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Neonatology has experienced a significant reduction in mortality rates of the preterm

population and critically ill infants over the last few decades. Now, the emphasis

is directed toward improving long-term neurodevelopmental outcomes and quality

of life. Brain-focused care has emerged as a necessity. The creation of neonatal

neurocritical care units, or Neuro-NICUs, provides strategies to reduce brain injury

using standardized clinical protocols, methodologies, and provider education and

training. Bedside neuromonitoring has dramatically improved our ability to provide

assessment of newborns at high risk. Non-invasive tools, such as continuous

electroencephalography (cEEG), amplitude-integrated electroencephalography (aEEG),

and near-infrared spectroscopy (NIRS), allow screening for seizures and continuous

evaluation of brain function and cerebral oxygenation at the bedside. Extended and

combined uses of these techniques, also described as multimodal monitoring, may allow

practitioners to better understand the physiology of critically ill neonates. Furthermore,

the rapid growth of technology in the Neuro-NICU, along with the increasing use

of telemedicine and artificial intelligence with improved data mining techniques and

machine learning (ML), has the potential to vastly improve decision-making processes

and positively impact outcomes. This article will cover the current applications of

neuromonitoring in the Neuro-NICU, recent advances, potential pitfalls, and future

perspectives in this field.

Keywords: amplitude-integrated electroencephalography, near-infrared spectroscopy, multimodal monitoring,

telemedicine, artificial intelligence, machine learning

INTRODUCTION

Despite recent breakthroughs in perinatal care, impaired outcomes in newborns at high risk for
brain injury remain common, posing a challenge in neonatal care and public health (1, 2).

Neonatal encephalopathy (NE) and perinatal stroke in term infants, as well as the repercussions
of germinal matrix-intraventricular hemorrhage (IVH) and white matter injury (WMI) in
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extremely low birth weight preterm infants, are themost frequent
illnesses. Encephalopathy and seizures may also occur due to
metabolic and uncommon genetic disorders. All these infants are
at high risk of developing neurological impairment, including
cerebral palsy, cognitive delay, epilepsy, and other neurological
disabilities (3).

No single intervention can reduce newborn brain injury
because of the complex interactions between pathological
processes, such as inflammation, oxidative stress, developmental
trajectory, genetic susceptibility, and environmental influence.
However, new approaches focusing on early diagnosis of brain
injury together with neuroprotective strategies may improve
outcomes. This philosophy has motivated the creation of the
neonatal neurocritical intensive care unit (Neuro-NICU) model
(4). One of the critical approaches of a Neuro-NICU is
continuous brain monitoring, which has been increasingly used
to assess brain health in neonates. Continuous EEG (cEEG),
amplitude-integrated electroencephalography (aEEG), and near-
infrared spectroscopy (NIRS) are non-invasive techniques used
at the bedside to evaluate brain function, screen for seizures, and
measure regional tissue oxygenation.

The rapid advancement of technology in the NICU may
combine the increasing use of telemedicine and artificial
intelligence to potentially improve decision-making processes
and impact patient outcomes (5, 6). Using these techniques in
an integrated manner, also known as multimodal monitoring,
may allow practitioners to better understand the physiological
processes occurring in critically ill neonates (7). This article
will discuss the current applications of neuromonitoring and
recent advancements, potential pitfalls, and future perspectives
in this field.

NEONATAL BRAIN INJURY

Gestational age continues to be the most critical factor in
determining the long-term effects of brain injury, which is
complex and multifactorial (8). WMI is the most common type
of brain injury in preterm newborns, and it can be found in up to
50% of infants born with very low birth weight (9, 10). However,
the spectrum of periventricular WMI has shifted from the severe
and commonly cystic lesions toward a milder pattern of WMI
as a result of improvements in neonatal care (11). In extremely
preterm population, the incidence of all grades of IVH ranges
from 31 to 36%, while severe IVH has an incidence between 10
and 17% (12–14). Although brain injury is not always the primary
event in the life of a preterm infant, the consequences of preterm
birth and associated comorbidities have a significant impact on
brain development.

In term infants, perinatal asphyxia and hypoxic-ischemic
encephalopathy (HIE) represent themost common cause of brain
injury and disability, with an incidence ranging from 1 to 2
per 1,000 live births in high-income countries and significantly
higher in low-resource settings (15, 16). Despite being commonly
under-diagnosed in the NICU, perinatal stroke has an incidence
of approximately 2.5 per 1,000 live births. It is the second most

common cause of neonatal seizures and the most common cause
of childhood hemiplegia (17).

STRATEGIES FOR NEUROPROTECTION
AND THE NEURO-NICU CONCEPT

Following decades of concentrated efforts to improve neonatal
intensive care and newborn survival, the focus has shifted to
examining the long-term outcomes in this population.

As the standard treatment for infants with HIE, cooling is a
significant advance in the field and has effectively reduced the
combined risk of death or disability (18, 19). However, there are
also several different neurological diseases present throughout
the neonatal period, in which early recognition and diagnosis
may have a significant impact on disease progression.

The interdisciplinary approach to newborn brain injury care is
not new, with numerous units collaborating closely with pediatric
neurologists, neurosurgeons, and other professionals. However,
the introduction of therapeutic hypothermia represented a
paradigm shift that required a concerted approach to identifying
and managing patients with NE. The University of California,
San Francisco (UCSF) was the first unit in the United States
to establish a neonatal neurointensive care nursery (4). This
strategy has acquired significant popularity globally during the
last decade, with several teams describing their experience
establishing similar models of care (20–22).

The objective is to combine advances in neuromonitoring and
imaging with novel treatments to enhance neurodevelopmental
outcomes. Numerous patient subgroups were identified as
possibly benefiting from this therapy approach: term infants with
HIE and seizures, extremely low birth-weight preterm infants,
and newborns with congenital or uncommon neurological
disorders. Additionally, four strategies were developed
during the creation of Neuro-NICU programs: (i) infant
co-management; (ii) standardized protocols and care bundles;
(iii) wider neuromonitoring and neuroimaging utilization; and
(iv) establishment of training programs (23–25).

THE EXISTING NEUROMONITORING
TOOLS IN THE NICU

aEEG and cEEG
The use of aEEG represents a non-invasive, bedside, and
simplified method of continuous brain monitoring, mainly
accessed by the neonatologist, which has been increasingly used
to assess brain function. Similar to cEEG, it records differences
in electrical potentials and changes in electrical activity displayed
over time. Then, after being filtered for frequency, the activity is
time-compressed, rectified, smoothed, and displayed in a 6 cm/h
chart semi-logarithmically.

