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Interactions among living organisms, from bacteria colonies to human

societies, are inherently more complex than interactions among particles

and non-living matter. Group interactions are a particularly important and

widespread class, representative of which is the public goods game. In

addition, methods of statistical physics have proved valuable for studying

pattern formation, equilibrium selection and self-organization in evolution-

ary games. Here, we review recent advances in the study of evolutionary

dynamics of group interactions on top of structured populations, including

lattices, complex networks and coevolutionary models. We also compare

these results with those obtained on well-mixed populations. The review

particularly highlights that the study of the dynamics of group interactions,

like several other important equilibrium and non-equilibrium dynamical

processes in biological, economical and social sciences, benefits from the

synergy between statistical physics, network science and evolutionary

game theory.
1. Introduction
We present a review of recent advances in the evolutionary dynamics of spatial

games that are governed by group interactions. The focus is on the public goods

game, or more generally N-player games, which are representative for this type

of interaction. Although relevant aspects of two-player games are surveyed as

well, we refer to Nowak [1] for a more thorough exposition. Another important

aspect of this review is its focus on structured populations. In the continuation

of this introductory section, we will also summarize basic results concerning

the public goods game on well-mixed populations, but we refer the reader to

Sigmund [2] and Archetti & Scheuring [3] for details.

The methodological perspective that permeates throughout the review is

that of statistical physics. The advances reviewed therefore ought to be of inter-

est to physicists who are involved in the interdisciplinary research of complex

systems, but hopefully also to experts on game theory, sociology, computer

science, ecology, as well as evolution and modelling of socio-technical systems

in general. Group interactions are indeed inseparably linked with our increas-

ingly interconnected world, and thus lie at the interface of many different

fields of research. We note that there are many studies that are not covered in

this review. However, we have tried to make it as comprehensive as possible

to facilitate further research.
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Figure 1. Schematic of N ¼ 3 microbes, where fractions rC ¼ 2
3 are coopera-

tors (producers) and rD ¼ 1
3 are defectors (free-riders). For the most popular

choice of benefit and cost functions, b(rC) ¼ rrC (r . 1) and a(rC) ¼ 1,
respectively, individual pay-offs are PCð23Þ ¼ 2r=3� 1 and PDð23Þ ¼ 2r=3.
An explicit computation of PC (rC) (1

3 � rC � 1) and PD(rC)
(0 � rC � 2

3) reveals that they cannot be generated by means of pairwise
interactions, thus illustrating the inherent irreducibility of group interactions.

Table 1. Pay-off matrix of two-player games if a ¼ c/(2rC) and b ¼

u(rC)b. For 2b . c . b . 0 we have the prisoner’s dilemma, and for
b . c . 0 the snowdrift game.

C D

C R ¼ b 2 (c/2) S ¼ b 2 c

D T ¼ b P ¼ 0
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We describe our motivation, notation and other elemen-

tary concepts in §1.1, followed by an ‘in a nutshell’ survey

of results on well-mixed populations in §1.2 and an overview

of the organization of the review in §1.3.
1.1. Motivation and basic concepts
Given that fundamental interactions of matter are of pairwise

nature, the consideration of N-particle interactions in tra-

ditional physical systems is relatively rare. In computational

approaches aimed at modelling social, economical and biologi-

cal systems, however, where the constituents are neither point

mass particles nor magnetic moments, N-player interactions

are almost as fundamental as two-player interactions. Most

importantly, group interactions, in general, cannot be reduced

to the corresponding sum of pairwise interactions.

