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The concerted interaction of genetic and environmental factors acts on the preterm human 
immature lung with inflammation being the common denominator leading to the multi-
factorial origin of the most common chronic lung disease in infants –  bronchopulmonary 
dysplasia (BPD). Adverse perinatal exposure to infection/inflammation with added 
insults like invasive mecha nical ventilation, exposure to hyperoxia, and sepsis causes 
persistent immune dysregulation. In this review article, we have attempted to analyze 
and consolidate current knowledge about the role played by persistent prenatal and 
postnatal inflammation in the pathogenesis of BPD. While some parameters of the early 
inflammatory response (neutrophils, cytokines, etc.) may not be detectable after days to 
weeks of exposure to noxious stimuli, they have already initiated the signaling pathways 
of the inflammatory process/immune cascade and have affected permanent defects 
structurally and functionally in the BPD lungs. Hence, translational research aimed at 
prevention/amelioration of BPD needs to focus on dampening the inflammatory response 
at an early stage to prevent the cascade of events leading to lung injury with impaired 
healing resulting in the pathologic pulmonary phenotype of alveolar simplification and 
dysregulated vascularization characteristic of BPD.
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iNTRODUCTiON

Bronchopulmonary dysplasia (BPD) is the most common chronic respiratory disease affecting 
infants wherein the developmental program of the lung is altered secondary to preterm birth of the 
baby (1). Lung development progresses in five distinct stages: embryonic, pseudoglandular, cana-
licular, saccular, and alveolar (2, 3). Human preterm babies who develop BPD are born in the late 
canalicular or early saccular stage of lung development. The late canalicular stage is characterized by 
development of the primitive alveoli and the alveolar capillary barrier, and the differentiation of type 
I and type II pneumocytes. The early saccular stage is marked by initiation of surfactant production, 
pulmonary vascularization, and enlargement of terminal airways (2–5). Unique to lung development 
is the fact that unlike other organs, the lungs complete their development after birth (up to 8 years 
of age) (6). Alveolar sacs are formed by secondary septation of alveolar ducts. With preterm birth, 
this programed development is disrupted, and in the setting of inflammation [whether it is due 
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FiGURe 1 | Genetic predisposition and persistent inflammation due to 
environmental factors (sepsis, invasive mechanical ventilation, and 
hyperoxia) acting on the foundation of immature lung underlie the 
pathogenesis of BPD.

December 2015 | Volume 2 | Article 902

Balany and Bhandari Persistent Inflammation in BPD

Frontiers in Medicine | www.frontiersin.org

to infection, mechanical ventilation (MV), or hyperoxia] causes 
impaired alveolarization leading to BPD. We need to remember 
that while in sheep, baboons, and humans, the saccular stage 
occurs in utero; in rodent models, it begins at embryonic day 18 
and continues through postnatal (PN) day 5 (4, 5).

In spite of many advances in neonatal medicine in the past few 
decades, like the introduction of better MV strategies and the use 
of surfactant and antenatal steroids, the incidence of BPD has not 
declined (7). The incidence of BPD in the United States is about 
10,000–15,000 new cases each year out of which the majority of 
those affected have a birth weight <1250 g (8). Pulmonary and 
neurodevelopmental sequelae of this devastating disease extend 
even into adulthood (9).

Genetic (10) and environmental factors (pre- and/or postnatal 
sepsis, invasive MV, and hyperoxia) (1) act on the preterm human 
immature lung with inflammation being the common denomina-
tor in all these interactions leading to the multifactorial origins 
of this disease. As shown in Figure 1, it is postulated that adverse 
perinatal exposure/infection with added insults like invasive MV, 
exposure to hyperoxia, and sepsis causes persistent immune dys-
regulation. This on top of genetic susceptibility and prematurity 
leads to persistent inflammation leading to lung remodeling and 
evolution of BPD.

In this review article, we have attempted to analyze and con-
solidate current knowledge about the role played by persistent 
prenatal and postnatal inflammation in the pathogenesis of BPD. 
We searched PubMed for articles limited to English language with 
the keywords: “Bronchopulmonary dysplasia or BPD,” “inflam-
mation,” “chorioamnionitis,” “mechanical ventilation,” “hyper-
oxia,” “postnatal sepsis,” either individually or in combination. 

