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Introduction: Because chronic kidney disease (CKD) adversely affects survival, prediction of mortality risk

should help to identify individuals requiring therapeutic intervention. The goal of this project was to

construct and to validate a risk scoring system and prediction model of the probability of 2-year mortality

in a CKD population.

Methods: We applied the Woodpecker approach to develop prediction equations using linear, exponen-

tial, and combined models. A risk indicator R on a scale of 0 to 10 was calculated as follows: starting with 0,

add 0.048 for each year of age above 20, 0.45 for male sex, 0.49 for each stage of CKD over stage 2, 1.04 for

proteinuria, 0.72 for smoking history, and 0.49 for each significant comorbidity up to 5.

Results: Using R to predict 2-year mortality, the model yielded an area under the receiver operating

characterisic curve of 0.83 (95% confidence interval ¼ 0.81�0.86) with 5062 subjects with CKD $stage 2

from a National Health and Nutrition Examination Survey cohort (1999�2004) having a 3.2% 2-year

mortality. The combined expression offered results closest to most actual outcomes for the entire popu-

lation and for each CKD stage. For those patients with higher risk (R$ 4�5, >5�6, and >6), the predicted 2-

year mortality rates were 3.8%, 6.4%, and 13.0%, respectively, compared to observed mortality rates of

2.7%, 4.5%, and 13.3%.

Conclusion: The risk stratification tool and prediction model of 2-year mortality demonstrated good per-

formance and may be used in clinical practice to quantify the risk of death for individual patients with CKD.
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C
hronic kidney disease (CKD) affects an estimated
13% of the population in the United States,1 and

has an even higher prevalence in elderly persons.2 An
important goal of treatment is to prevent the progres-
sion of CKD to end-stage renal disease (ESRD) and the
need for dialysis or kidney transplantation. Equally
important, CKD bestows a very significant mortality
risk,3,4 similar to that of cardiovascular disease.5 It in-
creases patient risk of mortality by 36% independent
of other cardiovascular risk factors.6 Furthermore, even
relatively mild decreases in kidney function are asso-
ciated with significantly increased risk of mortality.7,8

In the era of personalized medicine, it is helpful to
predict the risk of an individual patient to direct
intervention of preventive measures in individuals at
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highest risk for progression and death. Identifying a
high-risk group of individuals is also important for
other reasons, for example, to select the population of
interest for clinical trials or for health care policy
research. Furthermore, developing prediction models
and risk stratification tools may help to counsel
patients in a more evidence-based manner.

Factors associated with mortality in the CKD popu-
lation are similar to those in the general population,
including age, male sex, and comorbidities. However,
there are some differences; for example, hypertension
does not seem to predict greater mortality according to
some authors7–9 but is a good predictor according to
others.10 The role of race/ethnicity is unclear,9,11 and
some additional risk factors play a significant role,
namely, elevated phosphate level,11 degree of kidney
dysfunction,7,8 and hemoglobin level.7,12

Prediction models of CKD patient survival have been
developed but with only a fair degree of accuracy
(c-stat 0.72 in the validation dataset and 0.69 in
external validation).13 In general, developing predic-
tion models and their validation requires careful
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analysis and statistical use of data.14 Recently, we
developed the Woodpecker approach to streamline
construction of a model from existing data in the
literature that allows generation of a risk indicator
and prediction formulae15,16 that were used to predict
2-year mortality risk in the general population.17

The goal of this project was to apply the Wood-
pecker approach to construct and to validate a risk
scoring system and prediction model of the probability
of 2-year mortality in patients with CKD of stage 2 and
greater. We developed and compared the results of
various prediction equations based on linear, logistic
regression, and Cox regression models to actual
mortality.
METHODS

Selection of Variables for the Prediction

Formula

Several studies describing factors predicting CKD pa-
tients’ survival were selected as a source of our pre-
diction model. The selection of the studies was based
first on those reports in which multiple variables are
included in the model adjusting for each other. That
type of study is different from a hypothesis-driven
design, in which a particular primary variable is
evaluated and the selection of covariates is based on
potential confounding effects.18 Furthermore, we were
looking for a well-designed study with a relatively
large sample size using the same outcome definition as
in our model. The selection of the specific variables in
the model was determined by choosing the best pre-
dictors of the outcome, but was also driven by criteria
of practicality (e.g., variables difficult to obtain are not
practical), parsimony, and physiologic plausibility.

