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Abstract

In childhood frontal lobe epilepsy (FLE), cognitive impairment and educational underachievement are serious, well-known
co-morbidities. The broad scale of affected cognitive domains suggests wide-spread network disturbances that not only
involves, but also extends beyond the frontal lobe. In this study we have investigated whole brain connectional properties
of children with FLE in relation to their cognitive impairment and compared them with healthy controls. Functional
connectivity (FC) of the networks was derived from dynamic fluctuations of resting state fMRI and structural connectivity
(SC) was obtained from fiber tractograms of diffusion weighted MRI. The whole brain network was characterized with graph
theoretical metrics and decomposed into modules. Subsequently, the graph metrics and the connectivity within and
between modules were related to cognitive performance. Functional network disturbances in FLE were related to increased
clustering, increased path length, and stronger modularity compared to healthy controls, which was accompanied by
stronger within- and weaker between-module functional connectivity. Although structural path length and clustering
appeared normal in children with FLE, structural modularity increased with stronger cognitive impairment. It is concluded
that decreased coupling between large-scale functional network modules is a hallmark for impaired cognition in childhood
FLE.
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Introduction

Frontal lobe epilepsy (FLE) is considered to be, after temporal

lobe epilepsy, the second most common type of the localization-

related (partial) epilepsies of childhood and accounts for 20–30%

of partial epilepsies [1]. Pediatric FLE, even when cryptogenic in

nature, is frequently complicated by the impairment of a broad

range of cognitive problems, behavioral disturbances, and therapy

resistance [2]. The fact that all these complications occur at a

young age is troublesome. In childhood the brain is at its most

vulnerable state and neurologic disturbances such as FLE can have

an impact on brain maturation and the development of cognitive

skills, with potentially severe consequences for school performance

[3].

The broad range of affected cognitive domains suggests a global

network disturbance, rather than perturbations of localized

individual processes. Disturbances in network organization can

be assessed by connectome analysis, which comprises the mapping

of the nodes and connections of the human cerebral network [4].

Cerebral connectivity may either be of functional or structural

nature. Functional connectivity (FC) can be measured by

correlating blood-oxygen-dependent oxygenation (BOLD) related

dynamic fluctuations of gray matter activity between different

brain regions [5] and structural connectivity (SC) can be obtained

by tracing fiber bundles through the white matter with fiber

tractography [6].

Resting state functional MRI (RS-fMRI) enables the investiga-

tion of the intrinsic functional organization of the brain and is

typically measured by the temporal correlation of neuronal

activity-induced signal variations of anatomically different brain

regions [7,8]. Previous studies have demonstrated disruptions in

functional networks of adult and pediatric epilepsy patients

[9,10,11], which have also been related to cognitive and epilepsy

variables [12,13,14,15,16]. Structural network abnormalities have

also been implicated in adult epilepsy patients [17,18,19]

Modeling the brain as one system of nodes (brain regions) and

edges (connections) allows a direct comparison of SC and FC,

because the organization of nodes and edges can be derived from

both functional and structural imaging data. Apart from correlat-

ing the functional and structural connection strengths of individual

edges, one can also explore and relate the topology of SC and FC

networks in terms of graph theoretical measures. Graph theoret-

ical analysis has the advantage that topological properties of the

whole brain network can be captured in a few summary measures

that describe the amount of segregation and integration among

brain regions [20,21].

Although changes in either FC or SC are interdependent [22],

the relation between FC and SC is likely complex [23]. The white
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matter connectivity provides a physical substrate that possibly

constraints the functional connectivity between different brain

regions [24,25,26]. Several studies have indicated that SC is

predictive for FC, while FC is not predictive for SC, across healthy

human brain networks [25,27]. The SC-FC relation increases in

strength during normal development [24] and might be disrupted

in the diseased brain [28,29]. However, it is unclear whether

abnormalities in the dependency between FC and SC are present

in FLE and can explain cognitive impairment.

Previously, it was observed that the neuronal basis for cognitive

deficits in FLE reside in the interaction between large-scale

functional brain sub networks, the so-called modules [30]. The

whole brain network can be divided into sub networks by modular

decomposition (i.e. community structure) methods [31], and

therefore, this method provides the opportunity to investigate

the connectional properties of the different large-scale sub

networks. The modular structure of the brain network is thought

to be important for cognitive abilities, as increases in coherent

activity between functional systems might facilitate adaptive

behavior and the integration of information [32,33]. In FLE, the

cognitive pathology might be reflected through reductions in

coupling between sub networks, which can either be of functional

or structural origin or both. This nature of network abnormalities

has not been addressed explicitly yet, however several studies have

indicated that functional network abnormalities are present in

adults with epilepsy [15,29] as well as children with FLE [16,34].

Furthermore, a recent study showed that structural networks were

affected in a related childhood epilepsy [35].

In this study we investigate functional as well as structural whole

brain networks in children with FLE. We explore whether

abnormalities in graph theoretical measures are present for both

the functional and structural networks and correlate these with the

cognitive impairment. We hypothesize that differences in whole

brain graph theoretical measures can be explained by differences

in connectivity between and within large-scale modules. More-

over, the coupling between SC and FC connectivity was compared

between children with FLE and healthy controls and correlated

with the cognitive impairment.

Methods

Participants
Children with FLE were selected from our reference clinical

database and were actively contacted. Inclusion criteria were: a

clinically confirmed cryptogenic (i.e., based on clinical presenta-

tion, EEG and MRI findings, presumed to be symptomatic, but

with unknown etiology) localization-related epilepsy with an

epileptic focus in the frontal lobe, aged between 8 and 13 years,

no other disease that could cause cognitive impairment, and no

history of brain injury. Healthy age-matched controls were

recruited by advertisements in local newspapers. No history of

brain injury or cognitive problems was allowed and controls were

visiting regular education. This study was approved by the

Institutional Review Board of the Maastricht University Medical

Center. All subjects and parents gave written informed consent.