Compared with the cEEG, the aEEG has the advantage of
being more straightforward and quicker to apply. It can be
used to evaluate the background activity, sleep-wake cycling, and
seizure screening in critically ill neonates as a continuous bedside
monitor (26–31).
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Persistent pathological background activity and absence of
sleep-wake cycling in the first days/weeks of life were associated
with higher risk of neurological impairment at 2 years of age in
infants with HIE and the preterm population (28, 32–34). On
the other hand, the presence of continuous background activity
and sleep-wake cycling within the first postnatal week has been
associated with a good neurodevelopmental outcome (33).

Klebermass et al. study evaluated 143 preterm infants with
gestational age below 30 weeks during the first 2 weeks of
life. The aEEG was classified into a graded score according to
background activity, appearance of sleep-wake cycling, seizure
activity and correlated with neurological outcomes at 3 years
of age. Specificity and sensitivity were 95 and 83% respectively
in aEEG findings in the second week of life and were superior
compared to cranial ultrasound findings (34).

The neonatal period, particularly the first week after birth, is
the most susceptible time of human life for seizure development.
Seizures are commonly related to acute brain injury, are
associated with increased mortality and impairment, and may
constitute a neurological emergency, making monitoring and
accurate seizure identification critical components of newborn
intensive care management (35–37). Higher seizure burden in
the neonatal period is commonly associated with abnormal
neurological outcomes (38). A clinical trial conducted by
Srinivasakumar et al. compared newborns with HIE treated for
electrographic seizures with newborns treated only for clinical
seizures. The authors found that the treatment of electrographic
seizures reduced the seizure burden, severity of MRI findings and
improved neurodevelopmental outcomes (39).

Several studies have shown that using two-channel aEEG
associated with raw EEG interpretation improves seizure
detection accuracy (26, 35–37, 40–44). Seizure activity is
characterized by a sudden change on aEEG background activity
as an abrupt rise in minimum and maximum amplitudes
correlated with an evolving, stereotypical, and rhythmic wave
pattern, with repeating forms such as spikes or sharp waves seen
in raw EEG, with a total duration of at least ten seconds (45).
The aEEG seizures are classified into (a) single seizures (SS): one
electrographic seizure per each epoch; (b) repetitive seizures (RS):
more than one electrographic seizure per epoch but less than one
electrographic seizure over a 10min period; (c) status epilepticus
(SE) in the neonate. SE is defined by: (a) continuous seizure
activity for at least 30min or (b) recurrent seizures for over 50%
of the recording time ranging from 1 to 3 h (42).

Figure 1 displays an example of seizures shown on two-
channel aEEG and raw EEG.

Other high-risk populations, such as infants born with
congenital heart diseases (CHD), stroke, metabolic disorders,
inborn errors of metabolism (IEM), cerebral malformations, and
congenital infections, may benefit from this screening tool (46–
51). Gunn et al. evaluated a large cohort of 150 newborn infants
undergoing cardiac surgery who underwent aEEG monitoring
in the perioperative period (prior to and during surgery, and
for 72 h postoperatively). Perioperative electrical seizures were
found in 30%, of whom 1/4 had any clinical correlation. Failure
to recover to a continuous background aEEG by 48 postoperative
hours was associated with impairment in all outcome domains

and abnormal aEEG at seven postoperative days was highly
associated with mortality (46).

The cEEG is a noninvasive procedure performed using
electrodes attached to the scalp surface in accordance
with the international 10–20 system (47) and is the gold
standard tool for seizure diagnosis in the NICU (48). The
American Clinical Neurophysiological Society (ACNS) has
published recommendations on the use of full-montage
electroencephalography (52). Although the idea of the Neuro-
NICU has been around for over a decade, the use of extended
cEEG is not widespread, with only between 35 and 67% of NICUs
reporting its use, indicating an implementation problem (18).

NIRS
NIRS is a non-invasive technique for monitoring regional tissue
oxygenation continuously at the bedside. It can be used as a
trend monitor in critically sick newborns to assess the balance
of tissue oxygen delivery and consumption, providing cerebral
and somatic oximetry readings and enabling early detection
of hemodynamic alterations (53). Near-infrared light emitted
from a light source on a sensor penetrates the infants’ skin and
tissue. It is partially absorbed by oxygenated and deoxygenated
hemoglobin before being reflected to a detector on the same
sensor. After that, a tissue saturation level (rSO2) is determined
based on arterial to venous blood (25:75) ratio and the balance of
oxygen delivery and consumption in the underlying tissue.

Regional cerebral oxygen saturation (rScO2) may be easily
measured with a sensor placed on the forehead, and readings
are verified against jugular venous saturations in newborns (54).
The interpretation of rScO2 readings requires consideration
of other factors that may impact cerebral blood flow and
oxygenation, including systemic oxygenation (SpO2), cardiac
output, anemia, carbon dioxide (CO2) tension, glucose levels, and
metabolic demand. In an extensive multi-center investigation
of the preterm population, normal rScO2 levels were shown to
range between 55 and 85% (55). Cerebral fractional tissue oxygen
extraction (cFTOE) represents the balance between oxygen
supply and consumption and is computed using the formula
cFTOE= (SpO2 – rScO2) / (SpO2) (56).

Sustaining rScO2 levels below 40–50% has been shown to
cause cellular, physiological, biochemical, and neuroradiographic
brain damage in animal models and infant studies. Hippocampal
histology revealed that hypoxic piglets exposed to rScO2 40%
for at least 30 mins showed mitochondrial damage and signs
of fragmented cellular structure (57). In a study of newborns
with hypoplastic left heart syndrome who underwent a Norwood
surgical procedure, those with rScO2 <45% for over 180
cumulative minutes had a higher risk of developing new or
progressive ischemic abnormalities on brain magnetic resonance
imaging (58).

In order to implement a NIRS neuromonitoring program, a
minimum rScO2 threshold and management protocol must be
established, so the healthcare team can provide interventions
to avoid long-term injury. Causes of abnormal cerebral oxygen
supply or demand need to be investigated, including hypocarbia,
hypotension, anemia, and low arterial saturation. High tissue
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FIGURE 1 | An example of seizures displayed on two-channel aEEG and raw EEG. Figure from the authors’ personal file.

oxygen demand in infants with seizures, pain, fever, or infections
may also decrease rScO2 values.

Several studies highlight the value of two-site NIRS
monitoring with brain and somatic measures. Common sites
for somatic monitoring include renal or mesenteric/splanchnic
regions. Renal regional oxygen saturation (rSrO2) values are
measured by sensor placement on the posterior flank below the
costal margin and above the iliac crest. rSrO2 values are sensitive
to compromise of systemic blood flow and usually are 10–15%
higher than cerebral saturation (59–61). Due to preservation
of the cerebral autoregulatory mechanism, hemodynamic
compromise typically results in an earlier reduction of somatic
oxygenation prior to changes in rScO2 (60). Mesenteric regional
saturations (mScO2) are significantly lower in preterm infants
and may fluctuate considerably from 32 to 82 percent (62). Due
to its higher variability and more challenging interpretation,
mScO2 is most commonly applied in research settings.