A simple model inspired by experiments [4–10] can be

invoked both for motivating the usage of the public goods

game as well as for introducing basic notation. Consider a

colony of N microbial agents where a fraction of them (produ-

cers or cooperators) pour amounts of a fast diffusive chemical

into the environment. The latter has the status of a public

good as it is beneficial also for those that do not produce it

(free-riders or defectors). For N ¼ 3, such a set-up is depicted

schematically in figure 1. The metabolic expenses stemming

from the production cost of the public good are given by the

cost function a(rC), whereas the individual benefit for each of

the N microbes is b(rC), where 0 � rC � 1 is the fraction of

producers. Each non-producing (D-phenotype) microbe thus

receives the pay-off PD ¼ b(rC), whereas each microbe that

does produce (C-phenotype) bears the additional cost, so

that its net benefit is PC ¼ b(rC) 2 a(rC).

For N ¼ 2 and the simple choice of a(rC) ¼ c/(2rC) and

b(rC) ¼ bu (rC) (where u (x) is the step function), we recover

two well-known games that are governed by pairwise inter-

actions. Namely the prisoner’s dilemma for 2b . c . b . 0

and the snowdrift game for b . c . 0, as summarized in table 1.

When N � 3, however, the problem becomes that of

group interactions. We see that, under the sensible assump-

tion of additivity of individually obtained pay-offs, the

defined pay-off structure cannot be reproduced by means

of pairwise interactions (see caption of figure 1 for details).
This example also suggests that, provided the benefit and

cost functions could be inferred from experiments, the exper-

imenter could potentially determine whether a colony is

governed by pair or group interactions. Indeed, it was

recently noted [3] that the oversimplifying restriction of pair-

wise social interactions has dominated the interpretation

of many biological data that would probably be much

better interpreted in terms of group interactions.

The pay-offs PD ¼ b(rC) and PC ¼ b(rC) 2 a(rC) have a

general public goods game structure in that cooperators bear

an additional cost besides the benefits that are common to

both strategies. The analysis of decision-making by a ‘rational

microbe’ thus falls within the realm of classical game theory.

In this framework, for a constant individual production cost a

and an arbitrary concave benefit function b(rC), Motro [11]

showed that even values from within the 0 , rC , 1 interval

are stable Nash equilibria. Under certain conditions to be

met by the benefit and cost functions (b and a), there is thus

no ‘tragedy of the commons’ [12]. This may be welcome news

for the liberal (‘invisible hand’) supporters of public goods sys-

tems: the tragedy of the commons is rationally avoidable even

without the ‘cognitive’ or ‘normative’ capacities required for

the existence of additional strategies. Nevertheless, the ‘tragedy

of the commons’ does occur in the majority of other cases (e.g.

linear benefit function b), where no production of the public

good is the only rational individual choice.
1.2. Evolutionary game dynamics
Turning back to microbial populations, under the assumption

that the reproductive power of each microbe is proportio-

nal to the net metabolic benefit enjoyed, one arrives at a

formal description for the time evolution of the fraction of

producers rC. This is the realm of evolutionary game

dynamics that implements Darwinian natural selection of

phenotypes in populations under frequency-dependent fit-

ness conditions [1,2,13,14], as well as in related though non-

genetic social and economic systems. In the latter, ‘social

learning’ assumptions may lead to a very similar evolution-

ary dynamics provided simple assumptions concerning the

cognitive capabilities of agents are accepted.

A calculation that invokes a standard well-mixed popu-

lation setting (see below and references [3,15,16]) leads to

the differential equation for the expected value x ¼ krCl of

the fraction of producers

_x ¼ xð1� xÞ½WCðxÞ �WDðxÞ�; ð1:1Þ

where WC,D(x) is the average pay-off per either a cooperative

or a defective individual. This is the replicator equation,

which is nonlinear already for linear pay-offs. Depending

further on the additional properties of a(x) and b(x), its

analysis may thus be all but straightforward.
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Theorems relate the asymptotic states of the replicator

equation with Nash’s stability criteria, and Motro’s [11]

results on the public goods game, in turn, translate into the

characterization of the evolutionary stable states for our

microbial population. In particular, for constant a and con-

cave benefit functions b(x), a well-mixed colony of mixed

phenotypic composition is evolutionarily stable. Notably, in

addition to the replicator dynamics, best-response and related

learning dynamics can also be formulated for the evolution of

x, and indeed they can be of much relevance in specific

contexts of agent-based modelling.