Using PubMed, we searched for papers with key
words “chronic kidney disease” and “mortality,”
limiting the search to studies in humans, papers with
full text available, and published in the last 10 years in
the “core clinical journals.” That search returned 525
items. In addition, we reviewed papers generated by
the CKD Prognosis Consortium.19–23 We carefully
reviewed selected reports, paying careful attention to
study design, sample size, generalizability of the
study population, and availability of information
necessary for our prediction model construction. That
selection left us with 10 final papers7–9,11,12,24–29; from
those we selected the 4 most relevant reports for our
final model.7,8,11,29 The analysis in 1 reference28 was
not included, as it presented risk factors that were
reported elsewhere, and the quantified impact of some
(gender, comorbidities) was very close to that in other
reports,8,29 whereas age and CKD stage had a higher
impact than reported elsewhere.8,11
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Our initial prediction model was based on a previ-
ously published study of 6541 subjects with CKD,
defined as <60 ml/min per 1.73 m2 (i.e., stage 3 CKD or
above), who were 20 years of age or older and fol-
lowed for up to 5 years.8 Using the Cox model,
Johnson et al.8 identified the variables associated with
mortality in 2678 cases (11.4 deaths/100 person-years).
Two variables were selected from this model for our
analysis, namely, sex and stage of CKD. Some other
potential risk factors (e.g., proteinuria) were not
included in our study from that report, because of a
large amount of missing data. Several variables were
added to the model from other reports of similar
populations described elsewhere.16 Combining pre-
dictors from different studies in the same model is
based on specific assumptions: (i) homogeneity,30 the
assumption that the populations are similar between
the studies (that can be demonstrated by comparing
baseline statistics); and (ii) independence of the
predictors, lack of interaction, and lack of collinearity.
We note that meta-analysis and meta-regression
methods30,31 present more elaborate ways to combine
results rather than simply combining the regression
coefficients in a linear way. However, for the practical
purpose of developing a prediction algorithm, the
latter should be adequate.16

Specifically, using the initial model, we added age,11

proteinuria, smoking history,7 and a number of
important comorbidities.29 The approach to comorbid-
ities was based on a report by Tonelli et al.,29 in which
the authors studied the number of comorbidities in
association with mortality. As done in that report and
to make our model the most practical, we also assigned
1 point to each of the comorbidities. The following
conditions that were also available in the National
Health and Nutrition Examination Survey (NHANES)
dataset were included in our calculation of the
comorbidities: diabetes mellitus, hypertension, coro-
nary artery disease, stroke, congestive heart failure,
chronic obstructive pulmonary disease/asthma, anemia,
cancer, liver disease, osteoporosis, arthritis, thyroid
disease, and hyperphosphatemia.

Regression coefficients for continuous variables were
derived from reported hazard ratios. The number of
comorbidities was reported as a categorical variable,29

and to quantify the risk of comorbidity, we assumed
a linear relationship between the number of comor-
bidities and the hazard ratio of mortality. The linear
coefficient of a fitted line with intercept being close to
0 is 1.33, meaning that each new comorbidity up to 5
adds 1.33 on average to the hazard ratio. Therefore, the
regression coefficient associated with each additional
comorbidity (up to 5), the natural logarithm of 1.33,
is 0.285.
Kidney International Reports (2018) 3, 417–425
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Our final model therefore included age (regression
coefficient [b] ¼ 0.039), male sex (b ¼ 0.365), stage of
CKD (b ¼ 0.4 over stage 2), presence of proteinuria,
defined as albumin-to-creatinine ratio of $300 mg/g32

(b ¼ 0.85), positive smoking history (b ¼ 0.588), and
number of serious comorbidities (each b ¼ 0.4). The
risk indicator, R, was then calculated by factoring
these coefficients to a scale from 0 to 10 as follows:
starting with 0, add 0.048 for each year of age above 20,
0.45 for male sex, 0.49 for each stage of CKD over stage
2, 1.04 for proteinuria, 0.72 for smoking history, and
0.49 for each significant comorbidity up to 5 (as
described more fully in the Supplementary Material).

