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ABSTRACT: The allure of a molecular dynamics simulation is that,
given a sufficiently accurate force field, it can provide an atomic-level
view of many interesting phenomena in biology. However, the result of
a simulation is a large, high-dimensional time series that is difficult to
interpret. Recent work has introduced the time-structure based
Independent Components Analysis (tICA) method for analyzing
MD, which attempts to find the slowest decorrelating linear functions
of the molecular coordinates. This method has been used in
conjunction with Markov State Models (MSMs) to provide estimates
of the characteristic eigenprocesses contained in a simulation (e.g.,
protein folding, ligand binding). Here, we extend the tICA method
using the kernel trick to arrive at nonlinear solutions. This is a
substantial improvement as it allows for kernel-tICA (ktICA) to
provide estimates of the characteristic eigenprocesses directly without building an MSM.

1. INTRODUCTION

Molecular dynamics (MD) has had a long and important
history in computational biology1,2 and has made many recent
contributions toward understanding a variety of biological
phenomena, including protein folding,3−5 protein ligand
binding,6−8 and conformational change of large biomole-
cules.9−13 Though running a large-scale simulation has
historically been a demanding task, recent advancements in
both software and hardware have made simulations of complex
systems possible.14−20 Nonetheless, because of the high-
dimensional nature of the resulting time series, the generation
of many MD trajectories is not sufficient for providing scientific
insight. In fact, data analysis has increasingly become a major
barrier in the application of MD simulations.21

One analysis technique attempts to estimate the slowly
equilibrating collective motions, or eigenprocesses, contained in
a simulation (e.g., proteins folding from unfolded conforma-
tions, ligands binding to a target, enzymes shifting from an
inactive to active state, etc.). These eigenprocesses are useful as
they can be measured experimentally, but by constructing them
from a simulation, we can provide a level of detail that is
unavailable to experiment alone. Markov State Models (MSMs)
are one such method that has been useful in a variety of
contexts.4−6,12,13,22−24 Briefly, an MSM describes continuous
dynamics in phase space as a jump process over a finite number
of states that partition the space.25,26 The MSM’s eigenspec-
trum provides estimates of the eigenprocesses contained in a
simulation.
Practically, the construction of an MSM is an active area of

research as there are significant hurdles that must be overcome
in order to build a model that accurately describes the dynamics
contained in a simulation.26,27 For example, an MSM requires

the definition of a state decompositionthat is, a partition of
phase space into discrete states. The accuracy of the model
relies heavily on the quality of this state decomposition, but
although there have been a number of improvements to this
process,22,28−31 there is no consensus on the best method for
defining a state space.27

An MSM, however, is merely one way to estimate a system’s
eigenprocesses from a simulation. Therefore, we can hope to
overcome the practical challenges faced when constructing an
MSM by approximating the dynamics within a different
scheme. Toward this end, we introduce an extension of time-
structure based Independent Components Analysis (tICA)
using the kernel trick for estimating the characteristic
eigenprocesses contained in a simulation without using an
MSM. First, we lay the theoretical foundation for the method,
then formulate the problem and derive its solution, and finally,
we use the method to analyze several toy models as well as MD
simulations of the Fip35 WW domain from Shaw et al.32

2. THEORY
2.1. Transfer Operator Approach. In this section, we

briefly discuss Markovian dynamics and the transfer operator
approach but leave most details to other works.25,33 We also
note that, for clarity, most of our notation is borrowed from
Prinz et al.25

We are interested in discrete-time dynamics in some phase
space Ω that are Markovian, ergodic, and time-reversible.
Because of these properties, there exists a unique stationary
density μ Ω → +: . This density is properly normalized such
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that ∫ dx μ(x) = 1. Let x(t) denote a Markov process in Ω.
Because of the Markov property, there exists a transition
probability density Ω × Ω → +p: such that p(x,y;τ)dy is the
probability of being in some volume (dy) around y after time τ
given that the system started at x.
The dynamical progression of the Markov chain can be

described via a propagator operator, which maps a probability
density at time t, pt(x), to a new density at time t + τ later,
pt+τ(x):

∫τ τ= ◦ =τ+p p d p py x x x y x( ) ( ) ( ) ( , ; ) ( )t t t (1)