NIRS monitoring has been shown to be an effective
biomarker for early organ dysfunction in many conditions
occurring in neonates admitted to the NICU. Additionally,
early investigations associated NIRS results with worse short-
and long-term outcomes in severely ill infants (62, 63). NIRS
has been reported as a valuable technique for monitoring
patients following stage 1 palliation for hypoplastic left heart
syndrome (HLHS) and demonstrated to improve prediction of
neurodevelopmental outcomes at two years of age in newborns
with CHD (63, 64). Preoperatively, babies with HLHS who were
monitored with NIRS required less mechanical ventilation and

inspired nitrogen gas than a historical cohort who were not
followed with NIRS (65).

Similarly, in the preterm population, the SafeBoosC
consortium recently completed a phase II randomized controlled
trial. It examined extremely preterm infants during their
first 72 h of life and established the feasibility and efficacy of
implementing NIRS continuous monitoring in conjunction with
a dedicated treatment guideline (66). Compared to the control
group, infants in the NIRS-monitored group exhibited a reduced
prevalence of cerebral hypoxia or hyperoxia. Although the study
was not powered to detect differences in clinical outcomes, the
NIRS-monitored group also tended toward reduced mortality
and severe intraventricular hemorrhage.

Also, NIRS may be useful to verify the presence of a
hemodynamic significant patent ductus arteriosus (hsPDA). A
hsPDA contributes to low cerebral blood flow (CBF) during left
to right shunting early in transition when the left ventricle cannot
compensate (67). The renal oxygen saturation is decreased and
a higher variability is seen. Chock et al. (68) found that renal
saturation (rSrO2 < 66%) was associated with the presence
of an hsPDA and studies were able to detect an increase in
cerebral and renal saturation after successful treatment for PDA
closure (67). A systematic review conducted by Prescott et
al. concluded that NIRS could help clinicians identify hsPDAs
and provide information on organ perfusion that may guide
treatment decisions (67).

Previously, studies compared rScO2 and cFTOE findings
before and after drainage, in newborns with post hemorrhagic
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ventricular dilatation (PHVD). The authors concluded that
PHVD is associated with a significant decrease in rScO2 and
increase in cFTOE due to a decrease in cerebral perfusion.
Therefore, NIRS could potentially be a useful biomarker to
determine the optimal time point for ventricular decompression
(69, 70).

NIRS monitoring has been shown to be useful to evaluate
tissue oxygenation in a set of clinical scenarios in the NICU.
However, more extensive studies are needed to establish that
NIRS monitoring effectively improves outcomes.

MULTIMODAL BRAIN MONITORING

According to research in adults and children, multimodal
monitoring facilitates the diagnosis and prevention of
neurological repercussions in the setting of hemodynamic
compromise (71). Simultaneous use of NIRS and aEEG may aid
in comprehending the physiology of hemodynamic changes and
the risk of cerebral injury.

Several studies described their correlations, especially in HIE.
For cooled infants, an abnormal aEEG at 48–72 h and higher
tissue oxygenation measured by NIRS at 12–24 h of life is
associated with adverse outcomes (62, 72–74). In a cohort of 39
term infants with HIE, Lemmers et al. investigated the predictive
value of dual-use of aEEG and NIRS. Combining NIRS and aEEG
data enhanced the positive predictive value (PPV) (NIRS 67 %
and aEEG 62% vs. combined 91%) and negative predictive value
(NPV) (73 and 100% vs. 100%) at 12–18 h of age when compared
to either modality alone (62).

Other conditions may also benefit from this combined
approach (74). Our group recently published a case review study
for this integrated approach in four clinical scenarios, including
HIE, hemodynamic instability, patent ductus arteriosus, and
seizures (7). Several studies also showed that brain monitoring
with aEEG and NIRS is feasible in the delivery room and may
provide information on newborns’ condition during immediate
transition and resuscitation (75, 76). In the Neu-Prem Trial,
Katheria et al. evaluated 127 newborns under 32 weeks of
gestational age to determine whether NIRS and aEEG can predict
infants at risk for IVH and death in the first 72 h of life.
The aEEG was not predictive of IVH or death, but NIRS may
be used to predict severe IVH and early death (77). Those
127 evaluated newborns were followed out between 22 and 26
months of corrected age in the follow up clinic to assess for
neurodevelopmental impairment or death. Authors found that
increased duration of hypoxia in infants born under 32 weeks was
associated with neurodevelopmental impairment or death (78).

A published recommended neuromonitoring approach for
newborns in the NICU is displayed in Table 1. The duration of
each brain monitoring approach should be related to periods of
higher risk for seizures and infants’ clinical instability.

A multimodal approach can combine these dual brain
monitoring techniques with other vital signs and clinical
information to study systemic and cerebral hemodynamics
and electrographic findings early after birth, allowing a better
understanding of the critically ill infant physiology.

TABLE 1 | Neuro-NICU eligibility and recommended neuromonitoring [adapted

from Van Meurs et al. (20)].

Diagnosis Monitoring

1. HIE/cooling aEEG, cEEG

2. Seizures aEEG and cEEG

3. ECMO/pre-ECMO NIRS and consider aEEG

4. Grade III/IV IVH or PHVD aEEG

5. Critical/unstable NIRS and consider aEEG

6. Preterms <28 weeks aEEG and NIRS

7. CNS anomalies cEEG cEEG and/or aEEG

8. Metabolic disease cEEG and/or aEEG

9. Cyanotic CHD NIRS

10. CNS infection cEEG and/or aEEG

11. Symptomatic PDA NIRS

12. ALTE/BRUE aEEG

13. Hyperbilirubinemia > 20 or hemolytic process NIRS and consider aEEG

ALTE, apparent life-threatening event; BRUE, brief resolved unexplained events; CNS,

central nervous system; ECMO, extracorporeal membrane oxygenation; PDA, patent

ductus arteriosus.

A high degree of illness severity, along with limited handling
to prevent oscillations in cerebral blood flow, may make
multimodal monitoring challenging to apply. Additionally, the
small head size, delicate skin, ventilatory support, and high
ambient incubator humidity may complicate sensor placement.
However, Deshpande et al. presented an early study using
a multimodal strategy to examine systemic and cerebral
hemodynamics and electrical changes shortly after birth using
echocardiogram (ECHO), NIRS, and aEEG to identify infants
at risk of IVH. This study established that this is a safe and
well-tolerated technique associated with a low risk of adverse
events (79).

Physiologic information collected by multimodal monitoring
may enable the development of neuroprotective strategies.
Algorithms for treatment may be based on measures for
preventing cerebral hypo- and hyperperfusion. Such an approach
may include oxygen delivery modification, ventilatory changes to
avoid hypo- or hypercarbia, increasing cardiac output by volume
expansion or inotropes, keeping hemoglobin concentrations
within a particular range, and PDA closure. Figures 2A,B

represent examples of a multimodal approach combining
different parameters.