We focused on articles published over the last 10 years and used 
the most relevant ones for this review.

MeDiATORS OF iNFLAMMATiON iN BPD

Bronchopulmonary dysplasia has been linked to the development 
of an inflammatory response that can occur in absence of clinical 
infection. Systemic fetal inflammatory response (11) and neona-
tal leukemoid reactions (12) have been implicated as a risk factor 
for BPD. Pulmonary inflammation in BPD is characterized by the 
presence of inflammatory cells like neutrophils and monocytes, 
pro-inflammatory cytokines, and other mediators, including 
soluble adhesion molecules.

The innate immunity and adaptive immunity reinforce each 
other and act in unison. Cells of the innate immune system 
secrete cytokines, which can prime lymphocytes thereby modu-
lating adaptive immunity (13). Exposure to a specific antigen 
causes these primed lymphocytes to have a more rapid and 
intense immune response (14, 15). Naïve T cells express CD62L 
(L-selectin) (16). Upon activation, the T cells shed their surface 
CD62L molecules. In infants with BPD, the expression of the 
CD62L is decreased on these CD4+ T-cells thereby suggesting 
T cell activation. CD54 (intercellular adhesion molecule-1 or 
ICAM-1) is an adhesion molecule that mediates a co-stimulatory 
signal in T cell activation. CD54 expression is increased upon cell 
activation (17).

The premature lung is exposed to ongoing oxidative and cel-
lular damage. Damaged lung tissue releases chemotactic factors 
and inflammatory cytokines, such as interleukin (IL)-1, IL-8 
(CXCL-8), and tumor necrosis factor alpha (TNF-α). This leads 
to an influx of neutrophils and other inflammatory cells with 
increased release/production of additional pro-inflammatory 
cytokines (Table  1). Multiple studies have shown that IL-1β, 
IL-6, and IL-8 are elevated very early in the respiratory course of 
the human preterm population that ultimately develop BPD, and 
in tracheal aspirates of those with BPD. In contrast, decreased 
levels of IL-10 in serum and tracheal aspirates have been shown 
in studies of those infants who developed BPD. In addition to 
ILs, a large variety of other biomarkers have been detected and 
associated with the development of BPD in tracheal aspirates, 
as well as blood and urine samples of premature infants (9, 18). 
The ones that have been implicated in the animal models include 
inflammatory cytokines, matrix proteins, growth factors, and 
vascular factors (9, 18–33). Their role is illustrated in Table 1.

We will now describe the major environmental factors that 
contribute to inflammation, and its persistence, in the pathogen-
esis of BPD. These include prenatal influences (chorioamnionitis) 
and postnatal influences, namely early- and late- onset sepsis, 
invasive MV, and hyperoxia.

PReNATAL FACTORS CAUSiNG 
iNFLAMMATiON – CHORiOAMNiONiTiS

As the name suggests, chorioamnionitis is inflammation of 
the chorion and amnion membranes of the placenta (34). 
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TABLe 1 | Selected mediators of inflammation, their role, and 
corresponding expression in BPD.

Mediators of inflammation Role expression 
in BPD

inflammatory cytokines

Interleukins: anti-inflammatory

 IL-10 Suppresses inflammatory 
response by inhibiting NF-κB

↓/↔

 IL-4, IL-13 Suppresses inflammation by 
inhibiting pro-inflammatory 
cytokine production

↔

Interleukins: pro-inflammatory

 IL-1, IL-6 Acute phase inflammatory 
response 

↑

 IL-8 (CXCL-8) Main chemoattractant for 
neutrophils

↑

CC chemokines

  Monocyte chemoattractant 
protein (MCP)-1, 1α, 1β, 2, 3

Recruit inflammatory cells to 
area of injury

↑

Macrophage migration 
inhibitory factor (MIF)

Upstream regulator of innate 
immune response

↓

Tumor necrosis factor alpha 
(TNF-α)

Enhances expression of other  
pro-inflammatory cytokines

↑

Transforming growth  
factor-beta 1 (TGF-β1)