Neuropsychological testing
Cognitive performance was measured using a computerized

visual searching task (CVST) [36]. This task consists of finding the

right grid pattern that matches the one in the centre of a screen

surrounded by 24 other grid patterns. The task is used to assess

central information processing speed and perceptual strategies and

is considered to be an assessment of frontal lobe function. A

detailed description of this task can be found in [30,36]. By

determining the average CVST searching time (reaction time) and

the number of correct and incorrect responses during the task, an

age-corrected cognitive performance score was generated (i.e. the

decile score). After grouping these scores into numbers from 1

(worst score) to 10 (best score), the 3 worst performance scores (1, 2

or 3) were considered a manifestation of impaired cognitive

performance, while higher scores ($4) were considered normal.

We compared the entire patient group (EP) and the cognitively

impaired patient group (IP) with the healthy control group.

MRI acquisition
MRI was performed on a 3.0-Tesla unit equipped with an 8-

channel head coil (Philips Achieva, Philips Medical Systems, Best,

The Netherlands). Functional MRI data were acquired using a

whole-brain single-shot multi-slice echo-planar imaging (EPI)

sequence sensitive to the blood-oxygen-level-dependent (BOLD)

effect, with TR 2 s, TE 35 ms, flip angle 90u, FOV 2006200 mm,

matrix 1126108, pixel size 262 mm2, 32 contiguous 4-mm thick

slices per volume, 195 volumes per acquisition, and an parallel

imaging acceleration factor of 1.5 (Sensitivity Encoding).

Diffusion weighted MRI (DWI) was acquired at a pixel size of

262 mm2, slice thickness 2 mm, and a b-value of 1200 s/mm2.

An echo planar imaging sequence was used with TE 72 ms, TR

6584 ms, and parallel imaging acceleration factor of 2. A set of 61

gradient directions was used, optimized via electrostatic repulsion

to ensure homogenous distribution over the sphere [37]. In

addition, a single non-diffusion weighted scan (b0-scan) was

obtained. The DWI acquisition time was 8 minutes.

For anatomic reference, a T1-weigthed 3D spoiled fast gradient

echo pulse sequence was acquired with the following parameters:

TR 8.1 ms, TE 3.7 ms, flip angle 8u, field of view (FOV)

25662566180 mm3, and voxel size 16161 mm3.

Inclusion
Subjects were excluded when head movements exceeded

1.5 mm/s or 1.5 degrees/s in at least one direction. Data of nine

patients were excluded from further analysis because of movement

related artifacts (n = 6; 2 controls, 4 patients), EPI artifacts (n = 3; 2

controls, 1 patient). From the DWI data, five subjects were

excluded from further analysis due to EPI artifacts (n = 1 controls,

n = 4 patients). For final analysis, the study population consisted of

26 patients and 36 healthy controls.

Six patients did not complete the neuropsychological assessment

and thus had no CVST scores. These patients are included in the

group analysis, but not in the correlation analysis. In total, 9 FLE

patients had a decile score below 4 and were considered

cognitively impaired. Mean CVST reaction time was significantly

higher in the patient group compared to the healthy control group

(controls: 7.566.4 s (mean 6SD), patients: 23.669.9 s, p,0.006).

The age of the patient group (132 months) and the control group

(125 months) was not significantly different (p,0.1), nor was the

ratio between male/female different between the groups (x2-test:

p,0.17).

Network construction
Anatomical parcellation. Freesurfer (Martinos Center of

Biomedical Imaging, Boston, US) software was used to segment

the T1 images of each subject into 82 cortical and subcortical

regions. Freesurfer uses a surface based alignment procedure,

which might be more accurate than a volume based alignment of a

cortical atlas [38]. Freesurfer applies a standardized processing

pipeline to the T1 image including skull stripping, segmentation of

white and grey matter and CSF.

Network Impairment in Childhood Epilepsy
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The Freesurfer cortical regions were further refined into a larger

number of smaller regions. We started by dividing each region

from the standard Freesurfer template into two more or less

equally sized regions by principal component analysis. This

segmentation was performed in the spherical surface coordinates.

The cortical surface of each hemisphere can be modeled as the

surface of a sphere; each point on the cortical surface can be

related to a point on the sphere which is defined by its longitude

and latitude. The first principal component (a 2D vector), together

with the center of gravity of the cortex point within the region (a

2D point), defines a line in 2D space which divides the region into

two sub regions according to the maximum spatial variance of the

region (e.g. a ‘‘stretched’’ region will be divided along its main

longitudinal axis). Regions were subsequently subdivided with the

criterion that a division must not yield a sub region with a size

smaller than 1200 cortical points. The final result was a

parcellation of 97 regions with comparable sizes (of at least 1200

cortex points) per hemisphere defined in the Freesurfer standard

space. The regions were converted from the Freesurfer standard

space spherical format to the cortex surface model and

subsequently to the T1 volume format of each individual by

standard Freesurfer routines. The subcortical regions were used in

their original Freesurfer format and not further divided.

The cortical and subcortical parcellation of each individual in

native T1 space was transformed to the native DWI or fMRI space

by applying a rigid body transformation computed with the FSL

FLIRT tool [39]. The transformations from Freesurfer standard

space to T1 space and from T1 space to DWI or fMRI space can

result in the loss of several regions by partial volume effects.

Therefore, only regions that were present in all participants after

transformation to DWI and fMRI space were used in the final

parcellation. This resulted in the same parcellation with 205 bi-

lateral regions for each subject (2695 cortical regions and 15

subcortical regions) in the individual T1, DWI and fMRI spaces.