We used the stage of CKD rather than eGFR for the
following 2 reasons: (i) CKD stage rather than eGFR was
used as a predictor in the original paper that was used
for model generation; and (ii) from a practical stand-
point, although the most recent eGFR is not always
available, the stage of CKD is usually well documented
in the patient records. The stage of CKD might have
been somewhat overestimated for 2 potential reasons:
(i) The Modification of Diet in Renal Disease Study
(MDRD) equation,33 which was used for estimated
glomerular filtration rate (eGFR), calculation tends to
classify more people as having CKD compared to the
Chronic Kidney Disease�Epidemiology Collaboration
(CKD-EPI) equation22; and (ii) we used non�isotope
dilution mass spectrometry�calibrated Jaffe assay
serum creatinine values that were reported in
NHANES dataset.34 The presence and stage of CKD in
our validation dataset was defined based on estimated
GFR calculated using the expression derived by Levey
et al.33: eGFR ¼ 186 � [serum creatinine(�1.154)] � [age
in years(�0.203)] � 0.742 if female � 1.212 if black. This
original MDRD equation is used for creatinine values
that are not calibrated to an isotope dilution mass
spectrometry. With the effort to standardize reported
creatinine values, a new equation was developed in
which the coefficient of 173 is used instead of 186.
NHANES reported isotope dilution mass spectrometry–
adjusted creatinine values starting in 2008, whereas
before that, unadjusted values were reported, and
therefore, the original equation was used in this study.
Calculating the Probability of Event

We estimated the probability of the outcome (P) as a
function of the risk indicator (R) and the outcome rate
in the population at 2 years. We used a simplified linear
expression and 2 more complex exponential expres-
sions to predict the probability of outcome15:

1. Linear expression: Probability of 2-year mortality,
PðRÞ ¼ R$r

b
R
, where r is the outcome rate in the

target population (2-year mortality, 3.18%) and bR
Kidney International Reports (2018) 3, 417–425
scaled from 0 to 10 is the value of risk indicator
for the “average” person in the target population
(bR ¼ 3.402), so the final expression is
PðRÞ ¼ R$0:009347

2. Exponential expression based on logistic regression:
PðRÞ ¼ 1

1þðeaþR=1:229Þ�1 where a is the intercept: a

¼ ln r
1�r � b

R
1:229. Using bR and r of our target popu-

lation a ¼ �6.81814 and PðRÞ ¼ 1
1þðeR=1:229�6:81814Þ�1

3. Exponential expression based on Cox model: P(R)
¼ 1� e�qT$ðeR=1:229Þ, where qT is baseline hazard:

qT ¼ �lnð1�rÞ
ebR=1:229

. Using target population data,

qT ¼ 0:001076 and PðRÞ ¼ 1� e�0:001076 $ðeR=1:229Þ

4. Finally, we considered a combined expression,
averaging the predictions generated by the linear
model and the exponential expression based on lo-
gistic regression. We previously demonstrated that
predictions of exponential models are similar to
those of linear model in the lower risk subjects,
although in higher risk groups, linear models tend
to underestimate the risk whereas exponential
models tend to overestimate it.15,16 We hypothe-
sized that the characteristics of the target popula-
tion (described by r

b
R
) would determine which

model better estimates the actual outcome. Specif-
ically, in a population with higher r

b
R
(population

with higher mortality despite lower average risk)
exponential curves become more flat and closer to
linear models. On the other hand, in a population
with lower r

b
R

(low outcome rate despite higher

average risk) exponential curves are sharper and
the discrepancy between linear and exponential
predictions is greater.15 We propose that the true
outcome is in the area between the predictions of
these 2 models.