Existing technology for brain monitoring in the NICU,
mainly multimodal approach, provides a substantial quantity
of data. Data must be stored in a suitable and safe system,
with efficient processing and can be integrated with another
system or equipment. The improvement of technological capacity
generates a number of research possibilities and new perspectives
to potentially improve the quality of care.

DATA INTEGRATION AND PROCESSING

Commercially distributed aEEG/EEG and NIRS monitors are
designed primarily for clinical application rather than long-
term storage and analysis. Data collection is usually a
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FIGURE 2 | (A) Example of a multimodal approach combining aEEG, NIRS, pulse oximetry, heart rate, and temperature findings in real-time. During the seizure

episode noted on aEEG (arrow), a decrease in rScO2 was observed together with significant fluctuations in pulse oximetry and heart rate. Figure from the authors’

personal file. (B) Example of a multimodal approach combining aEEG, NIRS, pulse oximetry, heart rate findings in real-time in proprietary software developed using a

specific programming language (Python). Correlation between aEEG (continuous low voltage pattern) and low rScO2 is observed. Figure from the authors’ personal file.

secondary issue that requires extra planning, infrastructure, and
financial resources.

The basics of data capture systems include the following:
(a) synchronized gathering of vital signs, (b) precise
time/date information, and (c) data loss prevention.
Whatever technique is chosen, data is essential and
should be collected at the greatest sampling rate feasible
(80, 81).

Direct Download From a Local Device
The easiest method of obtaining data from brain monitoring
equipment is by direct download. While this is the simplest
method, it does have several disadvantages. Data is only
accessible following the conclusion of a monitoring session. Data
loss can occur as a consequence of power failure or unintentional
deletion from the device. The limited memory capacity of each
device may result in data files being overwritten if not retrieved

Frontiers in Pediatrics | www.frontiersin.org 6 March 2022 | Volume 9 | Article 755144

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Variane et al. Neuromonitoring in Newborns

on a regular basis. Second, this technique allows collecting a
single monitoring data, and other vital signs are commonly
omitted from the file. As a result, the data collected in thismethod
must be externally reconciled with other vital signs data. Finally,
the timestamp for this monitor data comes from the monitor’s
clock, which is frequently not updated for daylight savings time
or is reset in a power failure.

Data Collection Through a Central Hub and
Central Server
A central computer is required to coordinate the synchronized
acquisition of physiological signals from numerous sources.
Typically, a central-hub method involves placing a laptop
computer at the patient’s bedside directly linked to the patient
monitors (including aEEG/EEG, NIRS, and vital signs monitor),
the ventilator, or other equipment. This technique is helpful for
time syncing because the computer supplies the timing data,
and the program writes the data straight to disk, ensuring that
previously recorded data is not lost. Additionally, some software
packages offer integrated analytic tools and can serve as an
accessible open path for inexperienced investigators. The primary
downside of the central-hub model is that it typically needs extra
hardware (laptops, computer, cabling) or software purchases and
may impose limits due to device compatibility limitations.

The most commonly used protocols for data export and
integration are Lab Stream Layer (LSL)—for EEG equipment—
and Health Level Seven (HL7)—widely used in medical devices
(e.g., vital signs monitor, electronic records, ventilators) (82, 83).
Many other protocols are used by different devices, some unique
according to the model and manufacturer. For this reason,
when gathering data from multiple types of equipment, a tool
to convert each data input into a structured format is needed.
Programing languages like Python and Matlab are commonly
used for the development of these tools (84–86).

A variation on this data collection approach is the central-
server concept, in which separate monitoring devices are linked
to a centrally placed server through a network. The technique
retains the benefit of synchronized timing and adds the use of
primarily automatic capture, requiring minimum human input
to start and stop the recording and eliminating the requirement
for a laptop at each patient’s bedside. The main drawback is
that it is the most complicated infrastructure option, frequently
necessitating substantial capital expenditure.

Figure 3 represents an overview of data collection and
integration for multimodal monitoring in the NICU.

ARTIFICIAL INTELLIGENCE AND
MACHINE LEARNING

With the advancement in computing power, data storage,
and processing capabilities, artificial intelligence (AI) enables
computer systems to perform activities that would typically
require human intelligence and that people deem “clever.” AI is
a term that refers to a system that is endowed with human-like
intellectual processes, such as the capacity to reason, discover
meaning, generalize, and learn from prior experience (87).

AI has been used for drug development, individualized
diagnostics and treatments, molecular biology, bioinformatics,
and medical imaging in healthcare. Additionally, AI systems can
decipher illness patterns by scrutinizing and analyzing enormous
volumes of data in electronic medical records.

Machine learning (ML) is a subfield of artificial intelligence in
which computer algorithms learn to build predictivemodels from
a given dataset. The main difference between ML and classical
statistics is that ML aims to create the best possible predictive
model from a training dataset, leveraging a test dataset to validate
its results. Statistics aims to infer and validate relationships
between variables on the whole dataset and are not optimized for
its predictive capabilities. There are two broad categories of ML
frameworks: supervised and unsupervised.

Supervised Machine Learning
Supervised ML aims to create an algorithm capable of predicting
an individual output given a specific input. In other words, the
machine is shown instances of both input (x) and output (y),
such that y= f(x). ML is dependent on large data sets containing
several examples of how one or more input variables are related
to a particular output. The expectation is that the resulting
algorithm will make accurate predictions when confronted with
new and previously unseen data. When big datasets are used
to train and evaluate the system, supervised learning needs a
significant amount of human labor (83).

Supervised learning can be used to predict both continuous
and discrete values. For example, the expected heart rate of a
patient in the next hour of monitoring is a continuous numerical
value, and regression models should be used for prediction. In
contrast, when building an automated seizure detection tool, the
algorithm must learn from a binary input, either if a seizure is
detected or not. For that kind of issue, classification models can
be applied.

The choice of the model to apply to the desired task is a
crucial step in developing predictive algorithms. For supervised
learning, dozens of different models can be applied, including
decision trees and deep learning, both widely used in the ICU
for seizure detection, mortality prediction, phenotypic discovery,
and disease prediction (88, 89).

Unsupervised Machine Learning
No definitions are provided to the algorithm on how to process
the data in this method of ML. Thus, the computer is expected
to extract information from a vast set of unclassified data using
either a set of rules or an unknown output. Given the absence
of label information, a significant problem for the investigator
when evaluating an unsupervised algorithm is determining
the usefulness of the findings or determining whether the
desired output was obtained. In addition, explainability may
be challenging. However, unsupervised algorithms may be
sufficiently efficient in exploratory attempts to comprehend vast
sets of data. Clustering, anomaly detection, and dimensionality
reduction are the most often utilized approaches (88).