At this point, it is informative to spell out the operational

assumptions that traditionally underlie the well-mixed approxi-

mation [3]. In particular, it is assumed that the N 2 1

individuals that interact with the focal player are randomly

sampled from an infinite population of cooperators and defec-

tors, so that the probability of interacting with j cooperators

is given by fj(x) ¼ Cj
N21xj(1 2 x)N21 2 j, where x(1 2 x) is the

average fraction of cooperators (defectors). Other formally

more sophisticated settings can also be of interest. We refer

to Cressman et al. [16] for one that allows us to consider a con-

tinuum of strategies parametrized by the amount of public

good produced per individual, and to Peña [17] for a ‘grand

canonical’ treatment where the group size N is considered a

random variable.

Note that the pay-offs of the focal individual are collected

from group configurations that are statistically uncorrelated.

Moreover, in order to implement the assumption that the

individual reproductive power is proportional to the net

benefits, while operationally keeping a constant population

size N, one can (among other options, such as using the sto-

chastic birth/death Moran process) use a replicator-like rule

in which, in the next time step, the focal player imitates the cur-

rent strategy of a randomly chosen agent from the group, with

a probability depending on the pay-off difference. It is worth

emphasizing that the basic underlying assumption here is

homogeneity, so that individuals do not differentiate or

assort, as both (i) the pay-offs are collected from and (ii) the

competitive reproduction is against configurations sampled

from an unbiased (uncorrelated) strategic distribution fj(x).

If we are departing from the assumptions of well-mixed popu-

lations, however, then several issues open up. To begin with:

— Which criterion determines how group configurations are

sampled to provide instantaneous pay-off to focal

players? Is the group size N also a random variable in

that sampling?

— What kind of population sampling is used to implement

replicating competition among strategies? In other words,

who imitates whom? Should members of all groups be

potential imitators (or should potentially be imitated)?

Or should just a fraction of them (for example those in a

smaller spatial neighbourhood of the focal player) qualify

as such?

There are several possible answers to both groups of

questions, and they depend significantly on the particular

problem one wishes to address. For example, for a quanti-

tative modelling of a yeast colony of invertase producers

and non-producing cells, the answers should be based on

considerations involving characteristic time scales of many

biochemical processes and the spatial microbial arrangements

that are typical among the measured samples of the microbial
colony, to name but a few potentially important issues. On

the other hand, in systems where best-response or other

non-imitative evolutionary rules are considered, only the

first group of questions would be likely to be of relevance.

Recent research concerning public goods games on struc-

tured populations is in general very indirectly, if at all, related

to a particular experimental set-up. Instead, it is of an

exploratory nature over different potentially relevant theor-

etical issues that can be either formulated or understood as

lattice or network effects. A quite common ground motiv-

ation is the search for analogues of network reciprocity [18].

Is the resilience of cooperative clusters against invading defec-

tors on networks and lattices enough to effectively work

against the mean-field tendencies [19]? More generally, what

are the effects of structure in a population when confluent

with known sources of public goods sustainability, such as

punishment or reward? Are these synergistic confluences?

Indeed, the interest of reviewed research goes far beyond its rel-

evance to a specific experiment. Evolutionary game dynamics

is of fundamental interest to the making of interdisciplinary

complex systems science, encompassing biological, economical

as well as social sciences and, from this wider perspective, the

universal features of dynamical processes of group interactions

are still rather unexplored.