Functional network construction. The BOLD images were

corrected for motion artifacts using SPM5 (Wellcome Trust

Centre for Neuroimaging, UCL, London, UK) software. The

images were then high-pass filtered with a s of 25 scans (0.02 Hz)

and spatially smoothed (s= 1.7 mm) using FSL 4.1.7 (Oxford

University, Oxford, UK) software. Subsequently, the CSF, whole

brain signal time course and motion parameters were removed

from the images using standard linear regression. The resulting

residual time series of the cerebrum were used for further analysis.

Lastly, the images were low-pass filtered (s= 2 s or 0.5 Hz, i.e. 1

dynamic scan interval) to remove the detrimental effects of high-

frequency noise components. Using Matlab (The MathWorks Inc.,

Natick, US; version 7.6.0), the Pearson’s linear correlation

coefficient was calculated between the region-averaged time-series

of all pairs of Freesurfer regions. In this way, a 2056205

connectivity matrix was calculated for each subject.

The removal of the whole brain average time series signal tends

to shift the correlation distribution to have a mean value that is

close to zero, thereby creating negative correlations even if no such

correlations are initially present in the data [40]. Low (absolute)

correlation coefficients could adversely affect the results as they

may either represent physiologically relevant signal or just noise.

Therefore, only positive correlations were used for further graph

theoretical analysis.

Structural network construction. Each data set was

spatially co-registered to the b = 0 image with an affine transfor-

mation to correct for head motion and eddy-current distortions

utilizing CATNAP (Co-registration, Adjustment, and Tensor-

solving, a Nicely Automated Program, version 1.3) software [41].

The set of gradient vectors was adjusted according to the rotation

of the individual images.

All DWI analyses, the tractography and tract segmentations

were performed using the MRtrix software package [42]. Diffusion

tensor (DT) fits were performed to calculate FA and ADC maps.

In addition, fiber orientation distributions (FODs), representing

local fiber orientation, were estimated using constrained spherical

deconvolution (CSD) [42]. The CSD response function was

estimated from data with high FA voxels values (FA.0.7). Slice

drop-outs are a common phenomenon in DW-EPI, especially in

the presence of head motion [6,43]. To reduce the effects of

corrupted slices on FOD estimation, a method was developed in

which corrupted slices were automatically detected and removed

from the data. Subsequently, FOD’s were estimated per slice with

a slice-specific gradient set (i.e. without the directions correspond-

ing to the removed slices). On average 46 (out of 3660. i.e. approx.

1.3%) slices were corrupted per subject. The number of corrupted

slices did not differ between the groups.

Within the white matter, five million evenly distributed seeds

were placed and a streamline was started from each seed.

Subsequently, for each pair of regions from the anatomical atlas,

the subset of tracts connecting these two regions were identified

from the set of tracts of the whole brain tractogram Connection

weights were determined by calculating the tract volume of the

voxels traversed by the streamlines of the connection, divided by

the total intracranial volume [44]. As an additional noise filter,

voxels that were traversed by fewer than 2 tracts were eliminated

from the analysis.

Network analysis
Mean network connectivity. The mean connection

strengths of the connection matrices were investigated for group

differences and correlated with age. The SC networks were

weighted with relative tract volume, mean tract FA, and mean

tract ADC values. The Fisher-z transformed correlation values

were used for comparison of FC between groups.
Network thresholding. From this point in the analysis

pipeline the FC and SC matrices are treated similarly, both are

an abstract representation of the human connectome and no

further distinctions in graph analysis methods are made. Each

subject’s brain graph was thresholded to create graphs with an

equal number of nodes and edges across subjects [15,45]. This was

achieved by selecting the Tk connections with the highest edge

weight and removing all other connections. The edge weight for

the SC matrices was the relative tract volume and for the FC

matrices the correlation strength. The threshold value Tk was

expressed as a sparsity value relating the number of edges

maintained in the network to (twice) the total number of edges

possible (N22N). Let Tk be the number of edges maintained in the

network, then the sparsity (s) is defined as:

sparsity~ N2{N{Tk

� ��
N2{N
� �

: ð1Þ

In the remainder of this article, results will either be presented for

a particular sparsity value or as a function of sparsity. For each

individual FC or SC matrix, connection weights were scaled by the

mean of this matrix as differences in mean weight can potentially

influence weighted network metrics [46].
Network characteristics. For each subject, values of

network measures were calculated from the individual SC or FC

matrices. We included 3 network measures: characteristic path

length (L), clustering coefficient (C), and the modularity coefficient,

using algorithms implemented in the Brain Connectivity Toolbox

[47]. A detailed description of path length and clustering can be
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found elsewhere [47]. It is important to note here that these

metrics were computed for each individual participant, while the

below described modularity organization was computed for the

connectivity matrices averaged over the entire study population.

Modularity quantifies the degree to which a brain network is

organized in isolated sub networks (i.e. the modules). The more

isolated the sub networks are, the higher the modularity

coefficient. We used the algorithm developed by Newman et al.

[31] to quantify the modularity of the brain. With this algorithm

the brain was automatically subdivided into a number of modules

(i.e. groups of connected nodes) with maximal connection strength

within and minimal connection strength between the modules,

creating a so-called ‘‘optimal community structure’’ (OCS) of the

brain. To avoid effects of differently organized modules in patients

and controls, the within- and between-module connectivity was

determined from the connectivity matrix that comprised the mean

of entire study population, thus the combination of patients and

controls.

Analysis of within- and between-module connectivity. To

assess the potential differences in within- and between-module

connectivity, the modular organization of the FC was calculated by

applying the modularity algorithm to the FC matrix averaged over

all subjects. Next, each edge was classified as either between-module

(the edge connects nodes of two different modules) or within-module

(the edge connects nodes of the same module). Connection strengths

of the within- and between-module edges from the FC and SC

modules were averaged. The within-module connections were

assessed twice: as the aggregate over all modules and for each

module separately. The weak and negative edges of the FC matrices

might contain relevant information on between-module connectiv-

ity, therefore the un-thresholded FC and SC matrices were used.