Clustering algorithms are assigned to identify or partition
huge data sets into subgroups and patterns with common
characteristics. The algorithm is tasked with detecting unusual
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FIGURE 3 | Overview of data collection and integration for multimodal monitoring in the NICU. Data from vital signs, EEG/aEEG, and NIRS devices can be integrated

into a central hub. This data can be used for machine learning algorithms using continuous monitoring data.

patterns in the dataset, such as outliers. When analyzing data
with a large number of features, or dimensions, dimensionality
reduction is advantageous. These algorithms may simplify the
data by summarizing its main features and making it more
understandable to humans and other ML algorithms. A machine
learning pipeline is shown in Figure 4.

AI APPLICATIONS IN CRITICAL CARE

There are multiple opportunities to implement AI in the medical
context. Massive quantities of data contained in electronic
medical records have been analyzed using unsupervised ML
algorithms. Models have been created to extract critical
information from medical files and identify individuals with
a high cost of care (89). Supervised ML methods have
demonstrated their value in radiography and histopathology due
to their ability for automatic pattern detection of pictures (90).
ML has been extensively utilized in the disciplines of surgery,
particularly as it relates to robotics, cardiology, and cancer
research to categorize tumor types and growth rates (91, 92).

Although ML is still in its inception in the ICU, multiple
papers have already been published demonstrating its application
in the care of critically ill patients. Several researchers have
utilized massive population datasets to forecast duration of stay,
ICU readmission, and death rates, as well as the likelihood
of acquiring diseases such as sepsis or respiratory distress
syndrome (93–95). Several other studies used smaller clinical
and physiological datasets to help monitor patients receiving
ventilatory support (96).

AI IN THE NEONATAL ICU

The NICU is a place where life-altering decisions are constantly
made. Neonatologists collect data from various sources to create
a picture of a newborn’s status to guarantee they receive the
best medical treatment available. Highly trained professionals
utilize their judgment in conjunction with a continuous stream
of patient data to ensure that as many infants have the best
possible outcome. The use of AI could enhance the decision-
making process and lead to better outcomes. Below we describe
some applications of AI in the NICU.

Diagnosis of HIE
Clinical diagnosis of asphyxia involves analysis of arterial blood
gas and a standard neurological exam. Infants diagnosed with
moderate to severe HIE meet the entry criteria for cooling, but
new evidence show that neonates with mild HIE may also be
at risk for disability (97). Precise identification of populations at
high risk poses a clinical challenge in the field. A few approaches
using AI have been studied to address this issue.

O’Boyle et al. published a study validating potential
metabolites and evaluating their capacity to predict HIE
independently and combined with clinical data. Term neonates
with symptoms of perinatal asphyxia, with and without HIE,
and matched controls were recruited prospectively at birth from
two large centers. The study enrolled 511 infants, and by using
logistic regression modeling and ML approaches, the optimal set
of clinical and metabolite characteristics capable of predicting
the development of HIE was found (98). Fifteen of twenty-seven
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FIGURE 4 | Machine learning pipeline: (1) Data preparation is the step where modifications to the dataset are made to improve the final results. That includes

transforming, cleaning, and creating new features (feature engineering). In this step, the train-test data splitting can also be defined. (2) Model selection is the step

where the appropriate model is chosen. That can significantly vary according to the dataset characteristics (like size and dimensionality) and the target variable. (3)

(Continued)
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FIGURE 4 | Model configuration is the step in which all the parameters of the model must be set. (4) Model training is the step in which the machine finds the

best-fitting predictive model according to the train dataset and model parameters. (5) Model evaluation is the step in which the user will analyze the results, mainly the

train and test error of the generated predictive model.

potential metabolites revealed substantial changes in babies with
perinatal asphyxia or HIE. Lactic acid and alanine were the
significant metabolite predictors of HIE development, with an
area under the curve (AUC) of 0.96 when combined with clinical
data (95% CI, 0.92–0.95) (97).

EEG signal monitoring is known to be a valuable technique
for identifying possible biomarkers of HIE (94). Over the last
two decades, researchers throughout the world have developed a
range of signal processing techniques for automated analysis and
diagnosis of disease by examining aberrant activity using various
forms of EEG recordings (99–101).

Temko et al. investigated an automated grading system (AGS)
based on a multi-class linear classifier that graded short-term
EEG epochs and converted them to a long-term EEG grade using
a majority vote procedure (100). The AGS employed summary
measurements of two sub-signals derived from a quadratic time-
frequency distribution: amplitude modulation and instantaneous
frequency. When compared to human assessment of the EEG,
the four-grade AGS exhibited an accuracy of 83%. The features
calculated from the generated sub-signals were shown to be more
accurate in grading the EEG than measures based purely on the
EEG, and the addition of new sub-grades based on EEG states to
the AGS enhanced performance as well.

Utilizing the infant cry to diagnose asphyxia may present
a novel approach for developing an accessible diagnostic tool.
Previous studies have hypothesized that breathing difficulty
resulting from asphyxia alters the patterns in the cry waves of
affected infants, primarily attributed to the fact that speech and
breathing are controlled by the same underlying physiologic
process (102, 103).

Ubenwa is an application that uses voice recognition
algorithms to identify early indications of birth asphyxia in
a newborn’s cry. A machine-based learning model capable of
accurately classifying recordings of known asphyxiated children
reported an accuracy of 89% in a laboratory environment. In
2017, a prototype mobile application was developed based on this
concept with the potential to become a widely accessible solution
even in low-resource settings (104).

Automated Seizure Detection
Despite the availability of cEEG, reliable newborn seizure
diagnosis remains challenging in clinical practice. Since
1992, techniques for automatically detecting newborn
seizures in the EEG have been published (105). Significant
advancements in data acquisition techniques, along with
advances in computer technology, have substantially increased
the accuracy of automated seizure detection approaches, and
numerous research groups have developed and validated seizure
detection algorithms for the newborn population (37, 106).
The development of user-friendly ML-based software may
facilitate the integration of automated EEG technology into the

NICU, potentially increasing diagnostic accuracy and speed. A
few of these algorithms have been included into commercially
accessible EEG or aEEG systems (37, 106, 107).

The Efficacy of Intravenous Levetiracetam in Neonatal
Seizures trial (NEOLEV2) used Persyst, a commercially available
software, to evaluate participants’ cEEGs (108). The software
provided real-time seizure detection, which resulted in a higher
detection rate, but failed to alleviate neurologists’ burden,
requiring human assessment due to low accuracy. RiskSLIM is
a sparse linear integer machine with a high prediction accuracy
(AUC= 0.83; similar to other widely used ML algorithms) (108).