Pro-inflammatory ↑

Matrix proteins

Matrix metalloproteinase-8 Disordered pulmonary 
remodeling after inflammation

↑

Matrix metalloproteinase-9 Pro-inflammatory, interferon-
gamma (IFN-γ) signaling

↑

Growth factors

Endothelin-1 Pro-inflammatory ↑
Vascular endothelial growth 
factor

Pro-inflammatory ↑/↓

Connective tissue growth factor 
(CTGF)

Pro-inflammatory ↑

Bombesin-like peptide (BLP) Increases mast cells in the lung ↑
Breast regression protein-39 
(human analog is YKL-40)

Anti-inflammatory ↓

Pulmonary hepatocyte growth 
factor (HGF)

Alveolar septation, repair ↓

Keratinocyte growth factor 
(KGF)

Regulates proliferation of 
alveolar epithelial cells

↓

Miscellaneous

Interferon-inducible protein 9 
(IP-9 – also known as CXCL11)

Pro-inflammatory, IFN-γ 
signaling

↑

Cyclooxygenase-2 (Cox-2) Pro-inflammatory, IFN-γ 
signaling

↑

CCAAT/enhancer-binding 
protein (C/EBP)

Pro-inflammatory, IFN-γ 
signaling

↑

Endoglin Pro-inflammatory ↑
Periostin Pro-inflammatory ↑
Clara cell secretory protein Modulates acute pulmonary 

inflammation
↓

Parathyroid hormone-related 
protein (PTHrP)

Alveolar growth ↓

Angiopoietin-2 Pro-inflammatory ↑
Lactoferrin Anti-inflammatory ↓

↑ – increase; ↔ – no change; ↓ – decrease.
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Although commonly seen in clinical practice, chorioamnionitis 
is a  complex syndrome associated with pregnancy leading to 
preterm deliveries (34). Chorioamnionitis has been classified as 
either histological or clinical. With histological chorioamnio-
nitis, there is infiltration of polymorphonuclear leukocytes and 
other inflammatory cells like macrophages and T cells as seen 
microscopically (35–37). Clinical chorioamnionitis is evidenced 
by fever >37.5°C, uterine tenderness, foul smelling vaginal dis-
charge, abdominal pain, maternal tachycardia with a heart rate 
>100 bpm, fetal  tachycardia HR >160 bpm, and white blood cell 
(WBC) count >15,000/mm3 (38, 39).

It has been shown in in vitro studies that bacterial products 
like phospholipase A2, peptidoglycan polysaccharide, proteolytic 
enzymes, and endotoxins can initiate an inflammatory response. 
Inoculation of the amniotic cavity with E. coli lipopolysac-
charide (LPS) or live Ureaplasma organisms has been shown to 
induce structural and functional fetal lung maturation (40–43). 
Antenatal lung inflammation impacts a variety of signaling 
pathway regulators like toll-like receptors 2 and 4 (TLR2 and 
TLR4), growth factors like TGF-β and CTGF, and mesenchymal 
structural proteins like bone morphogenetic protein-4 leading 
to vascular remodeling and alveolar simplification, which could 
be considered akin to a mild BPD phenotype (40–43). However, 
repetitive LPS exposure and/or chronic chorioamnionitis leads 
to immune tolerance and a dampened inflammatory response, 
which in turn allows the lungs to develop close to normal in 
experimental BPD animals (40–42).

Adverse perinatal outcomes are seen with intra-amniotic 
inflammation irrespective of the presence of intra-amniotic 
infection. Colonization per se, without inflammation is not asso-
ciated with adverse outcomes (44). The severity of the adverse 
outcomes is directly related to the severity of the intra-amniotic 
inflammation (44). Maternal antibiotic use has been associated 
with decreased BPD (45).

To summarize, in experimental animals, antenatal inflamma-
tion causes lung maturation and some degrees of lung injury, which 
is modified by the not fully developed innate immune response, 
exposure to antenatal steroids, and noxious postnatal factors. 
Not surprisingly, given the variability in definition and impact 
of various confounding factors, the issue of antenatal inflamma-
tion causing BPD in human infants is controversial (42, 46–49). 
Chorioamnionitis increases the incidence of preterm birth, and 
if accompanied by lung inflammation could result in surfactant 
dysfunction allowing for prolonged exposure to supplemental 
oxygen and invasive MV (11, 48). This “multiple hit” of events 
could explain the propensity to BPD in such infants (48), though 
this has not been consistently shown (50). In addition, persistence 
and non-resolution of lung inflammation lead to BPD by inhibit-
ing secondary septation, alveolarization and normal vascular 
development, and the compromised ability of the lungs to heal.