Statistical analysis
Between-group effects (for the EP, IP and healthy control group)

in terms of network measures and connection strengths were

assessed by two-sample Student’s t-tests. Pearson’s (linear) corre-

lation coefficients (r) were calculated between cognitive perfor-

mance (CVST reaction time), age, connection strengths and

network measures. This analysis was performed for the EP group

and control group, separately.

After the coupling between the FC and SC edge strengths was

calculated by a correlation analysis for each subject, the individual

FC-SC coupling values were associated with CVST scores and

age. Significance was assessed at p,0.05 and trends at p,0.1.

Results

Network connectivity
Functional connectivity. The mean functional connectivity

value (i.e. Fisher-z transformed time series correlations) over all

connections did not significantly differ between the EP, IP and

healthy control groups. Mean FC was not significantly correlated

with age or with CVST scores.

Structural connectivity. The structural connectivity (i.e.

relative tract volume over all connections) of the IP group

(9.5?102460.5?1024, p,0.07), but not the EP group

(8.9?102460.4?1024, n.s.), showed a trend of higher mean

connectivity values than the control group (8.5?102460.1?1024).

Mean structural connectivity was not correlated with CVST score

or age.

Mean FA was not different between the groups, but increased

with age in both the control (r = 0.32, p,0.05) and EP group

(r = 0.44, p,0.02). Mean ADC was also not different between the

groups and did not significantly correlate with age in the control

group, while a negative correlation was found in the EP group

(r = 20.47, p,0.01).

Network topology
Functional connectivity. The cluster coefficient was signif-

icantly higher for both the EP and IP groups compared to the

healthy control group over the entire tested sparsity range (0.55–

0.90). The path length was significantly higher for the EP and IP

groups compared to the control group over the sparsity range

0.55–0.80. The modularity coefficient was significantly higher for

the IP group compared to the control group over the entire

sparsity range, while the EP group had a significantly higher

modularity over the sparsity range 0.55–0.80 (Fig. 1A).

Neither the cluster coefficient, path length, nor modularity

coefficient of the functional network were significantly correlated

with CVST score or age for the control or EP group.

Structural connectivity. Although the cluster coefficient,

path length, and modularity showed slightly higher values for the

IP group compared to the control and EP groups, none of these

differences were significant. The EP group also did not display

significant differences compared to the control group (Fig. 1B).

In the EP group there was a negative correlation trend between

the cluster coefficient and age (mean r = 20.37, p = 0.06) and a

negative correlation between modularity and age (mean r =

20.40, mean p = 0.04). In the control group, the path length

showed a trend of positive correlation with CVST scores (mean r

over entire sparsity range = 0.29, p = 0.09). Modularity scores

increased with CVST scores in the EP group (mean r = 0.51,

p = 0.02).

Modular organization
The modularity algorithm determined four modules from the

averaged FC matrix over all subjects (Fig. 2A). The spatial

organization of module 1 highly resembles the default mode

network (DMN) [48], with regions in the frontal, temporal and

parietal lobes. The second module consisted of frontal and

subcortical regions. The relatively small third module was centered

in the occipital lobe. Module 4 was distributed over frontal,

temporal and occipital regions. All modules were highly symmetric

with respect to the interhemispheric fissure. When the structural

connections were ordered according to the organization of the FC

modularity matrix, the structural organization of the modules

revealed bilateral structural sub networks (Fig. 2A and 2B).

For the SC matrix the modularity algorithm determined only

two modules, which were highly symmetric over the two

hemispheres. After functional connections were ordered according

to these SC modules, no further sub organization became evident

(Fig. 2C and 2D).

Modular connectivity. FC (Fisher-z transformed correlation

values) and SC (relative tract volumes) values were classified as

between-module, within-module averaged over all modules (i.e.

aggregated within-module) and individual within-module connec-

tions. These connection values are listed per group in Table 1.

Between-module connectivity. The between-module FC

was lower in the IP group (p,0.017) and the EP group (p,0.06)

compared to the control group. A trend for higher between-

module SC was found in the IP group compared to the healthy

control group (p = 0.07), while no differences were found between

the EP and control group (Fig. 3C). No significant correlations

were found between CVST score or age and FC or SC between-

module connectivity.

Aggregated within-module connectivity. A trend for

higher within-module FC values was observed for the IP group

(p = 0.095) and the EP group (p = 0.08) compared to the control
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group. The SC within-module connection strengths displayed a

trend for higher values in the IP group (p = 0.08) compared to the

control group, but not for the EP group (Fig. 3D). No significant

correlations were found between CVST score or age and within-

module FC or SC connectivity.

Separate within-module connectivity. For FC, the stron-

gest differences in within-modularity between patients and controls

were found for module 4. Module 4 showed higher within module

FC for the EP group (p = 0.012), while a trend was observed for

the IP group (p = 0.071), compared to the control group (Fig. 3E).

A positive association between CVST score (higher scores indicate

reduced cognitive performance) and within module FC was found

for module 4 in the control group (r = 0.36, p,0.04). The other

modules did not reveal associations between CVST score and FC

in neither the control group nor the EP group. Age was not

significantly correlated with any of the within module FC values.

The within-module SC of module 4 was also significantly higher

for the IP group (p = 0.013) compared to the control group. The

other three modules did not show significant group differences in

SC (Fig. 3F). For module 4 the within-module SC increased with

higher CVST score (worse cognitive performance) in the EP group

(r = 0.55, p,0.01). No association between SC and CVST score

was found in any of the other modules. Age was not significantly

correlated with any of the within-module SC values.