Lawrence et al. studied a cohort of 40 encephalopathic
infants for 72 h using a limited-channel aEEG and a software-
based seizure event detector. Offline evaluation of EEG data
was conducted independently. During an average of 68 h of
monitoring, twenty-five babies developed EEG seizures on a
limited channel aEEG, and 1,116 EEG seizures were detected
retrospectively. 615 (55%) of the seizures were recognized in
real-time by the seizure detection algorithm. Seizure detection
software accuracy increased with seizure duration, up to 73% for
seizures lasting more than 30 s and 87% for seizures lasting more
than 60 s. Seizure detection had a false-positive rate of 1 event
every 11 h of monitoring, resulting in a positive predictive value
(PPV) of 73% and a negative predictive value (NPV) of 99% (37).

In a large randomized controlled trial conducted in eight
centers in Europe, the diagnostic accuracy of an automated
seizure detection system named Algorithm for Neonatal Seizure
Recognition (ANSeR) was assessed. This study included 264
babies between the age of 36 and 44 weeks with or at high
risk of seizures requiring EEG monitoring. One arm of the
trial used cEEG plus ANSeR, connected to the EEG monitor
and displayed a real-time seizure likelihood trend. In contrast,
the other arm received only cEEG monitoring. Electrographic
seizures occurred in 25% of newborns in the algorithm group
compared to 29.2% in the non-algorithm group. Despite not
enhancing the identification of individual neonates with seizures,
the algorithm group correctly identified a greater proportion
of seizure hours when compared to the non-algorithm group
(109, 110).

There is a growing number of papers evaluating automated
seizure detection algorithms in the NICU. Studies from the last
five years are displayed in Table 2.

Prediction of Mortality
Numerous ML models have been reported in adult research,
including those that predict death in a variety of disease processes
(87, 88). However, there are much fewer AI models reported in
pediatrics and neonatology to date. A recent systematic review
included eleven studies examining the prediction accuracy of AI
models for newborn mortality. This research included a total of
1.26 million babies born between 22 weeks and term age. The
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TABLE 2 | List of studies using ML for automated seizure detection published in the last 5 years.

References Objective Study population Analyzed

parameters

Outcomes Conclusion

Ansari et al. (111) To describe a multi-stage classifier

method for enhancing an automated

EEG-based neonatal seizure detector.

71 Term Neonates with HIE

or suspicion of seizures

EEG-polygraphy

data

- The proposed post-processor (when

sensitivity threshold = 0.3) decreased FAR

by 64%, whereas the GDR was reduced

by 7%.

A significant improvement of a previously

developed automated neonatal seizure

detector was achieved by combining a

machine learning technique with the heuristic

algorithm.

- Identifying seizures lasting less than 30 s

remains the most challenging task of the

post-processor since it includes 26% of

true and 60% of false detections.

Ansari et al. (112) To improve the overall performance of

a previously developed multi-stage

neonatal seizure detector, particularly

by improving the performance of the

short seizure detections.

48 Neonates with HIE EEG-polygraphy

data

- Almost all seizures longer than 1min were

detected by both methods, while the short

seizures are still not entirely detected.

An adaptive learning method was proposed

to decrease the false alarm rate and increase

the positive predictive value of a previously

developed multi-stage neonatal seizure

detector, particularly for very short seizures

and false alarms.

- The number of false detections of very

short seizures (< 30 s) decreased by 50%

- The PPV of very short seizures also

increased from 41 to 59% by the

proposed method (higher reliability of the

alarms).

Ansari et al. (113) To use deep CNNs and random

forest to optimize feature selection

and classification automatically.

48 Neonates EEG recordings - AUC of the CNN and RF method is 8%

higher than the pure CNN with the fully

connected network (83 vs. 75%).

The main advantage of the proposed method

is that it does not require a hand-engineered

feature extraction process. Still, it

automatically extracts the required features

and optimizes them based on the training

data.

- CNN’s specificity was 5% lower, while the

averaged false alarm rate per hour is 0.04

better than those of the heuristic methods.

Bogaarts et al. (114) To gain insight into optimal training

set composition for age-independent

seizure detection and compare

classification performance, specific

properties of the classifiers

themselves.

39 Neonates with

post-conception age

ranging from 28 to 59

weeks / 39 adults

EEG recordings - With FBC, the amount of neonatal SVs

increased to 55%.

Adult and newborn patients can both benefit

from an age-independent SVM seizure

detection system. However, it is critical that

EEG data from each age group be utilized for

training the classifier.

- For newborn seizures detection, the

classifier trained only on adult EEG data

performed considerably worse than the

classifier trained on neonatal EEG data or

the one trained on both neonatal and adult

EEG data.

(Continued)

F
ro
n
tie
rs

in
P
e
d
ia
tric

s
|
w
w
w
.fro

n
tie
rsin

.o
rg

1
1

M
a
rc
h
2
0
2
2
|
V
o
lu
m
e
9
|A

rtic
le
7
5
5
1
4
4

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


V
a
ria

n
e
e
t
a
l.

N
e
u
ro
m
o
n
ito

rin
g
in

N
e
w
b
o
rn
s

TABLE 2 | Continued

References Objective Study population Analyzed

parameters

Outcomes Conclusion

Mathieson et al. (115) To describe a novel

neurophysiology-based performance

analysis of automated seizure

detection algorithms for neonatal EEG

to characterize the features of

detected and undetected seizures

and the causes of false detections to

identify areas for algorithmic

improvement.

20 Term neonates EEG recordings

and ANSeR SDA

- 421 seizures were initially detected in a

total of 1,262.9 h of EEG (mean 63.1).

The analysis presented has elucidated several

aspects of the performance of the SDA from

a neurophysiological perspective. The

analysis of the ANSeR algorithm highlighted

many areas for possible improvement, which

have since resulted in increased performance

in the ANSeR algorithm’s beta version.

- Clinical neurophysiologists confirmed

seizures in 419 of the 421 events

annotated by experienced

electroencephalographers (99.76%).

- More seizures were detected at lower

thresholds (higher sensitivity), but the false

detection rate is also higher.

- False detection rates between seizure

and non-seizure neonates were not

statistically different at any of the three

thresholds tested (threshold 0.4, p =

0.579, threshold 0.5, p = 0.280, and

threshold 0.6, p = 0.218).

- For all three thresholds tested, 8/10 of

the seizure features were a significant

predictor of automated seizure detection.

- The AUCs (95% CI) for the multivariate

model at all 3 ANSeR sensitivity thresholds

was significantly better (threshold 0.4 p <

0.001, threshold 0.5 p < 0.001, threshold

0.6 p = 0.023) than the highest AUC in the

corresponding univariate analysis (seizure

duration).

Mathieson et al. (116) To validate the performance of the

neonatal SDA on a more extensive

database of unseen, unedited,

continuous, multi-channel EEG data

from 70 term newborns collected at

two sites

70 Term neonates EEG recordings

and SDA

- There is variability in seizure detection

and false detection rates across babies.