Validation Dataset

For our target (validation) dataset, we used the
NHANES cohort, which initially included 29,402
subjects enrolled in the survey between 1999 and
2004 with mortality information available through 31
December 2006. Data collection for NHANES was
based on a substantial oversampling of young chil-
dren, females, older persons, African American/black
persons, and Mexican Americans so as to identify
those most at risk for poor nutrition for the purpose
of the NHANES study. Only adults ($18 years old)
were included in our analysis. Files covering 1999 to
2000 (n ¼ 9965), 2001 to 2002 (n ¼ 11,039), and 2003
to 2004 (n¼10,122) were merged, and variable name
inconsistencies were corrected in the merged dataset.
Records with missing eGFR values or missing mor-
tality information were deleted. Subjects with CKD
419
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stage 2 or above were included in the study; thus, the
dataset consisted of 5062 records. Information for
prediction modeling was extracted from several
NHANES files, including demographics, physical ex-
amination and body measurements, questionnaire,
and laboratory files (Table 1).

Outcome Variable

The outcome in this study is 2-year mortality. The
mortality information was obtained from the Centers
for Disease Control and Prevention (CDC) website and
linked to the NHANES data using the unique subject
ID. The National Center for Health Statistics has con-
ducted a mortality linkage of NHANES to death
certificate data found in the National Death Index. The
NHANES Linked Mortality Files include the contin-
uous NHANES years (1999�2004) and provide mor-
tality follow-up data from the date of survey
participation through 31 December 2006.

Validation and Statistical Analysis

Means and SDs were used to summarize continuous
variables with normal distribution. Categorical vari-
ables were summarized as percent of total. The data
Table 1. NHANES variables used as the source of information for
independent predictors used in the model
Predictor NHANES variable(s)

Age, yr HSAGEIR

Sex RIAGENDR Gender

Urine albumin-to-creatinine URXUMASI Urine albumin concentration;
URXUCR Urine creatinine concentration

Creatinine level LBXSCR Creatinine (mg/dl)

Phosphate level LBXSPH Phosphorus (mg/dl)

Hypertension BPQ020 Ever told you had high blood pressure;
BPQ030 Told had high blood pressure 2þ times;
BP040A Taking prescription for hypertension

Diabetes mellitus DIQ010 Doctor told you have diabetes;
DIQ050 Taking insulin now

Coronary artery
disease

MCQ160C Ever told you had coronary heart disease;
MCQ160D Ever told you had angina/angina pectoris;

MCQ160E Ever told you had heart attack

Stroke MCQ160F Ever told you had a stroke

CHF MCQ160B Ever told you had congestive heart failure

COPD/asthma MCQ010: Ever told you had asthma;
MCQ160G: Ever told you had emphysema;

MCQ160K Ever told you had chronic bronchitis;
RDQ133 Doctor prescribe wheezing medication

Anemia MCQ053 Taking treatment for anemia past 3 mo;
LBXHCT Hematocrit; LBXHGB Hemoglobin

Cancer MCQ220 Ever told you had cancer or malignancy

Arthritis MCQ160A Doctor ever said you have arthritis

Thyroid disease MCQ160I Ever told you had thyroid disease

Liver disease MCQ160L Ever told you had any liver condition

Osteoporosis OSQ060 Ever told had osteoporosis/brittle bones;
OSQ070 Ever treated for osteoporosis

Smoking BPQ043A Told to stop smoking for hypertension;
SMD070 Number cigarettes smoked per day now;

SMQ040 Do you now smoke cigarettes

CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; NHANES,
National Health and Nutrition Examination Survey.

420
collected were analyzed using the SAS software
version 9.3 (SAS Institute, Cary, NC). To quantify
goodness of fit of our prediction models, we used area
under the receiver operating characteristic (ROC)
curve and calibration. The ROC curve was used to
validate the risk indicator comparing predicted risk
to the actual outcome. After the probability for each
individual subject was computed, the subjects were
divided into 6 groups based on R value (0�2, >2�3,
>3�4, >4�5, >5�6, and >6). For each category, we
calculated the actual mortality rate and compared that
to the prediction based on R.