Additionally, there exists a corresponding operator called the
transfer operator defined such that

∫τ
μ

τ μ= ◦ =τ+u u d p uy x
y

x x y x x( ) ( ) ( )
1
( )

( , ; ) ( ) ( )t t t

(2)

The functions ut(x) are related to probability densities by

μ =u px x x( ) ( ) ( )t t (3)

(While the propagator provides a more intuitive operation, the
transfer operator’s eigenfunctions will be the eigenprocesses we
actually estimate in the following methods.)
The action of the transfer operator can be decomposed into a

series of relaxation processes, which correspond to its
eigenfunctions, ψi(x), and their eigenvalues, λi:

∑ λ ψ ψ= ⟨ ⟩τ μ+
=

∞

u ux x( ) , ( )t k
i

i
k

t i i
0 (4)

where

∫ μ⟨ ⟩ =μf g d f gx x x x, ( ) ( ) ( )
(5)

The eigenfunctions of the transfer operator are orthogonal
and normalized such that

ψ ψ δ⟨ ⟩ =μ,i j ij (6)

As a result of this decomposition, we can model the dynamics
of the Markov chain directly if we have an estimate of the
eigenfunctions of the transfer operator. In fact, an MSM
provides an estimate of this transfer operator by estimating a
finite number of the eigenfunctions as a sum of indicator
functions, where the indicator functions define the state
decomposition in phase space. However, the MSM is not the
only technique that can approximate the transfer operator.
2.2. The Variational Principle of Conformation

Dynamics. The eigenvalues of the transfer operator
correspond to a relaxation time scale, ti, which can be measured
via the autocorrelation function of a trajectory {x0,x1,...,xt,...}
projected onto the corresponding eigenfunction:

τ λ
ψ ψ

ψ
− = = τ+


t

x x

x
exp( / )

[ ( ) ( )]

[ ( ) ]i i
i t i t

i t
2

(7)

In recent work from Noe ́ and Nüske,34 it was shown that a
variational principle can be derived for the eigenvalues of the
transfer operator, meaning that given a mean-centered,
integrable function, Ω → f : , the autocorrelation of f at
time τ is always less than the autocorrelation of the first
nonstationary eigenfunction, ψ1, of the transfer operator:

ψ ψ
ψ

≤τ τ+ +







f f
f

x x
x

x x

x
[ ( ) ( )]

[ ( ) ]

[ ( ) ( )]

[ ( ) ]
t t

t

t t

t
2

1 1

1
2

(8)

This is powerful because it implies that one can find the
slowest dynamical processes in a simulation without building an
explicit estimate of the operator itself, but by directly estimating
its eigenfunctions. Nüske et al.35 have successfully constructed
estimates of the transfer operator’s top eigenfunctions in the
span of a prespecified library of basis functions by leveraging
this variational bound. Here, we take a different approach that
does not require a predefined basis set.

2.3. Time-Structure Based Independent Component
Analysis (tICA). In what follows, we are working in the space
Ω and will assume that it is a Euclidean space with some
dimension, d. Therefore, if x and y are in Ω, then x·y = xTy
denotes the inner product and x ⊗ y = xyT the outer product
between the two length-d column vectors.
Time-structure based Independent Component Analysis

(tICA) is an unsupervised learning method for finding
projections that decorrelate slowly.22,28,36−38 Given a Markov
chain in phase space: {xt ∈ Ω}, tICA attempts to find a vector v
∈ Ω such that the autocorrelation of xt projected onto v is
maximized (eq 9).

δ δ
δ

· ·
·

τ+



v x v x
v x

max
[( )( )]

[( ) ]
t t

tv 2
(9)

Here, δ = − x x x[ ]t t t and τ is some lag time greater than
zero. To compute the expectation values in eq 9, assume we can
sample M pairs of points in phase space, {(Xt ∈ Ω,Yt ∈ Ω)},
where Xt is sampled from the equilibrium distribution, μ(·), and
Yt from the transition probability density, p(Xt,· ;τ). Then, we
can estimate the time-lag correlation matrix, covariance matrix,
and mean vector using a maximum likelihood approach with a
multivariate normal approximation (see SI section “Maximum
Likelihood Estimator for tICA Matrices”). Let