The potential of the SDA to support clinical

decisions regarding AED administration was

shown in this study. The study has validated

a neonatal SDA on a large EEG dataset and

demonstrated that it achieves a clinically

useful level of seizure detection with

acceptable false detection rates.

- The highest performing threshold varies

depending on the parameter of interest.

(Continued)
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TABLE 2 | Continued

References Objective Study population Analyzed

parameters

Outcomes Conclusion

- There is a trade-off between the number

of seizure and non-seizure babies

detected depending on the SDA sensitivity

threshold.

- The best performing SDA sensitivity

threshold was at 0.8 (30/35 seizure babies

identified, 31/35 non-seizure babies

identified).

- The maximal level of agreement was at a

sensitivity threshold of 0.4.

- The median AUC for the validation study,

estimated on neonates with seizures, was

0.945. The mean AUC was 0.933.

Mathieson et al. (117) To evaluate the morphology of

seizures in newborns before and after

phenobarbital treatment and assess

the influence of any variations on

automated seizure detection rates.

18 Term neonates EEG recordings - No significant differences between

groups were found in seizure duration,

rhythmicity, frequency variability (over the

whole seizure), background EEG grade,

seizure waveform morphology at the start

or peak of the seizure, or seizure

waveform morphology change from start

to a peak of a seizure.

Phenobarbital reduces the amplitude and

propagation of seizures, but ANSeR

performance is unaffected by these changes.

- The seizure detection rates (sensitivity

threshold 0.3) were not significantly

different, with a median detection rate of

77% for pre-phenobarbital seizures and a

73% detection rate for post-phenobarbital

seizures.

Temko et al. (118) To propose a probabilistic framework

for semi-supervised adaptation of a

generic patient-independent neonatal

seizure detector.

18 Full-term neonates Continuous

neonatal EEG

recordings

The Oracle patient-dependent system’s

performance, patient-dependent

PD-GMM is 97.51 and 86.33% for AUC

and AUC90, respectively.

A combination of patient adaptive generative

and patient independent discriminative

classifiers has improved the detection of

neonatal seizures throughout long EEG

recordings. More accurate detection comes

from the different nature of the classification

approaches and the real-time incorporation

of patient-specific data.

- The patient adaptive GMM system

(PA-GMM) provides a performance that

improves over its patient-independent

GMM counterpart (PI-GMM) _ 96.91 vs.

95.70% for AUC, and 82.6 vs. 78.4% for

AUC90.
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TABLE 2 | Continued

References Objective Study population Analyzed

parameters

Outcomes Conclusion

Tapani et al. (119) To estimate several features based on

the SNLEO and use machine learning

to optimize the SC method.

79 Term neonates with

multiple etiologies.

Continuous

multi-channel EEG

recordings

- SNLEO features alone resulted in a

median AUC of 0.963 (IQR 0.919–0.985),

significantly higher than the original

SVM-based method (p = 0.024).

By using SNLEO features adapted from the

SC technique, the performance of an

SVM-based neonatal EEG seizure detector is

significantly improved.

- The SNLEO method was significantly

improved by incorporating a selected

number of features from the SVM-based

detector (p = 0.002). Median AUC using

this feature set was 0.981 (IQR

0.942–0.994).

Tapani et al. (120) To develop methods for detecting the

non-stationary periodic

characteristics of EEG seizures by

adapting estimates of the correlation

both in the time SC and

time-frequency domain TFC.

79 Term neonates. EEG recordings - The proposed measures were very

discriminative in detecting seizures

(median AUCSC: 0.933).

The suggested SDA surpasses their

implementation of leading techniques across

all concatenated EEG recordings. There is

still room for the development of features for

neonatal SDAs, emphasizing time-varying

methods.

- When applied to multi-channel

recordings, the resulting SDA achieved a

median AUC of 0.988 compared to

consensus annotations, outperformed two

state-of-the-art SDAs (p = 0.001), and

was non-inferior to the human expert in

73/79 of newborns.

Stevenson et al. (121) To combine two recently developed

NSDAs, including the hybrid algorithm

combining the feature with the output

of the CNN using a kernel SVM, for

improvement of detection

performance.

79 Neonates EEG recordings - Increasing the minimum seizure duration

from 10 to 30 s provides the most

significant increase in performance with

the highest SDR and lowest FD/h.

Automated approaches for detecting

newborn EEG seizures are accurate, possibly

offering physicians in the NICU with reliable

interpretations.

- The area under the receiver operator

characteristic of the NSDA was 0.952

compared to the expert consensus

annotation (95% CI: 0.0927–0.971).

- The inter-observer agreement (IOA) of

seizure identification was not significantly

different between the NSDA and human

analysis and was further improved by

increasing the minimum seizure length

from 10 s to 30 s.
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TABLE 2 | Continued

References Objective Study population Analyzed

parameters

Outcomes Conclusion

Pavel et al. (110) To study the ANSeR algorithm’s

real-time performance in a

multi-center study by comparing

diagnostic accuracy to identify

electrographic seizures with and

without the use of ANSeR as a

bedside support tool for clinicians.

258 Neonates between the

correct gestational age of

36 and 44 weeks

EEG recordings

and ANSeR

- The primary outcome measure of

diagnostic accuracy (sensitivity, specificity,

and false detection rate) was not

statistically different between the two

groups for detecting an infant with

seizures.

Although all participating hospitals were

experienced in neonatal EEG and the clinical

teams were generally comfortable

interpreting the aEEG or cEEG, the support

provided by the ANSeR algorithm still had a

considerable effect on the seizure recognition

rate. The study suggests that the benefit

provided by the ANSeR algorithm might be

more significant if it was made available to

centers with less experience of interpreting

neonatal EEG at the cot side.

- The percentage of seizure hours

identified was higher in the algorithm

group (177 [66.0%; 95% CI 53.8–77.3] vs.

177 [45.3%; 34.5–58.3]; difference 20·8%

[3.6–37.1]).

- The false detection rate on the seizure

record form did not differ between the

groups.

- No significant differences were found

between the groups regarding the

secondary outcomes of seizure

characteristics (total seizure burden,

maximum hourly seizure burden, and

median seizure duration) and the

percentage of neonates with seizures

given at least one inappropriate antiseizure

medication.

FAR, false alarm rate; GDR, good detection rate; PPV, positive predictive value; CNN, convolutional neural networks; RF, random forest; FBC, feature baseline correction; SVs, support vector; SVM, support vector machine; ANSeR,

algorithm for neonatal seizure recognition; SDA, seizure detection algorithm; AUC, area under the curve; AED, antiepileptic drug; GMM, Gaussian mixture model; SNLEO, smoothed non-linear energy operator; SC, spike correlation;

TFC, time-frequency correlation; NSDAs, neonatal EEG seizure detection algorithms; SDR, seizure detection rate; FD/h, false detections per hour.
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mean AUC ranged from 58.3 to 97.0 percent in this review,
indicating their capacity to predict neonatal death. The most
common features used in the predicting models are birth weight,
gestational age and APGAR scores. Other standard features
include pH, blood pressure, use of prenatal steroids, and multiple
births (113).

