN and DMN in each state (Fig 4A and 4B).

There were nine states with non-zero occupancy rates and among them three states had rates

above 10% (Fig 4C). The mean lifetime of the top three high-occupancy states was 10–20 s

(Fig 4D), confirming temporal persistence over durations much shorter than the length of the

scan (480 s). The occupancy rate and mean lifetime of states were not significantly correlated

with mean framewise displacement (q> 0.05). Additionally, we did not find a state or a subset

of states that was consistently related to high or low motion periods across subjects (q> 0.05).

Children. We repeated the above analyses using data from children. VB-HMM identified

seven states with non-zero occupancy rates and among them only three states had rates above

10% (Fig 4E–4G). The mean lifetime of the top five high-occupancy states ranged from 10 to

70 s (Fig 4H), suggesting persistence of states over greater durations in children compared to

adults. Similar to adults, the occupancy rate and mean lifetime of states were not correlated

with mean framewise displacement (q> 0.05). Additionally, we did not find a state or a subset

of states that was consistently related to high or low motion periods across subjects (q> 0.05).

Dynamic functional networks in adults and children

Adults. We identified two DFNs with distinct community structures (Fig 5A and 5B). In

DFN-1, the SN, CEN and DMN were disconnected from each other and formed three inde-

pendent communities (States 2, 3, 7, and 8 in S8 Fig). This disconnected network configura-

tion had a combined occupancy rate of 48% ± 3.2% and a mean lifetime of 18.3s ± 1.2s (Fig

5C). The network configuration that showed the next highest occupancy rate was one in

which the CEN and DMN were connected with the SN (States 1 and 6 in S8 Fig). This con-

nected network configuration (DFN-2 in Fig 5B) had an occupancy rate of 29% ± 3.9% and a

mean lifetime of 25.5s ± 5.3s (Fig 5C). All other network configurations had occurrence rates

of 11% or less (S8 Fig).

Children. We repeated the same analysis using data from children. We identified two

DFNs with district community structures (Fig 5E and 5F). In DFN-1, the SN, CEN and DMN

were disconnected from each other and formed three independent communities (States 3 and

4 in S9 Fig). This disconnected network configuration had a combined occupancy rate of 37%

± 6.3% and a mean lifetime of 18s ± 1.2s (Fig 5G). The network configuration that showed the

next highest occupancy rate was one in which the CEN and DMN were connected with the SN

(State 1 in S9 Fig). This connected network configuration (DFN-2 in Fig 5F) had a combined

occupancy rate of 24% ± 6.0% with a mean lifetime of 74 s ± 24 s (Fig 5G). All other network

configurations had occurrence rates of 11% or less (S9 Fig).
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Fig 4. Dynamic states discovered by VB-HMM in Stanford developmental data. Adult Stanford Cohort: (a) Time evolution of

dynamic states in each subject. VB-HMM uncovers states at the group level thereby eliminating the matching of states across
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The above analysis demonstrates that adults and children have two common dominant

DFNs with identical network structures. We used this commonality to probe the maturation

of dynamic brain networks in terms of the differences in occupancy rates, mean lifetimes, and

switching probabilities between these common DFNs.

Developmental changes in occupancy rates and mean lifetimes of

dynamic functional networks

To investigate whether DFN occupancy rates and mean lifetimes differ between children and

adults, we focused on DFN-1 and DFN-2, the two dominant DFNs with identical community

structures in adults and children that together account for about 77% occupancy rates in both

groups. Network configurations corresponding to all other functional states were combined

into DFN-M. The mean lifetimes, but not the occupancy rates, of all three DFNs were signifi-

cantly greater in children compared to adults (p< 0.05, FDR corrected) (Fig 6A and 6B).

These findings indicate that children tend to persist longer in the same DFN than adults, as

illustrated by the time evolution of the three DFNs (Fig 5A and 5F). Below we further investi-

gate this pattern of developmental differences in terms of transition probabilities between

DFNs.