∑ δ δ δ δ= ⊗ + ⊗τ

=

C
M

X Y Y X
1

2 t

M

t t t t
( )

1 (10)

∑ δ δ δ δΣ = ⊗ + ⊗
=M

X X Y Y
1

2 t

M

t t t t
1 (11)

where δXt = Xt−μ, with mean given by

∑μ = +
=M

X Y
1

2 t

M

t t
1 (12)

Given these matrices, eq 9 becomes

Σ

τ

∈Ω

Cv v
v v

max
T

Tv

( )

(13)

It can be shown that the solution to eq 13 is also a solution to
the generalized eigenvalue problem:

λ= ΣτC v v( ) (14)

Furthermore, the remaining eigenvectors from eq 14 are the
slowest projections constrained to being uncorrelated with the
previously found solutions.
This method has proven to be very useful for constructing

MSMs that reproduce the slowest time scales in a
simulation.22,28 However, more importantly, since eqs 7 and
9 are the same, the solutions to the tICA problem (tICs) are
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also solutions to the variational problem and therefore provide
estimates of the slowest eigenfunctions of the transfer
operator.28 These estimates, however, are crude since the
tICs are constrained to be linear functions of the input
coordinates, but if we can extend the tICA problem to include
nonlinear degrees of freedom then we will be able to estimate
the true eigenfunctions more accurately.
2.4. The Kernel Trick. The simplest approach to extending

the tICA problem beyond linear combinations of coordinates in
Ω is to use a mapping function, Φ:Ω → V, which expands the
original representation of the data into a higher-dimensional
feature space, V. We can then calculate the linear tICs in the
feature space, V, but since Φ is arbitrary, these tICs can in fact
be nonlinear functions of the coordinates in Ω. The
dimensionality of V, however, could be enormous (or perhaps
infinite), and so, this scheme is impractical except in very
simple cases. Under certain conditions, however, it is possible
to perform analysis in V without ever actually calculating the
representations, Φ(x), by employing what is known as the
“kernel trick.”
For illustration, we reproduce a simple example from

Schölkopf et al.39 of the kernel trick in action. Let ∈ x y, 2

and define the mapping function between phase space, 2, and
feature space, V, to be Φ(x) = (x1

2, x x2 1 2, x2
2). Because of this

definition, it is easy to show that

Φ ·Φ = ·x y x y( ) ( ) ( )2
(15)

Equation 15 indicates that we can calculate the dot product in
V in one of two ways. We can either compute Φ(x) and Φ(y)
and explicitly calculate their dot product or we can simply
square the dot product of the vectors in 2. Either route gives
us the same result, but the latter has the advantage of being
much easier in cases where the feature space’s dimension is very
largeimagine using a polynomial of degree much greater than
two in eq 15or infinite.
Kernels are used commonly in machine learning when

extending linear problems to provide nonlinear solutions.39−44

Any problem that can be rewritten entirely in terms of inner
products can be extended to use the kernel trick, and in the
following, we show how to rewrite the tICA problem in this
way.
2.5. Kernel tICA (ktICA) Solution. Remember that the

tICA problem searches for a projection that maximizes the
autocorrelation function of a projection onto a vector v. Our
goal is to rewrite the optimization problem (eq 13) in terms of
only inner products and then apply the kernel trick to solve the
tICA problem in high-dimensional feature spaces. First, we
assume that the covariance matrix is positive definite. This
assumption is only violated when one coordinate can be written
as a linear combination of the other coordinates. In these cases,
we need only project the data into a nonredundant space and
continue the analysis there.
We start with a set of M pairs of points in phase space, {(Xt

∈ Ω, Yt ∈ Ω)}, where Xt is sampled from the equilibrium
distribution, μ(·) and Yt from the transition probability density,
p(Xt,· ;τ). Consider a function Φ:Ω → V that maps points in
phase space, Ω, into a higher-dimensional feature space, V.
Now we want to solve the tICA problem in this new space V.
The solution, v ∈ V, is a solution to the eigenvalue problem
given in eq 14. However, the covariance and time-lag
correlation matrices are calculated in terms of the vectors in V:

∑Σ = Φ ⊗ Φ + Φ ⊗ Φ
=M

X X Y Y
1

2
( ) ( ) ( ) ( )

t

M

t t t t
1

∑= Φ ⊗ Φ + Φ ⊗ Φτ

=

C
M

X Y Y X
1

2
( ) ( ) ( ) ( )

t

M

t t t t
( )

1

Here, we have used Φ(x) ⊗ Φ(y) to denote the outer product
of the two vectors Φ(x), Φ(y) ∈ V. For now, assume that the
Φ(Xt) values and Φ(Yt) values are centered (see Supporting
Information (SI) “Centering Data in the Feature Space”).
It can be shown that the solution, v, is in the span of the Xt

values and Yt values, which means that we can write v as a linear
combination of the input data points (see SI “tICA Solutions
are in the Span of the Input Data”). Let β ∈  M2 such that

∑ β βΦ Φ= +
=

+v X Y( ) ( )
t

M

t t t M t
1 (16)

We will rewrite the tICA problem in V in terms of a Gram
matrix K, where K has 2M rows and 2M columns, defined as

=

Φ ·Φ ≤ ≤

Φ ·Φ ≤ >

Φ ·Φ > ≤

Φ ·Φ > >

−

−

− −

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

K

i M j M

i M j M

i M j M

i M j M

X X

X Y

Y X

Y Y

( ) ( )

( ) ( )

( ) ( )

( ) ( )

ij

i j

i j M

i M j

i M j M (17)

where Φ(x)·Φ(y) is the inner product between the two vectors
Φ(x),Φ(y) ∈ V. In other words, the gram matrix can be broken
into four blocks:

=
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥K

K K

K K

XX XY

YX YY (18)

such that each block is an M × M matrix and

= Φ ·ΦK X X( ) ( )ij
XX

i j (19)

= Φ ·ΦK X Y( ) ( )ij
XY

i j (20)

= Φ ·ΦK Y X( ) ( )ij
YX

i j (21)

= Φ ·ΦK Y Y( ) ( )ij
YY

i j (22)

Let IM×M denote the M-dimensional identity matrix and 0M×M
denote an M by M matrix of all zeros. Then, let R be a 2M ×
2M matrix given by eq 23.

≔
× ×

× ×

⎡
⎣⎢

⎤
⎦⎥R

I

I

0

0
M M M M

M M M M (23)

In the SI “Derivation of the ktICA Solution,” we show that
the numerator and denominator of the Rayleigh quotient in eq
9 can be rewritten in terms of β and K:

β β=τC
KRK

M
v v

2
T

T
( )

(24)

β βΣ = KK
M

v v
2

T
T

(25)

and so the tICA problem in the feature space V can be written
totally in terms of inner products:
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β β
β ββ∈

KRK
KK

max
T

TM2 (26)

which is itself a Rayleigh Quotient and so the solutions satisfy
the generalized eigenvalue problem:

β λ β=KRK KK (27)

However, solving such problems can be challenging because
the matrix KK can have zero eigenvalues, which correspond to
directions in V that have zero variance associated with them.
These directions are either due to redundant coordinates (in V)
or under sampling and so are not desirable solutions to the
tICA problem. However, these zero variance directions lead to
infinite eigenvalues in eq 27. This issue is not exclusive to the
kernel tICA problem and is faced in most kernel learning
methods. Several solutions have been reported in the CCA,
LDA, and SVM literature that introduce a regularization
term.41−43 We use the method applied to kernel-CCA in Mika
et al.41 but realize that another form of regularization may be
even more useful. The result is a modified objective function
that penalizes the solutions according to the l2 norm on β.

β β
β β η β+ || ||β

KRK
KK

max
T

T 2 (28)

This new Rayleigh Quotient can be written as the solution to
a modified generalized eigenvalue problem:

β λ η β= + ×KRK KK I( )M M2 2 (29)

For large enough η, the result is a positive definite matrix, KK
+ηI2M×2M, which allows us to compute the solutions reliably.
We refer the reader to other kernel methods that use a similar
regularization scheme41−43 for a discussion, as well as the
Results section Two-Dimensional Brownian Dynamics.
2.6. Connection between ktICA and the Transfer

Operator Approach. As in the case of linear tICA, there are
many solutions to the ktICA problem (herein called ktICs),
where each is the slowest projection subject to being
uncorrelated with all of the slower ktICs. Let v(i) ∈ V denote

the ith ktIC and let β ∈ i M( ) 2 denote the ith eigenvector of eq
29 corresponding to v(i):