RESULTS

Baseline Characteristics of the Study Population

The final study population consisted of 5062 subjects
with CKD stage 2 or above with mean age of 59.1 years,
51.1% male, 65.3% non-Hispanic white, 13.3% non-
Hispanic black, and 15.6% Mexican American. Of the
study population 13.3% had diabetes mellitus. Stage 2
CKD was present in 84.2% of the subjects; the
remainder had more advanced CKD. The 2-year mor-
tality was 3.18% in this target population. Other
baseline characteristics of the study population are
presented in Table 2.

Risk Stratification Tool

The risk indicator (R) was based upon adding
regression coefficients rounded to 2 decimal points
(except for age) for practicality, as noted in the
Methods. It should be noted also that the risk strati-
fication tool, R, is an artificial score on a scale of 0 to
10 that indicates a relative risk of the outcome
compared to other members of the study population.
Therefore, the score of 0 does not mean the probability
of death is nonexistent, and 10 does not mean that the
chance of mortality is 100%. A higher or lower R
score simply indicates that a particular subject belongs
to higher or lower risk group within the particular
population.

Prediction models based on the risk indicator R
demonstrated a strong degree of discrimination when
compared with the actual 2-year mortality in the
NHANES population sample, with an area under the
ROC curve (AUC) of 0.83 (95% confidence interval
[CI] ¼ 0.81�0.86) (Figure 1). In comparison, the model
based only on age yielded an AUC of 0.79 (95% CI ¼
0.76�0.82), and that based only on the number of
comorbidities yielded an AUC of 0.73 (95% CI ¼
0.69�0.76).

Predicting Probability of Outcome

We used the 4 different expressions to predict
actual probability of the outcome (i.e., mortality) as
Kidney International Reports (2018) 3, 417–425



Figure 1. Receiver operating characteristic curve for the predicted
risk of mortality in the National Health and Nutrition Examination
Survey (NHANES) population based on the risk indicator R. Area
under the curve ¼ 0.83 (95% confidence interval ¼ 0.81�0.86).

Table 2. Baseline characteristics of the NHANES study population
(validation population, n ¼ 5062)

Variable

Mean (SD) or
% of total for
categorical
variables

Range:
minimum--
maximum

95% CI for
mean

Number
with

missing
data

Age, yr 59.1 (17.0) 18.0–84.9 58.6–59.6 0

Sex

Male 51.1%

Female 48.9%

Race

Non-Hispanic white 65.3%

Non-Hispanic black 13.3%

Mexican American 15.6%

Other Hispanic 3.3%

Other 2.6%

Systolic blood pressure,
mm Hg

130.3 (22.0) 72.0–237.0 129.7–131.0 225

Diastolic blood pressure,
mm Hg

71.5 (12.7) 8.0–122.0 71.2–71.9 274

Presence of diabetes 13.3%

Smoking history 15.0%

Stage of chronic
kidney disease

2 84.2%

3 14.0%

4 1.0%

5 0.7%

Hemoglobin, g/dl 14.4 (1.5) 5.9–19.7 14.3–14.4 1

Albumin, g/dl 4.2 (0.3) 2.2–5.5 4.2–4.3 0

Blood urea nitrogen, mg/dl 16.1 (7.3) 2.0–122.0 15.9–16.3 0

Creatinine, mg/dl 1.08 (0.7) 0.7–13.7 1.06–1.1 0

Calcium, total, mg/dl 9.5 (0.4) 6.7–12.5 9.49–9.51 0

Phosphorus, mg/dl 3.7 (0.6) 1.8–8.1 3.69–3.72 0

eGFR, ml/min per 1.73 m2 73.8 (14.8) 3.5–91.0 73.4–74.2 0

Urine albumin-to-creatinine
ratio, mg/g

80.1 (548.8) 0.15–15637.7 64.8–95.4 111

Prevalence of proteinuria
and microalbuminuria
(defined by urine
albumin-to-creatinine ratio)