Structure-function correlation
The EP and IP groups did not differ significantly from the

control group in SC-FC correlation. CVST score was not

significantly associated with FC-SC coupling. A trend for a

negative association was found in the EP group between FC-SC

correlation and age (r = 20.38, p = 0.06), while for the control

group a significant positive association (r = 0.40, p,0.01) was

found (Fig. 4).

Discussion

Current findings
In this study we compared the FC and SC of cerebral networks

in children with FLE to healthy controls and investigated whether

the associated cognitive impairment in FLE is reflected by an

aberrant functional or structural modular organization. For the

whole brain network the functional network clustering, path

length, and modularity appeared more sensitive than structural

network measures to discern children with FLE, and particularly

those with cognitive impairment from healthy controls.

The mean of both the cluster coefficient and the path length

were higher in the patients and especially the cognitively impaired

patients. Networks with high path length and high clustering may

resemble towards regular networks (Sanz-Arigita EJ et al. 2010):

these are networks with high local clustering but few connections

linking distant nodes. These findings are in line with the

modularity analysis, where an increased modularity score was

found for the patients and especially the impaired patients: high

path length and high clustering are signs that the patient networks

are organized in tightly clustered modules with only limited inter-

modular connectivity. For the modularity, patients, especially the

cognitively impaired patients, showed higher scores than controls,

suggesting the presence of more functionally isolated brain

modules. It is possible that increases in coherent activity between

functional systems (integration) might facilitate particular cognitive

abilities. Therefore, a reduced amount of integration could lead to

an impairment of cognitive functions. Previous studies have also

found abnormal functional connectivity in children with FLE [34]

Figure 1. Network metrics for functional (A) and structural (B) connectivity as a function of sparsity. The networks measures for the
control group (green), the entire patient group (EP, blue) and the impaired patient group (IP, red) as a function of sparsity. (A) Network parameters for
the functional networks. (B) Network parameters for the structural networks. Symbols for statistical comparison: *: p,0.05 for EP versus control
group, ‘: p,0.05 for IP versus control group.
doi:10.1371/journal.pone.0090068.g001
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as well as altered small world networks in other epilepsy patient

groups [15,49].

To focus on the organization of sub networks, modularity

analysis resulted in a division of the whole brain network into four

large-scale functional modules with relatively strong within-

module and relatively weak between-module connections. The

functional modular organization in childhood FLE appeared to be

aberrant in the sense that between-module connectivity was

weakest in the children with FLE who had cognitive impairments.

In more detail it was found that module 4, which comprised large

parts of the frontal and temporal lobe (see Figure S1 for a detailed

view of this module), exhibited both increased functional and

structural within-module connectivity relative to controls. For this

particular module 4, the negative correlation between within-

module FC and cognitive performance, as observed in healthy

controls, was not present in the FLE patients. Also in this module,

an increase in SC with decreased cognitive performance was

observed for the FLE patients, but not for the controls.

Global functional and structural network abnormalities
Whole brain functional network organization appeared to be

disrupted in children with FLE, while the global structural network

organization did not show such salient effects. Although structural

network organization was not different in FLE patients compared

to controls, stronger structural modularity was associated with

worse cognitive scores in the patients. The deviant whole brain

Figure 2. Modular organization. Group average connection matrices sorted by module. (A) Functional connectivity. Colored rectangles indicate
the modules. High within-module connectivity is clearly visible by the higher values (more hot colors), while between-module connectivity is more
sparse (more cold colors). (B) Structural connectivity sorted by functional modules. The functional modules are organized bi-laterally, while the SC has
strong inter-hemispheric connectivity and low intra-hemispheric connectivity clearly visible in the block patterns. (C) The FC matrix sorted by the
modular organization derived from the SC. The two found SC modules are basically the left and right hemisphere. From the FC it is visible that strong
inter-hemispheric connections are present within the two modules. (D) The SC sorted by SC modularity. Strong intra-hemispheric connections are
visible, while inter-hemispheric connections (and thus between-module connections) are weaker.
doi:10.1371/journal.pone.0090068.g002
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functional network measures were most pronounced in the

cognitively impaired patients, and suggest that the functional

network organization is linked to the cognitive pathology.

Furthermore, the functional but not the structural abnormalities

in network organization could imply that functional disturbances

are more expressed or even precede structural abnormalities in

childhood FLE. Further longitudinal research in developing

children with epilepsy is required to investigate these hypotheses.

Alternatively, differences in sensitivity of the different imaging

modalities for detecting abnormalities could also underlie the

observed results.

Aberrant functional and structural modules
The stronger modular organization in children with FLE with

cognitive impairment supports the hypothesis that whole brain

connectional abnormalities can be traced back to differences in

connectivity between and within more or less isolated functional

modules [50,51,52,53]. Between-module functional connectivity

was decreased in the impaired children, while at the same time an

increase in structural connectivity was observed. For both the

functional and structural networks, an increase in within-module

connectivity was found. Hence, children with FLE and cognitive

impairments had an overall increase in structural connectivity,

while the differences in functional connectivity were characterized

by decreased between- and increased within-module connectivity.

Most striking for the relation between cognitive impairment and

modular organization was the aberrant connectivity of module 4,

which covers large parts of the frontal and temporal lobe. For this

module, both the functional and structural within-module

connectivity was increased, specifically for the cognitively impaired

children, relative to the healthy controls. Considering the decline

in higher cognitive functions for children with FLE, this

observation seems to hint in more detail at the neuropathological

substrate of cognitive impairment in childhood FLE.

Developmental effect on connectivity
We found that the coupling between FC and SC increased with

age in the healthy controls, which is in agreement with previous

studies [24,29,54]. However, this increase was not found for the

children with FLE. This could indicate that the normal

development in SC-FC relation is disturbed in childhood FLE.