POSTNATAL FACTORS CAUSiNG 
iNFLAMMATiON – SePSiS

Preterm infants are more susceptible to infections since their 
immune defenses are not fully developed, have vulnerable skin 
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barrier, and require multiple invasive procedures (51). Postnatal 
infection/inflammation could either be localized to the lung or 
could be systemic in origin. Chorioamnionitis increases the risk 
of early-onset neonatal sepsis, which sets off an inflammatory 
cascade (48). Also, it has been shown that late-onset sepsis induces 
a pro-inflammatory and pro-fibrotic response in the preterm lung 
predisposing it to BPD (51).

Local (intra-tracheal) exposure to LPS (bacterial endotoxin) 
or dsRNA (a marker of viral replication) in the neonatal rat led to 
acute cellular and cytokine inflammatory responses, which were 
associated with histologic features of impaired alveolar develop-
ment (52, 53).

Neonatal mice injected with intraperitoneal LPS demonstrated 
reduced lung inflammation and apoptosis after 24 h as compared 
to adults, and this was associated with activation of the transcrip-
tion factor, nuclear factor kappa B (NF-κB) (54). Inhibition of 
NF-κB resulted in increased cell death and alveolar simplifica-
tion and disruption of angiogenesis via vascular growth factor 
(VEGF)-R2 (55). It has also been shown that using a targeted 
deletion of NF-κB signaling (using a lung epithelium-specific 
deletion of IKKβ – which is a known activating kinase upstream 
of NF-κB) in a mouse model results in alveolar hypoplasia with 
decreased VEGF expression (56). In addition, there was increased 
expression of CXCL-1, as well as its receptor CXCR2. Pre-
treatment with CXCR2-neutralizing antibody was able to reverse 
the effects in the developing lung (53). In summary, exposure to 
either bacterial or viral agents in the rodent model led to features 
of inflammation, with pulmonary histology suggestive of BPD.

Inflammatory response secondary to viral infections in early 
post natal stages could be worth considering in the evolution of 
BPD. Increased neutrophil accumulation, increased expression 
of CXCL-1 and its receptor CXCR2, and decreased lung alveo-
larization have been seen with intra-tracheal delivery of viral 
pro-inflammatory dsRNA in 10-day-old mouse model (53).

POSTNATAL FACTORS CAUSiNG 
iNFLAMMATiON – iNvASive 
MeCHANiCAL veNTiLATiON

Mechanical ventilation is a risk factor for the development of 
BPD in premature infants. Lung injury from MV results due to 
volutrauma, barotrauma, or atelectrauma (57).

When lungs are exposed to high tidal volumes, over disten-
sion leads to production of pro-inflammatory cytokines like IL-6, 
IL-8, and TNFα and reduced expression of anti-inflammatory 
cytokines like IL-10 (58). Even ventilation at low tidal volumes 
is deleterious because of the stretch injury it can induce by over-
distending partially collapsed lungs. Sustained lung inflation 
(SLI) has been shown to increase levels of pro-inflammatory 
cytokines and BPD-like changes in the lungs of preterm lambs 
(59). There is great need to find non-invasive ventilation strate-
gies for preterm neonates because even “gentle” invasive MV for a 
shorter duration can induce an inflammatory response (60).

In neonatal rats (7- to 14-day-old –  in the alveolar phase of 
lung development), high tidal volume ventilation increased IL-6 
mRNA and upregulated the TGF-β signaling molecule, CTGF 

mRNA, and protein expression compared to controls (61). In an 
8-day-old rat ventilation model, high tidal volumes increased the 
neutrophilic and inflammatory cytokine mRNA and/or protein 
expression (IL-1β, IL-6, CXCL-1 and 2) response (62). In a 7-day-
old rat model, exposure to MV for 24 h in room air led to cell cycle 
arrest (63), suggesting a harbinger to alveolar simplification, the 
pathologic hallmark of BPD.