3.5%
>300 mg/g
15.9%
>30 mg/g

Number of comorbidities 1.77 (1.52) 0 - 5 1.73 - 1.81 0

2-yr Survival 96.8%

eGFR, estimated glomerular filtration rate.
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described in the Methods: namely, linear expression;
exponential expression based on logistic regression;
exponential expression based on Cox model; and the
combined expression averaging the predictions gener-
ated by the linear model and the exponential expres-
sion based on logistic regression. When the subjects
were combined into 6 groups of increasing risk, the
actual mortality rate compared to the predicted prob-
ability of death based on R using each of the formulae
is as shown in Table 3 and Figure 2. Analysis was then
repeated for each stage of CKD separately (because of
small sample sizes, stages 4 and 5 were combined into a
single group). As noted in Table 3, the combined
expression offered predictive results closest to the
actual outcomes, particularly in the higher-risk groups.
For those with R > 4 to 5, >5 to 6, and >6, the
Kidney International Reports (2018) 3, 417–425
observed 2-year mortality rates were 2.7%, 4.5%, and
13.3%, respectively, compared to predicted mortality
rates of 3.8%, 6.4%, and 13.0%.
DISCUSSION

Patients with CKD represent a very significant fraction
of the population and diminished GFR makes a
negative impact on survival in different patient
populations.9,35–37 Although therapy is driven by a
desire to avoid dialysis, it is actually more likely for
most CKD patients to die than to end up on dialysis.24

In this project, we developed a prediction algorithm to
quantify the individual mortality risk based on a few
clinical and demographic factors.

Predictors of mortality in the CKD population have
been evaluated in the past, specifically renal function
level,25,38 calcium-phosphate metabolism,39 and de-
mographic characteristics40 were found to be associated
with the outcome. However, actual practical risk
stratification tools or other predictive analytics are less
well represented in the literature. Several risk scores
have been developed for death13,41,42 and progression
to end-stage renal disease43 in this population. As in
this report, risk scores represent linear combination of
regression coefficients of the multivariate models. In-
dependent variables used for prediction are similar in
these scores and largely overlap with those used by us
(e.g., proteinuria, degree of renal dysfunction, serum
phosphate level).41,42 Traditional prediction models use
large datasets to generate a prediction equation, which
421



Table 3. Observed mortality (%) and predicted probability of death (%) by the logistic, linear, and combined models in the entire study
population divided by risk indicator R

Risk indicator Observed mortality %

Predicted percent mortality (96% confidence interval)

Logistic Linear Combined

CKD entire group (n ¼ 5062)

R ¼ 0–2 (n ¼ 343) 0 0.42 (0.41–0.42) 1.22 (1.21–1.25) 0.82 (0.81–0.84)

R > 2–3 (n ¼ 869) 0.12 0.88 (0.86–0.89) 1.93 (1.92–1.94) 1.40 (1.39–1.42)

R > 3–4 (n ¼ 1060) 0.57 1.93 (1.91–1.96) 2.68 (2.66–2.69) 2.31 (2.29–2.32)

R > 4–5 (n ¼ 1276) 2.66 4.20 (4.15–4.25) 3.43 (3.42–3.44) 3.81 (3.78–3.84)

R > 5–6 (n ¼ 928) 4.53 8.64 (8.52–8.75) 4.14 (4.13–4.16) 6.39 (6.33–6.46)

R > 6–9 (n ¼ 585) 13.33 20.91 (20.24–21.57) 5.08 (5.04–5.11) 12.99 (12.64–13.34)

CKD stage 2 (n ¼ 4263)

R ¼ 0–2 (n ¼ 342) 0 0.42 (0.41–0.42) 1.23 (1.21–1.25) 0.82 (0.81–0.84)

R > 2–3 (n ¼ 859) 0.12 0.88 (0.86–0.89) 1.93 (1.92–1.94) 1.40 (1.39–1.42)

R > 3–4 (n ¼ 1030) 0.58 1.93 (1.90–1.96) 2.68 (2.66–2.69) 2.30 (2.28–2.32)

R > 4–5 (n ¼ 1146) 2.36 4.17 (4.12–4.23) 3.42 (3.41–3.43) 3.80 (3.76–3.83)

R > 5–6 (n ¼ 658) 3.8 8.47 (8.33–8.60) 4.13 (4.11–4.14) 6.30 (6.22–6.37)