1.3. Organization of the review
The remainder of this review is organized as follows. In §2, we

survey the implementation of the public goods game on lat-

tices. We focus on recent studies investigating the effects of

lattice structure on the emergence of cooperation. In addition,

we review both the effects of heterogeneity in the dynamical

ingredients of the public goods game as well as the effects of

strategic complexity on the evolution of cooperation. In §3,

we focus on structures that are more representative for

human societies. In this framework, we will revisit the formu-

lation of the public goods game on complex networks and

show how social diversity promotes cooperation. In addition,

we will survey how public goods games on networks can be

formulated by means of a bipartite representation. The latter

includes both social as well as group structure, thus opening

the path towards a more accurate study of group interactions

in large social systems. We conclude §3 by reviewing different

networked structures in which the public goods game has been

implemented, most notably modular and multiplex networks,

as well as populations of mobile agents. In §4, we review

advances on structured populations where the connections

coevolve with the evolutionary dynamics, and where thus

the topology of interactions changes depending on the pay-

offs and strategies in the population. We round off the review

by discussing the main perspectives, challenges and open

questions in §5, and by summarizing the conclusions in §6.
2. Lattices
Beyond patch-structured populations where under certain

updating rules the spatial structure has no effect on the evol-

ution of altruism [20–22], lattices represent very simple

topologies, which enjoy remarkable popularity in game

theoretical models [18,23,24]. Despite their dissimilarity to

actual social networks [25], they provide a very useful entry

point for exploring the consequences of structure on the evol-

ution of cooperation. Moreover, there are also realistic



(a) (b)

(c) (d )

Figure 2. Schematic of different types of lattices. On the (a) square lattice,
each player has four immediate neighbours, thus forming groups of size
G ¼ 5, whereas on the (b) honeycomb lattice, it has three, thus G ¼ 4.
In both cases, the clustering coefficient C is zero. Yet, the membership of
unconnected players in the same groups introduces effective links between
them, which may evoke behaviour that is characteristic for lattices with
closed triplets [28]. On the other hand, (c) the kagomé and (d ) the triangular
lattice both feature percolating overlapping triangles, which makes them less
susceptible to effects introduced by group interactions. The kagomé lattice
has G ¼ 5 and C ¼ 1

3, whereas the triangular lattice has C ¼ 2
5 and

G ¼ 7.
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systems, especially in biology and ecology, where the compe-

tition between the species can be represented adequately by

means of a lattice [26,27]. In general, lattices can be regarded

as an even field for all competing strategies where the possibility

of network reciprocity is given [18]. Furthermore, as there are

many different types of lattices (see figure 2 for details), we

can focus on very specific properties of group interactions and

test what is their role in the evolutionary process.

The basic set-up for a public goods game with coopera-

tors and defectors as the two competing strategies on a

lattice can be described as follows. Initially, N / L2 players

are arranged into overlapping groups of size G such that

everyone is surrounded by its k ¼ G 2 1 neighbours and

belongs to g ¼ G different groups, where L is the linear

system size and k the degree (or coordination number) of

the lattice. Each player on site i is designated as either a coop-

erator (C) si ¼ 1 or a defector (D) si ¼ 0 with equal

probability. Cooperators contribute a fixed amount a, nor-

mally considered being equal to 1 without loss of

generality, to the common pool while defectors contribute

nothing. Finally, the sum of all contributions in each group

is multiplied by the synergy factor r and the resulting

public goods are distributed equally among all the group

members. The pay-off of player i in every group g is

Pg
i ¼ r

P
j[g sja

G
� sia ¼ r

Ng
Ca
G
� sia; ð2:1Þ

where Ng
C is the number of cooperators in group g. The net

pay-off i thereby acquires is the sum of the pay-offs received

in all the groups it participates in: Pi ¼
P

g Pg
i .

The microscopic dynamics involves the following elemen-

tary steps. First, a randomly selected player i plays the public
goods game as a member of all the g ¼ 1, . . . ,G groups. Next,

player i chooses one of its neighbours at random, and the

chosen player j also acquires its pay-off Pj in the same way.

Finally, player i enforces its strategy si onto player j with

some probability determined by their pay-off difference.