In an invasive MV model in 2-week-old mice (well into the 
alveolar phase of lung development) for 1 h, IL-6 lung levels were 
increased in the high tidal volume ventilation group (64). Studies 
conducted in 2- to 6-day-old mice (late saccular to early alveolar 
phase of lung development) ventilated for 8–24 h with room air or 
40% O2 revealed dysregulated elastin (ELN) assembly, a threefold 
to fivefold increase in cell death, TGF-β activation, and a decrease 
in VEGF-R2 expression (65, 66). Inhibiting lung elastase activity 
by using recombinant human elafin or genetically modified mice 
that expressed elafin in the vascular endothelium was protective 
of the lung injury (67, 68).

Early studies using a chronically ventilated (3–4  weeks) 
preterm lamb model of BPD showed evidence of non-uniform 
inflation patterns and impaired alveolar formation with an abnor-
mal abundance of elastin (69). Inflammation was evident by the 
presence of inflammatory cells, namely alveolar macrophages, 
neutrophils, and mononuclear cells and edema (69). In this 
model, there was also reduced lung expression of growth factors 
that regulate alveolarization and differential alteration of matrix 
proteins that regulate ELN assembly (70). A non-invasive (nasal) 
ventilation approach preserved alveolar architecture (71) and 
had a positive effect on parathyroid hormone-related protein-
peroxisome proliferator-activated receptor-gamma (PTHrP-
PPARγ)-driven alveolar homeostatic epithelial–mesenchymal 
signaling in the preterm lamb model (72).

It has been seen in preterm fetal sheep that there is increased 
expression of early response gene-1 (Egr-1) as well as pro- and 
anti-inflammatory cytokines and dynamic changes in heat 
shock protein 70 (HSP70) (57). This stretch injury also increases 
expression of granulocyte/macrophage colony-stimulating fac-
tor mRNA leading to maturation of lung monocytes to alveolar 
macrophages (57). Induction of surfactant proteins A, B, and C 
mRNA is also increased (57). More recently, even short-term 
stretch injury (15  min) secondary to invasive MV in preterm 
fetal sheep led to increased levels of pro-inflammatory cytokines, 
IL-1β, IL-6, monocyte chemoattractant protein (MCP)-1, and 
MCP-2 mRNA by 1 h (57). This was accompanied by increased 
presence of inflammatory cells in the bronchoalveolar lavage fluid 
(BALF) with initial increases in neutrophils and monocytes by 
1 h and a transition to macrophages by 24 h (57).

The preterm ventilated baboon model of BPD (delivered at 
125 days – at 68% of gestation) showed evidence of alveolar hypo-
plasia and dysmorphic vasculature, akin to that seen in human 
BPD (73). Importantly, there were significant elevations of TNF-
α, IL-6, IL-8 levels, but not of IL-1β and IL-10, in tracheal aspirate 
fluids at various times during the period of ventilator support, 
supporting a role for inflammation (73). In addition, increased 
matrix metalloproteinase-9 (MMP-9) levels were associated with 
lung inflammation and edema seen in this invasive ventilation 
model (74). Alteration of VEGF was also noted in the lungs of 
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FiGURe 2 | Photomicrographs (×10, upper panel; ×20 lower panel; 
hematoxylin and eosin stain) of neonatal lung injury noted in newborn 
mice at postnatal day 2, after 100% O2 exposure since birth. Note the 
alveolar exudates and presence of inflammatory cells in the hyperoxia-
exposed lungs compared with litter-mate controls in room air. RA, room air; 
HYP, hyperoxia [with permission from Semin Fetal Neonatal Med (2010) 
15(4):223–9].
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various baboon models (75, 76). Bombesin is a 14-amino acid 
peptide, initially detected in amphibian skin, but immunoreactive 
studies have shown the presence of bombesin-like peptide (BLP) 
in multiple organ systems in mammals (77). In the lung, BLP have 
been shown to be released by pulmonary neuroendocrine cells 
(77). BLP blockade improved alveolar septation and angiogenesis 
in the preterm baboon models (78, 79).