R > 6–9 (n ¼ 228) 8.33 17.42 (16.74–18.1) 4.89 (4.85–4.93) 11.15 (10.8–11.51)

CKD stage 3 (n ¼ 710)

R ¼ 0–2 (n ¼ 1) 0 0.37 1.13 0.74

R > 2–3 (n ¼ 10) 0 0.93 (0.80–1.06) 1.99 (1.86–2.12) 1.46 (1.33–1.59)

R > 3–4 (n ¼ 27) 0 2.05 (1.86–2.24) 2.73 (2.64–2.83) 2.39 (2.25–2.54)

R > 4–5 (n ¼ 129) 5.43 4.43 (4.27–4.59) 3.48 (3.44–3.52) 3.96 (3.86–4.05)

R > 5–6 (n ¼ 254) 5.91 9.0 (8.78–9.23) 4.19 (4.17–4.22) 6.60 (6.47–6.72)

R > 6–9 (n ¼ 289) 14.53 21.68 (20.79–22.57) 5.13 (5.08–5.17) 13.40 (12.94–13.87)

CKD stages 4–5 (n ¼ 89)

R ¼ 0–2 (n ¼ 0) NA NA

R > 2–3 (n ¼ 0) NA NA

R > 3–4 (n ¼ 3) 0 2.28 (1.18–3.37) 2.85 (2.38–3.32) 2.56 (1.78–3.34)

R > 4–5 (n ¼ 1) 0 4.36 3.49 3.93

R > 5–6 (n ¼ 16) 12.5 9.91 (8.82–11.01) 4.29 (4.17–4.41) 7.10 (6.49–7.71)

R > 6–9 (n ¼ 68) 25.0 29.31 (26.57–32.06) 5.13 (5.37–5.62) 17.40 (15.97–18.84)

CI, confidence interval.
Analysis was performed in the entire study population and in subgroups based on stage of chronic kidney disease (CKD). The Cox model was omitted, as the results were essentially
identical to the logistic model.
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is then further validated on the fraction of the same
dataset. That approach is prone to shortfalls: specif-
ically, overfitting and inability to generalize. The
Figure 2. Predicted probability of mortality in comparison to
observed mortality rate using the linear, exponential logistic
expression, exponential Cox expression, and combined expression
formulae in the groups, divided by the risk indicator R.
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degree of accuracy of the existing models is also
somewhat variable from somewhat limited13 to
reasonably high.25

Compared to existing predictive analytics, our
approach15–17 has several important advantages. The
distinctive feature of this method is that predictive an-
alytics are developed based on existing literature by
combining several groups of predictors from different
published reports and are then adjusted to the target
population by using descriptive statistics of the group.
As opposed to the usual prediction modeling in which
the prediction equation is developed once and is not
modified based on a new population or new information
available, the Woodpecker approach allows us to make
changes to the model for the distinctive features of the
new populations by incorporating simple descriptive
statistics. Furthermore, as current literature results can
be easily added to the model, the model remains flexible
and up to date with the existing literature. That in turn
translates into a short implementation time of the
emerging clinical outcome research and the ability to
bring current literature to the bedside. Also, from a
validation point of view, it is important to mention that
Kidney International Reports (2018) 3, 417–425
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there is very little chance of overfitting, because the
model is developed externally to the validation dataset.
Indeed, prediction models are more practical when they
are intuitive and easy to understand. Associations that
do not make much sense to clinicians will not make a
trusted model. The components of our prediction model
have been shown to be associated with mortality
outcome in other published analyses.4,7,8,11 This associ-
ation might be causative (e.g., age, comorbidities).
Alternatively, the risk predictors might be markers of
severity of illness (e.g., hemoglobin level, stage of
CKD).12 We went through an elaborate selection of our
predictors, trying to keep the balance between devel-
oping a comprehensive model and, at the same time,
keeping it practical and parsimonious. We reviewed a
number of outcome studies in the CKD population and
selected predictors from 4 of them.7,8,11,29 The final
model was based on age, sex, stage of CKD, presence of
proteinuria, smoking, and the number of comorbidities
that we chose to include. We decided to use the number
of comorbidities rather than the presence of specific
comorbid conditions, such as diabetes, based on a
recently published report quantifying the risk based on
the number of comorbidities present.29 To quantify the
role of age, we selected a study with a conservative es-
timate for its hazard ratio.11 Of note, the c-statistic was
0.7 for prediction of mortality in the study8 that we used
for development of our model, whereas the area under
the ROC curve was 0.83 for validation in an external
dataset in our study.