∑ β β= Φ + Φ
=

+v X Y( ) ( )i

t

M

t
i

t t M
i

t
( )

1

( ) ( )

Because of the variational principle, the ktICs are direct
estimates of the transfer operator’s right eigenfunctions:

ψ = ·Φ+ x v x( ) ( )i
i

1
( )

The first eigenfunction (ψ0(x) = 1 ∀ x ∈ Ω) is not estimated
by ktICA as it is stationary, and so the second eigenfunction is
estimated by the first ktIC. However, to directly compare to the
eigenfunctions of the transfer operator, we need to ensure that
the solutions to the ktICs are normalized correctly.
The eigenfunctions of the transfer operator are orthonormal

with respect to the inner product defined in eq 5. Since the first
eigenfunction is equal to one for all points x, this means that
the eigenfunctions have these properties:
1. All dynamic eigenfunctions (i > 0) have zero mean

( ψ ψ ψ= ⟨ ⟩ =μ x[ ( )] , 0i i0 ). Since the Gram matrix is centered
in the feature space (see SI section Centering Data in the
Feature Space), the ktICs have zero mean.

2. The eigenfunctions are uncorrelated and are normalized
such that they have unit variance (cov(ψi(x), ψj(x)) = ⟨ψi, ψj⟩μ
= δij). As shown in the SI section Derivation of the ktICA
Solution, the variance of the ith ktIC, is given by

β βKK
M

( )
2

i T i( ) ( )

(30)

So we can normalize each β(i) such that the variance is one.
Arbitrary points in Ω can be projected onto the ktICs as this

operation can be written entirely in terms of inner products:

∑ψ β

β

= ·Φ = Φ ·Φ

+ Φ ·Φ

+
=

+

x v x x X

x Y

( ) ( ) ( ( ) ( ))

( ( ) ( ))

i
i

t

M

t
i

t

t M
i

t

1
( )

1

( )

( )
(31)

We emphasize here that it is possible to evaluate the value of
v(i)·Φ(x)and therefore ψi+1(x)without ever specifying Φ or
v(i). In a sense, the ktICs behave like a kernel density estimator,
where the value at some point x depends on how close that
point is to the training points.

2.7. Model Selection. To solve the ktICA problem, we
need to calculate the Gram matrix, K, given in eq 18, which
requires the choice of a kernel function that specifies inner
products in the feature space. Although there are a variety of
kernel functions available, for this work we chose the
commonly used Gaussian kernel:

σ
= Φ ·Φ = −

|| − ||⎛
⎝⎜

⎞
⎠⎟k x y x y

x y
( , ) ( ) ( ) exp

2

2

2
(32)

Here, x and y correspond to two conformations of a molecule.
Technically, these vectors are points in phase space and
represent the positions and momenta of all atoms in the
simulation. However, in most bimolecular simulations, we do
not care to describe the rotation and translation of the
molecule. Moreover, because we only have finite sampling, if we
attempt to describe rotation and translation in our models, then
we will likely do so only by sacrificing accuracy in describing the
conformational change that we are interested in. For this
reason, for each application we select an internal set of
coordinates (e.g., all dihedral angles or contact maps of a
protein) to use in eq 32. These coordinates will depend on the
particular system being studied, and so we leave their
specification to the application sections below.
With the kernel given in eq 32, the gram matrix is defined as

σ

σ

σ

σ

=

− || − || ≤ ≤

− || − || ≤ >

− || − || > ≤

− || − || > >

−

−

− −
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⎜ ⎟
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⎩
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⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

K

i M j M

i M j M

i M j M

i M j M

X X

X Y

Y X

Y Y

exp
1

2

exp
1

2

exp
1

2

exp
1

2

ij

i j

i j M

i M j

i M j M

2
2

2
2

2
2

2
2

(33)

The solutions to eq 29 provide an explicit form of the
estimates of each eigenfunction ψi+1:
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∑ψ β
σ

β
σ

= −
|| − ||
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|| − ||
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=

+

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
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2
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i
t

M

t
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1
1
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2

2
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2

2
(34)