Developmental changes in transition probability between dynamic

functional networks

To further investigate whether children tend to stay in one DFN configuration longer than

adults, we computed transition probabilities in children and adults and compared them

between the groups. The probability of within-DFN transitions was not significantly different

between the two groups (p> 0.05, FDR corrected). However, transition probabilities to the

fully disconnected SN-CEN-DMN configuration (DFN-1) from both connected network con-

figurations (DFN-2 and DFN-M) were significantly higher in adults compared to children

(p< 0.05, FDR corrected) (Fig 6D). In contrast, children showed a higher probability of

switching between the two connected network configurations (p< 0.05, FDR corrected).

These findings demonstrate that, compared to children, adults switch back more frequently to

DFN-1, in which the SN, DMN and CEN are completely segregated from each other.

Developmental changes in dynamic functional network connectivity

Finally, to investigate how dynamic functional connectivity matures with age we compared the

strength of DFN connectivity assessed using within- and cross-network links as described

above. In this analysis, we further excluded participants with DFN connectivity beyond 3 stan-

dard deviations from their specific group or for whom both DFNs were not present. After

exclusion, our sample consisted of 22 adults and 16 children. We found a significant three-way

interaction between DFN (DFN-1 vs. DFN-2), link type (within- vs. cross-network), and

subjects. The state with the highest occupancy rate was assigned the first color in the jet colormap, the state with the second highest

occupancy rate was assigned the second color in the jet colormap, and so on; (b) Estimated partial correlations; (c) Occupancy rate

of each state. The occupancy rate of the top 7 states was significantly different from chance-level occupancy rate (data plotted; see SI

for details); and (d) Mean lifetimes of each state. The mean lifetime of all states was significantly different from chance-level mean

lifetime (data not plotted; see SI for details). Child Stanford Cohort: (e) Time evolution of dynamic states in each subject; (f)

Estimated partial correlations; (g) Occupancy rate of each state. The occupancy rate of the top 5 states was significantly different

from chance-level occupancy rate (data plotted; see SI for details); and (h) Mean lifetimes of each state. The mean lifetime of all

states was significantly different from chance-level mean lifetime (data not plotted; see SI for details) The states coloring procedure

was same as the Adult Stanford Cohort. Among the 25 initial states, only nine states in the Adult Stanford Cohort and eight states in

the Child Stanford Cohort have non-zero occupancy rates.

doi:10.1371/journal.pcbi.1005138.g004
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Fig 5. Dynamic functional networks identified in Stanford developmental data. Adult Stanford Cohort: (a) Time evolution of merged dynamic

networks in each subject; (b) Dynamic functional networks (DFNs) for the merged states 1 and 2 and the mixed state; (c) Occupancy rates and mean

lifetimes of the DFNs; and (d) Switching probabilities between the DFNs. Child Stanford Cohort: (e) Time evolution of merged dynamic networks in each

subject; (f) Dynamic functional networks (DFNs) for the merged states 1 and 2 and the mixed state; (g) Occupancy rates and mean lifetimes of the DFNs;
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participant groups (children vs. adults) (F1,36 = 10.99, p = 0.002) (Fig 6C), such that DFN-1

and DFN-2 configurations differed in connection strength by link type in adults (F1,21 = 119.5,

p< 0.001) but not in children (F1,15 = 0.491, p = 0.494). These results demonstrate that DFN

connectivity is weaker and less differentiated in children relative to adults.

Discussion

The main scientific aims of our study were to (1) investigate the temporal properties of

dynamic functional connectivity between the SN, CEN and DMN, three core neurocognitive

networks implicated in a wide range of goal directed behaviors [12,15,16,26,48,49], and (2)

investigate how the temporal properties of dynamic functional connectivity between these

core networks change from childhood to adulthood. To accomplish this, we first developed a

novel Bayesian HMM (VB-HMM) model for quantifying dynamic changes in functional con-

nectivity. A variational Bayes approach for estimating latent states and unknown HMM model

parameters allowed us to overcome weaknesses associated with conventional methods and to

investigate dynamic changes in intrinsic functional connectivity between three networks,