We demonstrated that although the model was
developed using different sets of data, it performed well
in the validation dataset (NHANES cohort of
1991�2004). This was particularly true for the high-risk
categories of patients who would be of most interest to
clinicians. For example, we assume that a predicted 2-
year mortality rate of 13.0% (vs. the actual mortality
of 13.3%) in those at highest risk would engender
changes in medical management that might reduce risk.
Although overall performance of the model is accept-
able, there are some subcategories in regard to which the
performance was somewhat diminished: specifically, the
model overestimated the probability of mortality in
lower-risk groups in patients with CKD stage 2.

In reporting our results, we used the “Transparent
Reporting of a multivariable prediction model for In-
dividual Prognosis or Diagnosis” as a guide to ensure
that the paper reflects the TRIPOD statement.44

Limitations

There are potential fundamental limitations of predic-
tion modeling, for example, using variables derived
from historical data to predict future outcomes. In this
study, the algorithm was developed and validated on
Kidney International Reports (2018) 3, 417–425
data from the early 2000s. Although the assumption is
that it will perform reasonably well now, the algorithm
has not been tested in a more recent group of CKD
patients. The quality of any retrospective data may
pose a limitation; however, in our experience,
NHANES data seem to be reasonably complete and
accurate. Furthermore, it should be noted that there is a
potential limitation that has to do with data selection:
NHANES specifically oversampled the enrollment of
minority individuals so that an epidemiologic analysis
that is extrapolated to a dissimilar population might
have to use weighted data. However, the relatively
good performance of the algorithm to an external target
population indicates the robustness of the model.

The reader should keep in mind that the perfor-
mance of predictions drawn from statistical inference
using the Woodpecker technique is based on the
validity of several assumptions. There are generic
assumptions applicable to multivariate models that
could not be tested by us without access to the raw
data. Because we developed our prediction model based
on results of reported data, we trust that those authors
tested their assumptions. Specifically, multivariate
models are based on the assumptions of linearity, in-
dependence (lack of collinearity), and lack of in-
teractions between the predictors. Additional
distribution assumption regarding normality in the
data might be important for certain steps of the tech-
nique (for example, calculating average risk indicator
for the target population and using it in deriving
probability of outcome).

Furthermore, we tested our regression model that
was fitted into NHANES data for comparison of per-
formance. We added interaction terms to the model
(the product of phosphate level and GFR, the product
of age and number of comorbidities, the product of
comorbidities and proteinuria). We noted that the
relationship between other independent variables and
outcome did not change in a major way and that the
interaction terms were nonsignificant in the model. We
also checked the NHANES dataset for correlation be-
tween independent variables to test for multi-
collinerarity in bivariate analysis and found multiple
significant correlations. The highest degree of correla-
tion is between age and CKD stage (r ¼ 0.34), age and
comorbidities (r ¼ 0.48), and CKD stage and comor-
bidities (r ¼ 0.34). With this degree of correlation, we
deemed that it was still appropriate to include these
variables in the same regression model. Finally, it is
noted that other authors used the combination of
seemingly collinear (nonindependent) factors in their
models: renal function and phosphate,25 age and GFR
level,13 proteinuria and serum albumin level,41,43 and
GFR and anemia level.41
423
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In addition, because we used published reports as a
source of information for the prediction model, there is
a potential issue of selection. We addressed that by
selecting 1 report that would be the best match the
target population, and we populated the model with
predictors and corresponding regression coefficients
from it, rather than averaging regression coefficient
values reported in different studies.

In conclusion, we have developed a risk stratifica-
tion tool and prediction model of 2-year mortality rates
that demonstrated good performance and may be used
in clinical practice to quantify the approximate risks of
death for individual patients with CKD, especially
those at higher risk for death.
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