Some developmental processes such as an increase in white

matter integrity or functional correlation with age might manifest

in a gradual, brain wide manner and thus influence the overall

mean SC or FC. Since the connectivity matrices were corrected

for mean (whole brain) connectivity values, such effect might not

be evident in the topological measures (L and C). Therefore, we

also investigated the underlying data for the mean connectivity

values. For the mean SC, an increase in FA and a decrease in

ADC were observed with increasing age in the entire patient

group, while FC was not correlated with age. Changes in FA and

ADC with age have extensively been reported in literature

[24,55,56] and are a sign of normal development. We could not

detect significant group differences in mean FA or mean ADC, but

a trend of larger relative tract volumes (thus SC values) in the

impaired patient group was found. Given the narrow age range

(8–13 year) of the subjects in this study for which correlations with

age were found, studies with larger age ranges or preferably

longitudinal studies are needed to infer on the expected abnormal

developmental trajectories in childhood FLE.

Limitations
The parcellation scheme used here was based on a subdivision

of the Freesurfer cortical and subcortical region definitions. It has

previously been shown that different parcellation schemes might

yield different results [57,58]. However, the fMRI data presented

here was analyzed with a different parcellation scheme (Freesurfer

default regions) which yielded similar results with respect to group

differences in whole brain graph metrics [16]. We therefore are

confident that our results are not specific to the parcellation

scheme used.

Table 1. The modularity measures derived from the functional connectivity (FC) and structural connectivity (SC) matrices of the
entire patient (EP) group, the cognitively impaired patient (IP) group, and the healthy controls.

Controls (mean±SEM) EP (mean±SEM) p-value (C-EP) IP (mean±SEM) p-value (C-IP)

FC

BT 20.02660.003 20.03360.004 0.06 20.04160.005 0.02

WI 0.24560.005 0.26060.008 0.08 0.26560.011 0.10

WI1 0.28460.021 0.29960.010 n.s. 0.31360.024 n.s.

WI2 0.24460.005 0.25560.014 n.s. 0.25860.013 n.s.

WI3 0.60660.007 0.64360.029 n.s. 0.70060.057 0.07

WI4 0.17660.005 0.19760.009 0.07 0.19660.009 0.07

SC (*1024)

BT 7.860.1 7.960.1 n.s. 8.360.1 0.07

WI 9.960.2 10.260.2 n.s. 11.060.4 0.08

WI1 9.7060.2 10.060.3 n.s. 11.060.6 n.s.

WI2 8.060.2 8.260.2 n.s. 7.960.3 n.s.

WI3 15.060.4 14.760.4 n.s. 16.060.8 n.s.

WI4 13.060.3 14.060.5 n.s. 15.060.1 0.01

The modularity measures comprise the between-module (BT) and within module connectivity values; the latter averaged over all four functional modules (WI) and per
functional module (WI1…4).
doi:10.1371/journal.pone.0090068.t001
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Another point of interest might be to investigate the inter-

individual differences in modular composition between subjects.

Here, we used the group average to compute the modular

composition to assure that the classification of edges as inter- or

intra-modular are the same for all participants. However, recent

advances in network analysis have made it possible to address the

Figure 3. Within- and between-module connectivity for FC and SC. (A) Modular organization of FC. Within-module connections are colored
as in Figure 2A. (B) An alternative presentation of the modular organization. The nodes of each separate module are depicted spatially segregated.
The gray lines indicate the between-module connections. (C) All between-module connection strengths (gray lines in B) for FC and SC were averaged
and compared between the different groups. (D) The within-module connections over all four modules were also averaged for the different groups
and compared. (F) FC mean within-module connection strengths are compared between the groups for the four different modules. (E) Within-
module SC. Bars display the mean+SEM.
doi:10.1371/journal.pone.0090068.g003
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issue of group differences between groups in a more principled

way [59,60].

Lastly, we omitted an analysis on the group differences for each

edge (i.e. does a specific connection between regions differ between

groups?) as our hypothesis was that the patient population would

display a large heterogeneity in terms of the exact location of the

tissue abnormalities, and that therefore these effect would not be

detectable at the group level (taking into account statistical

difficulties with testing a large number of edges). New methods are

available however to cope with the statistical problems in such

analyses, which might be of interest to future studies [61].

Conclusion
In children with FLE, it was shown that the more isolated

functional brain sub networks appear to function, the more

cognitively impaired these children are. This observation can be

interpreted such that cognitively impaired patients have a less

efficient interregional transfer of information between functional

sub networks. As this effect was not directly evident from structural

connectivity measures, this raises the question whether functional

changes precede structural changes. Future studies are prompted

for with patients in a broader age range and a longitudinal study

design that might clarify the relation between structural and

functional abnormalities in relation to cognitive developmental

abnormalities in more detail.

Supporting Information

Figure S1 A detailed view of module 4.
(TIF)

Acknowledgments

The authors thank M. Geerlings and J. Slenter for their technical assistance

and E. Peeters and R. Berting for their assistance with the MRI scanning

and P. van Mierlo for her assistance with neuropsychological testing and

subject inclusion.

Author Contributions

Conceived and designed the experiments: MJV HMHB PAMH APA

WHB. Performed the experiments: MJV HMHB. Analyzed the data: MJV

HMHB WHB. Contributed reagents/materials/analysis tools: MJV JFAJ

HMHB ADL WHB. Wrote the paper: MJV JFAJ HMHB PAMH APA

WHB.

References

1. Manford M, Hart YM, Sander JW, Shorvon SD (1992) National General

Practice Study of Epilepsy (NGPSE): partial seizure patterns in a general

population. Neurology 42: 1911–1917.