which have previously only been investigated using static network analysis. VB-HMM allowed

us to quantify the temporal evolution of distinct brain states and probe the dynamic functional

organization of the SN, CEN and DMN in an analytically rigorous manner. Contrary to previ-

ous observations based on static time-averaged connectivity analysis [20,50], we found that

temporal coupling between the SN, CEN and DMN varies considerably over time and that

these networks exist in a completely segregated state only intermittently with relatively short

mean lifetimes. VB-HMM also revealed immature and inflexible dynamic interactions

between the SN, CEN and DMN characterized by higher mean lifetimes in individual states

and reduced transition probability between states, in children relative to adults.

VB-HMM is a novel machine learning approach for identifying dynamic changes in

functional brain connectivity. VB-HMM has several advantages over existing methods

[6,9,29,51,52]: (i) the automated estimation of latent states and their temporal evolution; (ii)

estimation of posterior probabilities of latent states and model parameters; (iii) selection of

models based on a trade-off between the model complexity and fit of the data, thereby reduc-

ing overfitting; (iv) use of sparsity constraints resulting in pruning of weak states without hav-

ing to specify the number of states a priori; and (v) a generative model that has the potential to

provide a more mechanistic understanding of human brain dynamics. Our approach also

overcomes weaknesses of existing HMM methods that are based on a maximum likelihood

estimation approach and require a priori specification of the number of hidden states. Further-

more, in contrast to conventional HMM methods, VB-HMM can discover dynamic changes

in states based on signal mean or covariance or both. This flexibility can be useful in uncover-

ing latent brain dynamics during cognitive task processing, where states typically differ in

both signal mean and covariance, as well as rs-fMRI, where states are better characterized by

changes in covariance rather than mean signal levels. In applications to rs-fMRI, as in the pres-

ent study, this is accomplished in VB-HMM by setting the prior hyperparameter value λk =

1000 for each state k. This choice forces the posterior mean values for each state (μk) close to

and (h) Switching probabilities between the DFNs. In both cohorts, the most dominant DFN (DFN-1) consists of nodes in the SN, CEN, and DMN, which

constitute three independent communities. DFN-1 has an occupancy rate of 48% (SEM: ± 3.2%) with a mean lifetime of 18.3s (SEM: ± 1.2s) for the Adult

Stanford Cohort and an occupancy rate of 37% (SEM: ± 6.3%) with a mean lifetime of 18s (SEM: ± 1.2s) for the Child Stanford Cohort. In the second most

dominant DFN (DFN-2), which is identified in both datasets, the nodes of the CEN and DMN are connected to the nodes of the SN. DFN-2 had an

occupancy rate of 29% (SEM: ± 3.9%) with a mean lifetime of 25.5s (SEM: ± 5.3s) in the Adult Stanford Cohort and an occupancy rate of 24% (SEM: ±
6.0%) with a mean lifetime of 74s (SEM: ± 24.0s) in the Child Stanford Cohort. In both cohorts, the self-transition probabilities from a DFN to itself are high

(> 0.88), while the transitions between DFNs are low (< 0.1).

doi:10.1371/journal.pcbi.1005138.g005
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Fig 6. Developmental changes in occupancy rate, mean lifetime, state transition probabilities, and connectivity of DFNs in Stanford

developmental data. (a) Occupancy rates of DFNs in adults and children did not differ (p > 0.05, FDR corrected). (b) Mean lifetimes of DFNs are

significantly higher in children compared to adults (p < 0.05, FDR corrected). The higher mean lifetimes in children suggest that DFNs persist longer in

children compared to adults. (c) DFN connectivity is weaker and less differentiated in children relative to adults. Adults showed strong differences in the

connectivity of within- and cross-network links spanning the three static networks (SN, CEN, and DMN), whereas children did not (p < 0.002). (d) The
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prior mean (which is zero) (Equation S.10) and ensure that states are characterized by differ-

ences in the covariance matrices (Sk), but not the mean (μk). Another advantage of our Bayes-

ian approach is that the covariance (or inverse covariance) estimates are regularized and the

extent of regularization is determined by the data (Eqs S11–S.13). This regularization ensures

that the covariance matrices are full rank and therefore invertible to estimate partial correla-

tions. Such regularized estimation is not possible with maximum likelihood approaches. Our

simulations using three different simulation models demonstrate that VB-HMM can accu-

rately discover the number of states, their temporal evolution, the transition probabilities

between states and dynamic connectivity patterns associated with each state (see S1 Text for

details).