Early Recognition of Sepsis
Sepsis is a leading cause of newborn mortality. The commercially
available “HeRO” monitor analyzes ECG data from current
bedside monitors for reduced heart rate variability and brief
decelerations associated with sepsis and transforms them to a
score (the HRC index or HeRO score). This score represents
the chance of a patient having clinical deterioration due
to sepsis within 24 h. Displaying the HeRO score reduced
mortality by more than 20% in a randomized study of 3003
very low birth-weight babies. Current research attempts to
integrate respiratory and heart rate data to enhance ICU
care (122).

Predicting Extubation Failure
Given the independent association between mechanical
ventilation and significant unfavorable outcomes, efforts
should be taken to restrict its duration. However, existing
methods for identifying extubation readiness are ineffective,
and a large proportion of newborns fail extubation and
require reintubation, a procedure that may result in
increased morbidity. Numerous objective metrics have
been proposed to improve the definition of the ideal time
for extubation, but none have been demonstrated to be
clinically helpful.

A recent multi-center diagnostic study investigated data
from 259 newborns at five neonatal intensive care units over
5 years as part of the prospective Automated Prediction of
Extubation Readiness (APEX) project (123). The study included
274 intubated neonates less than 1,250 g who were considered
ready for extubation and had ET-CPAP before extubation.
Cardiorespiratory signals were recorded electronically for 5
mins before extubation, and signs of clinical instability were
monitored (124).

The data imply that extremely preterm newborns frequently
exhibit clinical instability during ET-CPAP and that clinical
event combinations were insufficient to define Spontaneous
Breathing Trials (SBT’s) accurately. As a result, the authors
concluded SBTs might offer minimal value to the evaluation of
extubation readiness.

Predicting Gestational Age
Particularly in low-middle income countries, the last
menstrual period is frequently considered an inaccurate
estimate of gestational age at birth (125). Using AI
for prediction might be an interesting approach to
minimize this effect. Models to evaluate pregnancy
status were built to predict gestational age when the last
menstrual period and fetal anatomical evaluation were not
accessible (126).

A recent study involving 1318 newborns from Africa and
Asia found that applying ML to birth weight and new-born
metabolomic screening data can improve postnatal prediction
of gestational age (GA) at birth. 85.21 % (95% CI 72.31–94.65)
of GAs were properly predicted to within one week. The model
also showed high sensitivity (100%) and specificity (92.6%) for
differentiation of preterm and term birth (127). Meenakshi et al.
(128) showed good results of a model to automatically estimate
the GA at third trimester by using biparietal diameter and
kidney length.

Additional ML approaches were also studied in the NICU,
including automatic detection of sleep-wake-cycling for
prediction of neurodevelopmental outcomes (129–132).

TELEMEDICINE

Telemedicine is defined by the World Health Organization
(WHO) as “the delivery of health care services by all
health care professionals using information and communication
technologies for the exchange of valid information for the
diagnosis, treatment, and prevention of disease and injury,
research and evaluation, and continuing education of health care
professionals” (133). Additionally, four critical components of
telemedicine were identified: (i) provision of clinical support;
(ii) purpose to overcome geographic barriers; (iii) the use
of a variety of information and communication technology;
and (iv) the objective of improving population health (134).
This model represents the natural growth of healthcare in
the digital era, reducing distances between distant places,
increasing access and reach of specific techniques, and decreasing
structural costs. In education, it can be used to facilitate learning
through live interactive audiovisual connections, live video
broadcast, or viewing online-stored educational materials (133–
136).

Telemedicine has the potential to play an essential role in
providing specialized care to remote populations with limited
resources. Centralized systems may communicate in real-
time with a large number of centers, leveraging educational
activities, consulting, and monitoring to improve service quality.
Protecting Brains and Saving Futures (PBSF) is a Brazilian
program that has already connected 35 hospitals in the country.
Neonates undergoing EEG or aEEG and NIRS monitoring are
assisted by a remote team in amonitoring center, using encrypted
data to ensure the privacy of sent information. This approach
may also be used in research contexts, where studies done
in low-middle income countries (LMIC) might benefit from
teams’ assistance in developed countries, potentially improving
the quality of data obtained substantially. The Prevention of
Epilepsy by Reducing Neonatal Encephalopathy (PREVENT)
study (NCT04054453) used a similar method to monitor and
collect data from newborns in three sites in India. All EEG data is
securely sent to a cloud-based server. Cost-effectiveness analysis
and legal and regulatory concerns are significant challenges to
this approach in LMICs.

A model of architecture for multimodal monitoring accessed
by telemedicine approach is shown in Figure 5.

Frontiers in Pediatrics | www.frontiersin.org 16 March 2022 | Volume 9 | Article 755144

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Variane et al. Neuromonitoring in Newborns

FIGURE 5 | Model of architecture for multimodal monitoring accessed by telemedicine approach. Vital signs, EEG/aEEG, and NIRS are integrated using a central hub.

The encrypted data is transferred to the cloud system and accessed by a monitoring center or remote assistance.

FUTURES DIRECTIONS AND
CONCLUSIONS

The creation of the Neuro-NICU demonstrates a genuine
potential for closing the gap between survival and improved
neurodevelopmental outcome. Given the increased emphasis on
neurocritical care, both aEEG/EEG and NIRS have demonstrated
value as bedside monitors in the NICU. Multimodal brain
and hemodynamic monitoring in newborns are possible, safe,
and well-tolerated. Further research should be conducted to
determine the impact of this strategy in a more extensive
range of clinical scenarios, emphasizing evidence to improve
clinical outcomes.

Tele-health is increasingly used to assist remote centers with
education, monitoring, and consulting (137). The combination
of multimodal monitoring and telemedicine may improve
understanding of physiology and provide a vast repertoire
of data.

With the advancement of processing power and the growth of
data availability, ML algorithms are proving to be an interesting
tool in ICU research. However, one of the primary challenges to
adopting ML in clinical practice is the ethical considerations of
depending on ML for clinical decision-making. While ML has

been proven to surpass traditional methods for clinical decision-
making, there is significant concern over who is responsible if an
ML makes a mistake.

One of the key challenges in clinical research is gathering
and evaluating big datasets for prospective studies. Only a small
percentage of previously published studies verified their model
using an independent cohort.

In conclusion, neonatology is one of the medical specialties
that have scientifically advanced the most in recent decades and
today is focused on preserving the quality of life in high-risk
infants. The broader use of brain monitoring, associated with
intelligent analysis of large amounts of information collected
on-site or remotely, has the potential to significantly change
clinical management and neonatal outcomes within the next
10 years.
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