This expression highlights the analogy to a Gaussian kernel
density estimator, where we can evaluate ψi+1 at any point x
based on the eigenvectors from eq 29 and how close x is to
each point in the training set.
In addition to the kernel, we must choose the correlation lag

time, τ, and the regularization strength, η. In previous studies,
tICs were largely unperturbed by the choice of τ;22 hence, for
each of our example systems, we fix a τ and ask for the best
model given this choice. Therefore, there are two free
parameters we must specify before we can solve eq 29: σ and
η. Bayes’ theorem demonstrates that the probability of a model
given the data is proportional to the probability of the data
given the model, which means that we can select a model based
on maximizing the model’s likelihood of generating new data.
Here, a “model” is the set of ktICs from eq 29 solved with
particular values for σ and η. Therefore, our strategy will be to
solve eq 29 over a range of values for σ and η and then pick the
model that assigns the highest probability to new data.
As the ktICs are estimates of the transfer operator’s

eigenfunctions, we can define a likelihood based on eq 4. Let
k be a positive integer, then let {(at ∈ Ω,bt ∈ Ω)}t = 1n be pairs of
test points that were not used in computing the ktICs, where at
is sampled from the true equilibrium distribution, μ(·), and bt
from the true transition probability density, p(at,· ;kτ). Then,
the probability of observing all of these transitions can be
written in terms of the infinitely many eigenfunctions of the
transfer operator:

∫∏ ∑

∏ ∑

∏ ∑
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1 0

However, we do not have access to infinitely many
eigenfunctions, so we instead truncate the expansion at the
top m + 1 eigenfunctions to calculate an approximate
probability, P̂.

∏ ∑

σ η σ η

μ μ λ ψ ψ

| ≈ ̂ |

=

= =

= =

P Pa b a b
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i t i t

1 1

1 0 (35)

This approximation is better when m is large, or when {λi: i >
m} are very small. Since the equilibrium probability is not
dependent on either of σ and η, we can ignore the μ(·) terms
when comparing models. This is especially clear when looking
at the approximate log-likelihood:

∑ ∑ ∑

σ η

μ μ λ ψ ψ

̂ |

= +

=

= = =
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⎝
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1 1 0

(36)

For all applications, we calculate a set of ktICs for a variety of
values of σ and η on a subset of the full data set (the training
set). Then, eqs 34 and 36 can be used to evaluate the
approximate likelihood on {(at,bt)}t = 1

n − the test set that was
initially left out of the calculation. The values of σ and η that are
selected are those that are most likely according to eq 36.
One technical issue when calculating these probabilities is

that since we truncate the infinite expansion at relatively few
ktICs, the resulting probability is not guaranteed to be positive.
In practice, this can be difficult to handle but can be avoided by
only testing pairs of points that are separated by many multiples
of τ. In this way, the faster components we ignore in eq 36 have
equilibrated and so the truncated sum is a better approximation
of the true (infinite) expansion. Admittedly, this problem likely
indicates that defining such a probability based solely on the
slowest eigenfunctions of the transfer operator is not possible.
There may in fact exist a better scheme for evaluating these
models; however, in the results below, we show that, at least for
simple systems, the likelihood approach does work.
Computationally, solving the ktICA problem requires finding

the solution to eq 29, which is a generalized eigenvalue
problem. However, the matrices on either side are 2M × 2M,
where M is the number of data points in the training set. This is
a computational challenge for all kernel methods, as the
solution becomes more difficult to compute as more data is
used. Here, we simply limit our analysis to a small portion of
the data set. However, there are many sophisticated solutions
that have been developed for other kernel-learning methods,
and these will certainly be useful in the future.45,46

3. RESULTS
3.1. One-Dimensional Jump Process. We simulated a

Markov jump process on a one-dimensional, four-well potential
as suggested in Prinz et al.25 The potential given by