2. Braakman HM, Vaessen MJ, Hofman PA, Debeij-van Hall MH, Backes WH, et

al. (2011) Cognitive and behavioral complications of frontal lobe epilepsy in

children: A review of the literature. Epilepsia 52: 849–856.

3. Braakman HM, Ijff DM, Vaessen MJ, Debeij-van Hall MH, Hofman PA, et al.

(2012) Cognitive and behavioural findings in children with frontal lobe epilepsy.

European journal of paediatric neurology : EJPN : official journal of the

European Paediatric Neurology Society 16: 707–715.

4. Sporns O (2011) The human connectome: a complex network. Annals of the

New York Academy of Sciences 1224: 109–125.

5. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed

with functional magnetic resonance imaging. Nature reviews Neuroscience 8:

700–711.

6. Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond.

Magnetic resonance in medicine : official journal of the Society of Magnetic

Resonance in Medicine/Society of Magnetic Resonance in Medicine 65: 1532–

1556.

7. Van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a

review on resting-state fMRI functional connectivity. Eur Neuropsychopharma-

col 20: 519–534.

8. Friston KJ (1994) Functional and effective connectivity in neuroimaging: A

synthesis. Human Brain Mapping 2: 56–78.

9. Waites AB, Briellmann RS, Saling MM, Abbott DF, Jackson GD (2006)

Functional connectivity networks are disrupted in left temporal lobe epilepsy.

Ann Neurol 59: 335–343.

10. Liao W, Zhang Z, Pan Z, Mantini D, Ding J, et al. (2010) Altered functional

connectivity and small-world in mesial temporal lobe epilepsy. PLoS One 5:

e8525.

11. Pereira FR, Alessio A, Sercheli MS, Pedro T, Bilevicius E, et al. (2010)

Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy:

evidence from resting state fMRI. BMC Neurosci 11: 66.

12. Bettus G, Guedj E, Joyeux F, Confort-Gouny S, Soulier E, et al. (2009)

Decreased basal fMRI functional connectivity in epileptogenic networks and

contralateral compensatory mechanisms. Hum Brain Mapp 30: 1580–1591.

13. Pravata E, Sestieri C, Mantini D, Briganti C, Colicchio G, et al. (2011)

Functional connectivity MR imaging of the language network in patients with

drug-resistant epilepsy. AJNR Am J Neuroradiol 32: 532–540.

14. Vlooswijk MC, Jansen JF, Majoie HJ, Hofman PA, de Krom MC, et al. (2010)

Functional connectivity and language impairment in cryptogenic localization-

related epilepsy. Neurology 75: 395–402.

15. Vlooswijk MC, Vaessen MJ, Jansen JF, de Krom MC, Majoie HJ, et al. (2011)

Loss of network efficiency associated with cognitive decline in chronic epilepsy.

Neurology 77: 938–944.

16. Vaessen MJ, Braakman HM, Heerink JS, Jansen JF, Debeij-van Hall MH, et al.

(2012) Abnormal Modular Organization of Functional Networks in Cognitively

Impaired Children with Frontal Lobe Epilepsy. Cerebral cortex.

17. Vaessen MJ, Jansen JF, Vlooswijk MC, Hofman PA, Majoie HJ, et al. (2012)

White matter network abnormalities are associated with cognitive decline in

chronic epilepsy. Cerebral cortex 22: 2139–2147.

18. Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, et al. (2007)

Abnormalities of language networks in temporal lobe epilepsy. NeuroImage 36:

209–221.

19. Bonilha L, Nesland T, Martz GU, Joseph JE, Spampinato MV, et al. (2012)

Medial temporal lobe epilepsy is associated with neuronal fibre loss and

paradoxical increase in structural connectivity of limbic structures. Journal of

neurology, neurosurgery, and psychiatry 83: 903–909.

20. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat Rev Neurosci 10: 186–198.

21. Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks

in the brain. Nonlinear Biomed Phys 1: 3.

22. Johansen-Berg H (2011) The future of functionally-related structural change

assessment. NeuroImage.

23. Honey CJ, Thivierge JP, Sporns O (2010) Can structure predict function in the

human brain? NeuroImage 52: 766–776.

Figure 4. Function structure correlation with age. Coupling of SC
and FC versus age of the control group (open circles) and unimpaired
patient group (grey circles) and impaired patients (black squares). Each
dot represents the correlation of all non-zero edge strengths of the FC
and SC for that person. Regression lines for the control group (dashed)
and entire patient group (solid) are shown. Note the increasing FC-SC
correlation with age for the healthy controls, which was reversed for the
patients with FLE.
doi:10.1371/journal.pone.0090068.g004

Network Impairment in Childhood Epilepsy

PLOS ONE | www.plosone.org 9 March 2014 | Volume 9 | Issue 3 | e90068



24. Hagmann P, Sporns O, Madan N, Cammoun L, Pienaar R, et al. (2010) White

matter maturation reshapes structural connectivity in the late developing human
brain. Proc Natl Acad Sci U S A 107: 19067–19072.

25. Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, et al. (2009)

Predicting human resting-state functional connectivity from structural connec-
tivity. Proceedings of the National Academy of Sciences of the United States of

America 106: 2035–2040.
26. Ethofer T, Gschwind M, Vuilleumier P (2011) Processing social aspects of

human gaze: a combined fMRI-DTI study. NeuroImage 55: 411–419.

27. Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state
functional connectivity reflects structural connectivity in the default mode

network. Cerebral cortex 19: 72–78.
28. Skudlarski P, Jagannathan K, Anderson K, Stevens MC, Calhoun VD, et al.

(2010) Brain connectivity is not only lower but different in schizophrenia: a
combined anatomical and functional approach. Biological psychiatry 68: 61–69.