We next used VB-HMM to characterize the temporal evolution of dynamic brain states in

two independent cohorts of adult participants from the HCP. VB-HMM identified multiple

stable states in both cohorts of participants. The observation that the number of states is strictly

greater than one is consistent with previous results demonstrating that the rs-fMRI time series

is not stationary[29,53]. Importantly, VB-HMM identified similar patterns of stable brain

states in both cohorts and provided reliable and replicable estimates of occupancy rates,

mean lifetimes, and state transition probabilities associated with each brain state. Although

VB-HMM identified 16–19 states in both adult cohorts, only three states had occupancy rates

greater than 10% (Fig 2C and 2G), and these states demonstrated the highest mean lifetimes.

However, even these dominant states had short mean lifetimes ranging from 7–10 s, demon-

strating that brain states are temporally persistent over durations far shorter than the length of

a typical rs-fMRI scan session. These features were observed in both adult cohorts, demon-

strating the robustness of our findings. Furthermore, analysis of the state transition probability

indicated that each state had the highest probability of transitioning to itself rather than other

states (Fig 2D and 2H), suggesting that temporal stability of individual states does occur.

Taken together, these results demonstrate the existence of dynamic, yet stable, brain states in

rs-fMRI and identify distinct connectivity patterns associated with each state. We suggest that

this balance of temporal stability and dynamic connectivity is a fundamental principle of brain

organization.

By construction, VB-HMM states are characterized by distinct patterns of inter-node con-

nectivity (Figs 2 and 3). To test specific hypotheses related to the dynamic interactions

between the SN, CEN and DMN and interpret the neurobiological relevance of connectivity

profiles, we identified dynamic functional connectivity profiles associated with the three previ-

ously known static networks. To accomplish this we applied modularity-based community

detection algorithms [36] on the functional connectivity matrix estimated by VB-HMM for

each state (Fig 1B). This analysis revealed that, in some cases, states with non-identical con-

nectivity matrices had similar overall community structures (S5, S6, S8 and S9 Figs). For

example, multiple states (S5 and S6 Figs) demonstrated a pattern in which the SN, CEN and

DMN formed separate, segregated communities, reminiscent of the static functional networks

previously identified by independent components analysis [50]. We next combined states with

identical community structures into dynamic functional networks (DFNs) and examined the

temporal properties of segregated and non-segregated DFNs as well as the dynamic interac-

tions between key nodes of the SN, CEN and DMN.

probability of within-state (DFN) transitions was not significantly different between the two groups (p > 0.05, FDR corrected). State transition

probabilities from DFN-2 and DFN-m to DFN-1 were significantly higher in adults compared to children (p < 0.05, FDR corrected). State transition

probabilities from DFN-2 to DFN-m and from DFN-m to DFN-2 were greater in children compared to adults (p < 0.05, FDR corrected). These findings

demonstrate that compared to children, adults switch back more frequently to DFN-1, in which the SN, DMN, and CEN are completely segregated from

each other.

doi:10.1371/journal.pcbi.1005138.g006
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The SN, CEN and DMN formed separate communities and were segregated from each

other (DFN-1 in Fig 3) approximately 31% of the time (31% and 27% in Cohorts 1 and 2,

respectively). In this case, all three networks maintained their within-network connectivity

structure–AI and ACC nodes of the SN were connected with each other, PMC and VMPFC

nodes of the DMN were connected with each other, and DLPFC and PPC nodes of the CEN

were connected with each other. Crucially, VB-HMM also revealed that this DFN had a mean

lifetime of about 7–10 s (8.3 s and 8.8 s in Cohorts 1 and 2, respectively) (Fig 3C and 3G).