In the 125-day baboon model, treatment with early nasal 
continuous positive airway pressure (NCPAP) for 28  days 
led to a pulmonary phenotype similar to 156  days gestational 
control lungs, suggesting that this non-invasive approach could 
minimize lung injury (80). In the same model, delayed extuba-
tion (till 5 days) versus early extubation to NCPAP at 24 h led 
to significantly increased BALF IL-6, IL-8, MCP-1, macrophage 
inflammatory protein-1 alpha (MIP-1α), and growth-regulated 
oncogene-alpha (GRO-α) in the delayed NCPAP group (81).

Some epidemiological studies showed that replacing invasive 
MV with NCPAP was associated with BPD reduction (82). No 
reduction in the incidence of BPD or mortality in the NCPAP 
group was seen in the COIN study that randomized infants born 
at 25–28 weeks to receive either NCPAP or intubation with MV 
in the delivery room (83). The INSURE (IN: intubation, SUR: 
surfactant, E: extubation) technique has been shown to reduce 
the need for MV and incidence of BPD (84). Non-invasive 
ventilation strategies like nasal intermittent-positive pressure 
ventilation (NIPPV) not only reduce the need for intubation 
within the first 48–72 h of life, but also have been associated with 
decreased mortality and/or BPD and hence is a feasible option 
for the newborn (85–87), though additional studies are required 
(88). The optimal mode of non-invasive ventilation (for example: 
type of NCPAP, maximum level of NCPAP, synchronized or 
non-synchronized method of nasal ventilation), selection of 
the best nasal interface (short-prongs or mask), and choice of 
ventilator need to be determined, and this information would 
be helpful in management of the disease.

To summarize, while the lamb/sheep/baboon ventilation 
models are in the saccular stage (akin to the human premature 
babies who are at most risk for BPD at birth), the rat/mouse 
ventilation models are in the alveolar phase of lung develop-
ment. However, it is quite obvious that mechanical stretch injury 
generates an inflammatory response (mostly neutrophils, IL-1β, 
IL-6, CXCL-1/-2, TGF-β signaling), along with alterations in 
matrix proteins (ELN, MMP-9) and VEGF. In addition, there is 
increased cell death and cell cycle arrest. Thus, it appears that an 
initial inflammatory cascade triggers the signaling of additional 
molecular mediators that lead to dysregulated vascularization 
and impaired alveolarization. Interestingly, non-invasive (nasal) 
ventilation approaches were protective of these responses. Thus, 
prolonged invasive MV sets off a persistent cascade of inflamma-
tory response that in the setting of hyperoxia takes the “multiple 
hit” pathway of leading to BPD.

POSTNATAL FACTORS CAUSiNG 
iNFLAMMATiON – HYPeROXiA

Many studies have documented the injurious effects of perinatal 
supplemental oxygen on lung development. Target levels of O2 in 

extremely low birth weight (ELBW) have been studied extensively. 
The morphologic changes of human BPD resemble hyperoxic 
lung injury in newborn animals (73). Prolonged exposure to 
hyperoxia in the neonatal mouse for 14  days or longer results 
in a phenotype of “old” BPD (89, 90). Exposure to hyperoxia in 
the critical saccular stage of lung development replicates human 
BPD, with effects that are dose-dependent on the fraction of 
inspired oxygen (FiO2) concentration; the effects last lifelong with 
increased susceptibility to respiratory tract infections (91–95). 
Acute lung injury caused by hyperoxia (Figure 2) occurs second-
ary to an inflammatory response, which causes destruction of 
the alveolar–capillary barrier, vascular leak, influx of inflam-
matory mediators, pulmonary edema, and ultimately cell death 
(96). With continued exposure to hyperoxia this inflammatory 
response and pulmonary edema improve initially but chronic 
pulmonary inflammation ensues in the following weeks (97). 
At the cellular level, alveolar or interstitial macrophages express 
early response cytokines when exposed to hyperoxia, which in 
turn attract inflammatory cells to the lungs (19).