= + + +− − − − +V x x e e e( ) 4( 0.8 0.2 0.5 )x x x8 80 80( 0.5) 40( 0.5)2 2 2

(37)

was discretized into 100 points between −1 and 1, and a
transition matrix was defined such that at each point, there was
nonzero probability to move left, move right, or stay at the
current point. In each case, the probability to move from point
xi to xj was proportional to exp[−(V(xj)−V(xi))].
We simulated two trajectories of length 106 timesteps. From

the first 1000 pairs of transitions separated by 10 time steps
were used in the ktICA method. The Euclidean distance
between points was used in conjunction with the Gaussian
kernel defined in eq 32 to calculate the gram matrix. We used a
grid-search approach for determining the best model
parameters. The approximate likelihood scores were calculated
for 1000 pairs of points sampled from the second trajectory
separated by 10 timesteps. In this simple case, there were many
models that were roughly the same quality as judged by the
likelihood scores (Figure 1).
Since the generating process was itself an MSM, the

eigenvalues and eigenvectors are analytically calculable. There
are three slow eigenfunctions, corresponding to transitions
across the three barriers on this system. The best model
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correctly determined the slowest three ktICs and are illustrated
in Figure 1. These results illustrate the value of nonlinearity in
estimating the eigenfunctions of the transfer operator. In fact,
since the dynamics take place in a one-dimensional space, there
is only one solution to the regular tICA problem, which only
(crudely) estimates the slowest eigenfunction of the true
transfer operator.
3.2. Two-Dimensional Brownian Dynamics. We also

investigated the Müller potential, and simulated dynamics that
were governed by

ζ ζ= −∇ +
t

V kT R t
x

x
d
d

( ) 2 ( )

where ζ = 10−3, kT = 15, and R(t) is a delta-correlated Gaussian
process with zero mean, and V(x) was defined as

∑= · − + − −

+ −

=
V x A a x X b x X x Y
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j j
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where a = (−1,−1,−6.5, 0.7); b = (0, 0, 11, 0.6); c = (−10,−
10,−6.5, 0.7); A = (−200,−100,−170, 15); X = (1, 0,−0.5,−1);
Y = (0, 0.5, 1.5, 1) as suggested by Müller and Brown.47 Using
the Euler−Maruyama method and a time step of 0.1, we
produced two trajectories of length 107 time steps. The initial
positions were sampled via a uniform distribution over the box:
[−1.5,1.2] × [−0.2,2.0].

The ktICA algorithm was used to analyze the first trajectory
by (regularly) sampling 2000 pairs of transitions separated by
10 timesteps. The cross-validation scores were calculated for
1000 pairs of transitions separated by 50 timesteps using the
top two ktICs. As there are essentially three local minima in the
Müller potential, the top two eigenfunctions should correspond
to population transfer between the three wells. The model
selected by the likelihood criterion correctly estimates these
eigenfunctions (Figure 2) while numerous other models do
not.

The solutions are highly dependent on the choice of the η,
which indicates the necessity of regularization. If η is too small,
then the ktICs focus on only a few points that are not sampled
often in the data set. When it is too large, the eigenvalues are
underestimated and the eigenfunctions are distorted from the
correct functions. The approximate likelihood evaluated on test
data chooses an intermediate value of η whose ktICs correctly
separate the three wells in the Müller potential (Figure 3).

3.3. Molecular Dynamics of Alanine Dipeptide. A
single trajectory of alanine dipeptide (ALA1) was simulated
using the amber99sb-ildn force field48 in implicit solvent
(GBSA) for 500 ns using OpenMM6.016,18 with a time step of
2 fs at 300 K using a Langevin integrator. The trajectory was
subsampled every 250 fs for analysis and split in half, with the
first half serving as the training data and the second serving as
the test data. The ktICA calculation was performed by regularly
sampling 2000 pairs of points separated by 1.25 ps from the
training data. The Gaussian kernel was used in conjunction
with a distance metric defined on intra-atomic distances. For
each conformation, the distance between all pairs of heavy

Figure 1. Approximate log likelihood evaluated on test data provided a
similar score for most models we tested. Models using a value of 0.01
for σ or a value of 104 for η were given very low scores, while all other
models seemed to be good enough. The best model according to the
likelihood evaluated on test data correctly determined the top three
eigenfunctions for this system. The ktICs are shown in blue while the
actual eigenfunctions are shown in red. It is illustrative to remember
that the tICA solution is trivial in this one-dimensional case. Even in
this simple case, the nonlinearity in the ktICs prove to be essential for
estimating the transfer operator’s eigenfunctions.