These findings suggest that although this particular DFN configuration is a prominent feature

of SN, CEN and DMN organization, it has a relatively short lifetime.

The second dominant DFN identified by VB-HMM had a community structure in which

the CEN and DMN were interconnected in one community, while the SN nodes remained seg-

regated from the CEN and DMN, forming an independent network (DFN-2 in Fig 3). This

DFN configuration had occurrence rates of 36% and 18% in Cohorts 1 and 2, respectively (Fig

3). The remaining states had distinct DFN configurations (S5 and S6 Figs), with varying levels

of cross-network interactions, but their occurrence rates were lower and not consistent across

the two cohorts. Previous work from our lab [12] [39] and recent work by other labs [54,55]

has indicated that the SN plays a critical role in switching between the DMN and the CEN.

Our results suggest that this switching is transient (i.e. doesn’t persist for a long time) and may

occur not very frequently.

Finally, analysis of the switching probability between DFNs revealed that each DFN had a

high probability (0.91 in Cohort 1 and 0.93 in Cohort 2) of making self-transitions (Fig 3D

and 3H). Thus, as with individual brain states, the two dominant DFN configurations (DFN-1

and DFN-2 in Fig 3) were stable over time but persistent only for short time intervals. Taken

together, these findings identify key features of dynamic functional interactions associated

with the SN, CEN and DMN and confirm that the static segregated networks previously identi-

fied using independent component analysis occur only about 30% of the time.

The organization of brain networks in adults is shaped by years of development, learning

and brain plasticity [5]. Previous studies using static connectivity analysis have pointed to

changing topological organization of connections with age [56–61]. More specifically, it has

been suggested that interactions between the SN, CEN and DMN are immature in children

[26,28], but their dynamical temporal properties are not known because previous analyses

have assumed that brain networks are static over time. To address this gap in knowledge, we

used VB-HMM to investigate how dynamic functional interactions between the SN, CEN

and DMN mature from childhood to adulthood. VB-HMM revealed significant differences in

key temporal properties, such as mean lifetime and state transition probabilities, between chil-

dren and adults and provides a new level of detail regarding immature brain dynamics in

childhood.

To test the hypothesis that dynamic functional interactions between the SN, CEN and

DMN are different in children, we first identified two common dominant DFNs with identical

network structure in both children and adults. We used this commonality to probe the matu-

ration of dynamic brain networks using measures of occupancy rate, mean lifetime and

switching probabilities derived using VB-HMM. VB-HMM identified two DFN configurations

with the same community structure in both groups: DFN-1, in which the SN, CEN and DMN

were segregated from each other and DFN-2, in which the AI and ACC nodes of the SN were

decoupled from each other and showed significant cross-network interactions with the DMN

and CEN, respectively (Fig 5B and 5F). Critically, the network structures of the DFN-2 were

different between the HCP Adult cohorts (Fig 3B and 3F) and Stanford Adult cohort (Fig 5B).

The differences may have arisen from the slower sampling rate in the Stanford data which

used a standard TR = 2 seconds compared to the faster TR = 0.73 seconds used in the HCP
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data. Critically, patterns were consistent within scanners–the first and second DFNs were

identical in the two HCP cohorts and in the two Stanford cohorts. Analysis of connectivity

profiles across nodes of the SN, CEN and DMN showed that the two DFNs were less differenti-

ated in children relative to adults (Fig 6C). Critically, the mean lifetimes of the two common

DFN configurations (DFN-1 and DFN-2) were significantly greater in children compared to

adults (Fig 5G) suggesting that immature brain network organization is characterized by

greater dwelling time in specific network configurations.

Analysis of transition probabilities further revealed that the likelihood of transitions into

the configuration in which the SN, CEN and DMN were completely segregated from each

other was significantly lower in children compared to adults (Fig 6D). In contrast, children

showed a higher likelihood of switching between non-segregated network configurations (Fig

6D). These findings support the notion that relative to those of adults, children’s brains are

less flexible and less likely to switch to the segregated DFN configuration from other network

configurations. Taken together, these findings demonstrate that children have less flexible

dynamic cross-network interactions, characterized by reduced switching between distinct

brain states and longer persistence in specific network configurations.