29. Zhang Z, Liao W, Chen H, Mantini D, Ding JR, et al. (2011) Altered functional-

structural coupling of large-scale brain networks in idiopathic generalized
epilepsy. Brain : a journal of neurology 134: 2912–2928.

30. Vaessen MJ (2011) Abnormal modular organization of cerebral functional
networks in cognitively impaired children with frontal lobe epilepsy. in

preparation.

31. Newman ME (2006) Modularity and community structure in networks. Proc
Natl Acad Sci U S A 103: 8577–8582.

32. van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of
functional brain networks and intellectual performance. J Neurosci 29: 7619–

7624.
33. Power JD, Fair DA, Schlaggar BL, Petersen SE (2010) The development of

human functional brain networks. Neuron 67: 735–748.

34. Widjaja E, Zamyadi M, Raybaud C, Snead O, Smith M (2013) Abnormal
Functional Network Connectivity among Resting-State Networks in Children

with Frontal Lobe Epilepsy. American Journal of Neuroradiology 34: 2386–
2392.

35. Xue K, Luo C, Zhang D, Yang T, Li J, et al. (2014) Diffusion tensor

tractography reveals disrupted structural connectivity in childhood absence
epilepsy. Epilepsy research 108: 125–138.

36. Aldenkamp AP, Arends J, Verspeek S, Berting M (2004) The cognitive impact of
epileptiform EEG-discharges; relationship with type of cognitive task. Child

Neuropsychol 10: 297–305.
37. Jones DK, Horsfield MA, Simmons A (1999) Optimal strategies for measuring

diffusion in anisotropic systems by magnetic resonance imaging. Magnetic

resonance in medicine : official journal of the Society of Magnetic Resonance in
Medicine/Society of Magnetic Resonance in Medicine 42: 515–525.

38. Ghosh SS, Kakunoori S, Augustinack J, Nieto-Castanon A, Kovelman I, et al.
(2010) Evaluating the validity of volume-based and surface-based brain image

registration for developmental cognitive neuroscience studies in children 4 to 11

years of age. Neuroimage 53: 85–93.
39. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl.

NeuroImage 62: 782–790.
40. Van Dijk KRA, Hedden T, Venkataraman A, Evans KC, Lazar SW, et al.

(2010) Intrinsic Functional Connectivity As a Tool For Human Connectomics:
Theory, Properties, and Optimization. Journal of Neurophysiology 103: 297–

321.

41. Farrell JA, Landman BA, Jones CK, Smith SA, Prince JL, et al. (2007) Effects of
signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor

imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvec-
tor measurements at 1.5 T. Journal of magnetic resonance imaging : JMRI 26:

756–767.

42. Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre
orientation distribution in diffusion MRI: non-negativity constrained super-

resolved spherical deconvolution. NeuroImage 35: 1459–1472.

43. Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C (2004)

Comprehensive approach for correction of motion and distortion in diffusion-
weighted MRI. Magnetic resonance in medicine : official journal of the Society

of Magnetic Resonance in Medicine/Society of Magnetic Resonance in

Medicine 51: 103–114.

44. Vaessen MJ, Jansen JF, Vlooswijk MC, Hofman PA, Majoie HJ, et al. (2011)

White Matter Network Abnormalities Are Associated with Cognitive Decline in
Chronic Epilepsy. Cerebral cortex.

45. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional

networks. PLoS Comput Biol 3: e17.

46. Ginestet CE, Nichols TE, Bullmore ET, Simmons A (2011) Brain network
analysis: separating cost from topology using cost-integration. PLoS One 6:

e21570.

47. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity:

uses and interpretations. Neuroimage 52: 1059–1069.

48. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in

the resting brain: a network analysis of the default mode hypothesis. Proceedings

of the National Academy of Sciences of the United States of America 100: 253–

258.

49. Luo C, Li Q, Lai Y, Xia Y, Qin Y, et al. (2011) Altered functional connectivity in

default mode network in absence epilepsy: a resting-state fMRI study. Hum

Brain Mapp 32: 438–449.

50. Alexander-Bloch AF, Gogtay N, Meunier D, Birn R, Clasen L, et al. (2010)

Disrupted modularity and local connectivity of brain functional networks in
childhood-onset schizophrenia. Front Syst Neurosci 4: 147.

51. Meunier D, Achard S, Morcom A, Bullmore E (2009) Age-related changes in

modular organization of human brain functional networks. NeuroImage 44:

715–723.

52. Alexander-Bloch A, Lambiotte R, Roberts B, Giedd J, Gogtay N, et al. (2012)

The discovery of population differences in network community structure: new

methods and applications to brain functional networks in schizophrenia.

NeuroImage 59: 3889–3900.

53. Gratton C, Nomura EM, Perez F, D’Esposito M (2012) Focal brain lesions to
critical locations cause widespread disruption of the modular organization of the

brain. Journal of cognitive neuroscience 24: 1275–1285.

54. Uddin LQ, Supekar KS, Ryali S, Menon V (2011) Dynamic reconfiguration of

structural and functional connectivity across core neurocognitive brain networks
with development. The Journal of neuroscience : the official journal of the

Society for Neuroscience 31: 18578–18589.

55. Westlye LT, Walhovd KB, Dale AM, Bjornerud A, Due-Tonnessen P, et al.

(2010) Life-span changes of the human brain white matter: diffusion tensor

imaging (DTI) and volumetry. Cerebral cortex 20: 2055–2068.

56. Stadlbauer A, Salomonowitz E, Strunk G, Hammen T, Ganslandt O (2008)

Age-related degradation in the central nervous system: assessment with diffusion-

tensor imaging and quantitative fiber tracking. Radiology 247: 179–188.

57. Zalesky A, Fornito A, Harding IH, Cocchi L, Yücel M, et al. (2010) Whole-brain
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