Figure 2. ktICA models for the Müller potential simulations are not as
well-behaved as the one-dimensional case. There were a few models
that assigned a nonpositive value for the likelihood of test data (white
regions above). However, the maximum likelihood model correctly
identified the top two eigenfunctions, which separate the three major
minima in the potential energy surface. These eigenfunctions are
depicted in the bottom two panels, with the red and blue color
corresponding to the value of the ktIC. The contour lines denote the
potential energy of the system.
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atoms were computed, which formed a vector of length 45.
Then, the distance between two conformations was the
Euclidean distance between these vectors.
For the likelihood calculation, we regularly sampled 5000

pairs of points separated by 6.25 ps to ensure that the
approximate likelihoods defined by the top two ktICs were
non-negative for most models. We should not expect this
approximate probability to accurately describe motions at 1.25
ps but would hope that as one looks further in time the
probability based on the top two eigenfunctions becomes more
accurate. Since alanine dipeptide has been the subject of many
computational studies, it is known that the slowest two
relaxations occur along the axes of the Ramachandran plot of
the two dihedral angles, ϕ and ψ. The most likely model
recapitulated these two slow processes (Figure 4).
3.4. Molecular Dynamics of Fip35 WW Domain. We

reanalyzed the two 100 μs MD trajectories of the Fip35 WW
domain performed by Shaw et al.32 The ktICA problem was
solved by analyzing 10 000 pairs of transitions separated by 50
ns from the first trajectory. (Note that because of the size of the
data set, the pairs of transitions overlapped one another. This is,
in a sense, the same as using the sliding window approach for
counting transitions when building an MSM, which is common
practice.) The Gaussian kernel defined in eq 32 was used with a
distance metric defined on the protein’s contact map. Each
conformation was represented as a 528-element vector of
intramolecular residue−residue distances. Where all pairwise
distances were tracked between residues that were at least three
amino acids away from each other. The distance between a pair
of residues was computed by taking the distance between the
two closest heavy atoms in the respective residues. The
likelihood defined by the slowest ktIC alone was evaluated on

1000 pairs of transitions separated by 500 ns. This time was
long enough to assign non-negative likelihoods to a majority of
the models we tested.
The slowest eigenfunctions of the transfer operator for the

WW domain are not known, but for the maximum likelihood
model, the slowest ktIC is physically reasonable as it separated
folded and unfolded states in the simulation (Figure 5).
Additionally, the ktIC had a corresponding time scale of 4.4 μs,
which is consistent with previous analysis of this data set.4,27,32

4. CONCLUSIONS
Though the tICA method has proven to be remarkably
successful for building state decompositions for MSM
analysis,22,28,49,50 its solutions are limited because they are
constrained to be linear functions of the input coordinates. For
this reason, the extension to nonlinear functions by using the
kernel trick represents a substantial improvement that allows
ktICA to provide estimates of the transfer operator’s
eigenfunctions directly, without the use of an MSM. We have
shown here that the method can accurately calculate the
slowest eigenprocesses of simple systems but admit that there is
still work to be done before it can be routinely used for
analyzing arbitrarily complex dynamics. Computationally, the
matrices in eq 29 scale with the amount of data used, which
means that as the systems become larger and more complicated
and more data is needed, the eigenvalue problem will become
increasingly difficult to solve. However, this problem is not
unique to ktICA and, in fact, is ingrained in all kernel learning
methods. For this reason, we expect significant improvements
to be made rapidly as these methods have been extensively
studied in machine learning.

Figure 3. Three models with σ = 0.5 but varying η values are depicted
above. These results illustrate the necessity of using regularization.
When η is too small (top), the solutions focus on only a few points in
the data set that are not sampled heavily, while when it is too large, the
solutions are distorted (bottom). Fortunately, the likelihood based
model selection criterion picks an intermediate value of η (middle)
whose ktICs are better estimates of the actual eigenfunctions.

Figure 4. As in the one-dimensional case, there are several models that
are very good according to the cross-validation scores, while models
with small values of σ and η perform poorly. Alanine dipeptide has
been studied extensively, and it is known that the slowest two
relaxations occur along the axes of the Ramachandran plot. The
projection of the test data set into these axes shows that the top two
ktICs correctly identify the slow motions in the alanine dipeptide
simulations.
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