In summary, we developed a novel Bayesian HMM (VB-HMM) approach for estimating

the temporal properties of dynamic functional networks in fMRI data and applied it to charac-

terize time-varying connectivity of the SN, DMN, and CEN, three neurocognitive networks

that play a crucial role in human cognition. VB-HMM uncovered latent states, dynamic func-

tional connectivity and state transition probabilities associated with these three networks,

thereby revealing transient dynamic functional networks (DFNs) that allow for flexible within

and cross-network interactions. In adults, VB-HMM revealed that the SN, CEN and DMN–

systems that were previously characterized only by static network analysis–were in a segre-

gated, disconnected state, only about 30% of the time with mean lifetimes of 7–10 s. VB-HMM

also revealed that dynamic functional interactions between the SN, CEN and DMN are weaker

and immature in children. Critically, the uncovered brain dynamics were not related to indi-

vidual differences in age and in-scanner micro-movements. Our computational techniques

provide new insights into the dynamic functional organization of the SN, DMN and CEN and

their maturation with development. More generally, our computational approach may be use-

ful for investigating the dynamic aspects of functional brain organization in neurodevelop-

mental and psychiatric disorders, including autism, schizophrenia and mood disorders[27].
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S4 Fig. Validation of VB-HMM–Simulation Model 3. (a) State transition used to generate

the simulated dataset. (b) Probability of each state at each time point computed by applying

VB-HMM to the simulated dataset. (c) State transition uncovered by VB-HMM.
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S5 Fig. Dynamic functional networks for each state discovered by VB-HMM in Adult HCP

Cohort 1: Dynamic Functional networks are obtained by applying a community detection

algorithm on partial correlations estimated (Fig 3B) by VB-HMM. States are ordered

from the highest to lowest occupancy rates. Among 25 states only 16 have nonzero occupancy

rates.
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S6 Fig. Dynamic functional networks for each state discovered by VB-HMM in Adult HCP

Cohort 2: Dynamic Functional networks are obtained by applying a community detection

algorithm on partial correlations estimated (Fig 3F) by VB-HMM. States are ordered

from the highest to lowest occupancy rates. Among 25 states only 18 have nonzero occupancy

rates.
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S7 Fig. Dynamic functional network connectivity in Adult HCP Cohort 1 and Adult

HCP Cohort 2: (a) In Cohort 1, there was a found a significant interaction DFN and link type

(F1,19 = 4.943, p = 0.039) such that connectivity of cross-network links was greater in DFN-2

compared to DFN-1 (p< 0.001) while no significant difference was observed between DFN-1

and DFN-2 for within-network links (p = 0.461). (b) In Cohort 2, similar to Cohort 1, there

was a found a significant interaction DFN and link type (F1,19 = 40.87, p< 0.001), such that

the strength of cross-network links was greater in DFN-2 compared to DFN-1 (p< 0.001)

while the reverse was true for within-network links (p< 0.001). These results demonstrate that

the two DFNs differ significantly in their connectivity profiles.

(TIF)

S8 Fig. Dynamic functional networks for each state discovered by VB-HMM in Adult Stan-

ford Cohort: Dynamic Functional networks are obtained by applying a community detec-

tion algorithm on partial correlations estimated (Fig 4B) by VB-HMM. States are ordered

from the highest to lowest occupancy rates. Among 25 states 9 only states have nonzero occu-

pancy rates.
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S9 Fig. Dynamic functional networks for each state discovered by VB-HMM in Child Stan-

ford Cohort: Dynamic Functional networks are obtained by applying a community detec-

tion algorithm on partial correlations estimated (Fig 4F) by VB-HMM. States are ordered

from the highest to lowest occupancy rates. Among 25 states only 8 states have nonzero occu-

pancy rates.
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