It has been shown that there exists a dose-dependent effect of 
hyperoxia on severity of BPD in the murine model. Mice exposed 
to varying concentrations of oxygen ranging from 40 to 100% at 
PN days 1–4 had more severe disease at higher concentrations of 
oxygen (92). An oxygen dose-dependent inflammatory response 
to influenza-A viral infection in adult mice that had been exposed 
to hyperoxia as neonates has been reported (95). Furthermore, 
this response was dependent upon the cumulative exposure to 
oxygen (98).

The specific role of individual inflammatory molecular 
mediators in the pathogenesis of BPD has been particularly 
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well illustrated by utilizing lung-targeted overexpressing trans-
genic models, in room air, resulting in pulmonary phenotypes 
reminiscent of human BPD. These include IL-1β (99, 100) and 
IFN-γ (25, 91). In the case of IL-1β transgenic mice, absence of 
the beta6 integrin subunit was protective of the BPD phenotype 
(101). Interestingly, inhibition of cyclooxygenase-2 (Cox-2) ame-
liorated the BPD phenotype in the hyperoxia-induced as well as 
the IFN-γ lung overexpressing transgenic mouse model in room 
air. A recent paper has reported that increased Cox-2 activity may 
contribute to proinflammatory responses in hyperoxia-exposed 
developing mouse lungs (102).

There is increased expression of IL-1α mRNA in neonatal mice 
exposed to hyperoxia (89). Lung mRNA for IL-1β also increases 
in neonatal mice exposed to hyperoxia (103). Transgenic IL-1β 
overexpression in lung epithelium resulted in BPD phenotype in 
neonatal mice (100). In hyperoxia-exposed newborn rabbits, the 
pattern of IL-1β rise and fall matches the rise and fall of histologic 
inflammation (104). However, in the immature baboon model 
of BPD, no such pattern between IL-1β levels and inflammation 
was seen in the tracheal aspirates (73). CINC-1 in premature rat 
lungs (105) and newborn rabbits (104) exposed to hyperoxia was 
upregulated. Also, IL-8 levels in tracheal aspirates of the prema-
ture baboon model of BPD have been shown to be increased (73).

The lungs of hyperoxia-exposed neonatal mice had no change 
in IL-10 mRNA expression (103). Also tracheal aspirates of 
baboon model of BPD show no difference in IL-10 levels (73). 
IL-1β, IL-6, and IL-8 are pro-inflammatory cytokines and are 
elevated very early in the course of BPD.

Typically viewed as pro-inflammatory, these cytokines have 
been shown to be elevated very early in the respiratory course 
of the human preterm population that ultimately develops 
BPD (20). Studies have found that serum and tracheal aspirate 
IL-10 levels were decreased in those infants who developed 
BPD (20).

A variety of potential therapeutic agents have been used 
in hyperoxia-exposed mice models that have been shown to 
decrease inflammation and/or attenuate other parameters of lung 
injury/BPD phenotype. These include rosiglitazone (106, 107), 
hepatocyte growth factor (HGF) (108), B-naphthoflavone (109), 
arginyl-glutamine as well as docosahexaenoic acid (110), and 
a combination of vitamin A and retinoic acid (111). Treatment 
with human amnion epithelial cells attenuated some parameters 
of hyperoxia-induced inflammatory lung injury (mRNA expres-
sion of IL-1α, IL-6, TGF-β, platelet-derived growth factor-beta 
or PDGF-β, mean linear intercept, and septal crest density), but 
not other aspects, for example, alveolar airspace volume, collagen 
content, or leukocyte infiltration in neonatal mice (112).

To summarize, while variable initiation and duration of expo-
sure to hyperoxia animal models have been reported as models of 
human BPD, exposure to hyperoxia for a relatively short (PN1–4) 
duration in mice, which is at the critical saccular stage of lung 
development, can result in an inflammatory response sufficient to 
create the BPD pulmonary phenotype. This can be recapitulated 
using transgenic mice models of the inflammatory mediators, 
but kept in room air. Importantly, exposure to 0.4, 0.6, >0.8 FiO2 
can mimic mild, moderate, and severe BPD, respectively. A vast 
array of therapeutic agents has been reported to be effective in 

improving alveolar and/or vascular architecture of the hyperoxia-
exposed neonatal lung in lambs, rats, and mice.

While hyperoxia exposure is a good starting point for testing 
the efficacy of potential therapeutic agents, it is important to be 
able to delineate the responsible molecule/signaling pathway in 
developmentally appropriate room air models and confirm the 
results in preventing/ameliorating the BPD phenotype. This 
would avoid the confounding variable of hyperoxia-induced 
alterations in multiple other molecular mediators, allowing 
delineation of targeted molecules in specific signaling pathways 
for maximal potential therapeutic relevance. Among the inflam-
matory mediators of hyperoxia-induced lung injury that can 
mimic the BPD phenotype in room air, the well-defined ones are 
IL-1β, TGF-β1, CTGF, IFN-γ, and MIF. It would be important 
to attempt to translate some of the newer targets in specific 
signaling pathways that have been recently reported, for example, 
inhibition of Cox-2 (91, 102) as a potential therapeutic option for 
prevention/amelioration of BPD.

PeRSiSTeNT iNFLAMMATiON iN BPD

It is important to highlight the fact that for BPD to occur, it requires 
the known environmental factors to be exposed to the immature 
lung for a sustained duration, resulting in persistent inflamma-
tion. For the chorioamnionitis rodent models, the exposure to 
LPS is over a few days in the late canalicular/early saccular stage of 
lung development. For the relative short duration of exposure to 
invasive MV and hyperoxia in rodent models, 1 postnatal day in 
the saccular stage of lung development is equivalent to 3–4 weeks 
in a human preterm infant. Obviously, the larger animal models 
(sheep/lamb/baboon) also need few days to weeks of injury to 
develop the pulmonary phenotype of BPD. While some param-
eters of the early inflammatory response (neutrophils, cytokines 
such as IL-1, TNFα) may not be detectable after days to weeks 
of exposure to noxious stimuli, they have already initiated the 
signaling pathways of the inflammatory process/immune cascade 
and have affected permanent defects structurally and functionally 
in the BPD lungs. This is borne out by the facts that the pathologic 
appearance of large simplified alveoli is permanent following just 
the first 4 PN days of hyperoxia exposure in mice models (93). 
Furthermore, these mice have increased mortality when exposed 
to viral infectious challenge as adults (98, 113). In concordance, 
preterm neonates with BPD have anatomical and functional 
pulmonary deficits well into childhood and as adults (114–116). 
There is some clinical evidence that early interruption of the 
initial inflammatory response could result in amelioration and 
potential reversal of these effects (117).

SUMMARY AND CONCLUSiON

It is important to remember that while in vitro studies are helpful 
in figuring out the mechanistic significance of a signaling pathway, 
these are usually conducted with cell lines or freshly isolated single 
cells of a particular phenotype. Thus, the results of such studies 
may not accurately reflect the in  vivo situation of interaction 
with the multiple cell types found in the lung. In addition, while 
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the significantly different responses between adult and neonatal 
lungs to the postnatal factors discussed here – invasive ventilation 
(118–121), local/systemic sepsis (52, 54, 122–124), and hyperoxia 
(19, 125–127) – are well established, it is also important to be cog-
nizant of the stages of lung development when comparing animal 
data for relevance to humans. This is best exemplified by studies 
that highlight the differential responses in the various stages of 
lung development (mostly, saccular vs. alveolar) in animal mod-
els (99). Furthermore, the degree and duration of exposure to the 
noxious stimulus (hyperoxia, for example) in the animal models 
needs to be appropriate in order to attempt to extrapolate the 
data to humans. For example, a prolonged exposure to hyperoxia 
from birth to 2  weeks in the mouse, i.e., almost to the end of 
alveolarization is akin to exposing a preterm neonate to the same 
to at least up to 2 years of age.

To conclude, it is the preterm lung in the late canalicular/
saccular phase of development that is most predisposed to BPD, 
when exposed to the pre- and postnatal factors. Inflammation 

and then its persistence in the preterm lung – whether initiated 
by prenatal factors like chorioamnionitis or whether propagated 
postnatally with the use of high FiO2 and invasive MV or sep-
sis  –  culminates in BPD. Hence, translational research needs 
to be aimed at decreasing chorioamnionitis and finding better 
strategies for early non-invasive MV and optimum use of oxygen 
for the immature preterm lung for dampening the inflammatory 
response.
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