One of the possible choices for this update probability is

the Fermi function,

Pðsi ! sjÞ ¼
1

1þ exp½ðPj � PiÞ=GK� ; ð2:2Þ

where K quantifies the uncertainty by strategy adoptions, and

G normalizes it with respect to the number and size of the

groups. These elementary steps are repeated consecutively,

whereby each full Monte Carlo step (MCS) gives a chance

for every player to enforce its strategy onto one of the neigh-

bours once on average. Alternatively, synchronous updating

can also be applied so that all the players play and update

their strategies simultaneously, but the latter can lead to spur-

ious results, especially in the deterministic K! 0 limit [29].

Likewise, as anticipated above, there are several ways of

how to determine when a strategy transfer ought to occur,

yet, for lattices, the Fermi function can be considered stan-

dard as it can easily recover both the deterministic as well

as the stochastic limit. The average fraction of cooperators

rC and defectors rD in the population must be determined

in the stationary state. Depending on the actual conditions,

such as the proximity to extinction points and the typical

size of the emerging spatial patterns, the linear system size

has to be between L ¼ 200 and 1600 in order to avoid accidental

extinction, and the relaxation time has to exceed anywhere

between 104 and 106 MCSs to ensure that the stationary state

is reached. Exceptions to these basic requirements are not

uncommon, especially when considering more than two com-

peting strategies, as we will emphasize at the end of this section.
2.1. Group versus pairwise interactions
For games governed by pairwise interactions, such as the

prisoner’s dilemma game, the dependence of the critical

temptation to defect bc on K is determined by the presence

of overlapping triangles. Notably, here bc is the temptation

to defect b above which cooperators are unable to survive

(see also table 1). If an interaction network lacks overlapping

triangles, and accordingly has the clustering coefficient C ¼ 0,

as is the case for the square and the honeycomb lattices, then

there exists an intermediate K at which bc is maximal. On

the other hand, if overlapping triangles percolate, as is the

case for the triangular and the kagomé lattices (figure 2),

then the deterministic limit K! 0 is optimal for the evolu-

tion of cooperation [30,31]. The spatial public goods game

behaves differently, highlighting that group interactions are

more than just the sum of the corresponding number of pair-

wise interactions. As demonstrated in Szolnoki et al. [28],

group interactions introduce effective links between players

who are not directly connected by means of the interaction

network. Topological differences between lattices therefore

become void, and the deterministic limit K! 0 becomes opti-

mal for the evolution of cooperation, regardless of the type of

the interaction network. Results for pairwise and group inter-

actions are summarized in figure 3. This implies that by

group interactions the uncertainty by strategy adoptions

plays at most a side role, as it does not influence the outcome

of the evolutionary process in a qualitative way.
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Figure 3. Borders between the mixed Cþ D and the pure D phase in depen-
dence on the normalized uncertainty by strategy adoptions K/G, as obtained on
different lattices for (a) pairwise and (b) group interactions. Vertical axis depicts
the defection temptation rate, i.e. the higher its value the smaller the value of r
that still allows the survival of at least some cooperators. By pairwise interactions
(G ¼ 2), the absence of overlapping triangles is crucial (square and honeycomb
lattices), as then there exists an intermediate value of K at which the evolution of
cooperation is optimally promoted. If triangles do percolate (triangular lattice),
the K! 0 limit is optimal. This behaviour is characteristic for all social dilem-
mas that are based on pairwise games, the most famous examples being the
prisoner’s dilemma and the snowdrift game (see figs 3 and 5 in Szabó et al.
[30]). Conversely, when group interactions are considered (see figure 2 for G
values) the topological differences between the lattices become void. Accord-
ingly, the deterministic K! 0 limit is optimal, regardless of the topology of
the host lattice [28].
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The fact that membership in the same groups effectively

connects players who are not linked by means of direct pair-

wise links naturally brings forth the group size as a key

system parameter. In Szolnoki & Perc [32], it was shown

that increasing the group size does not necessarily lead to

mean-field behaviour, as is traditionally observed for games

governed by pairwise interactions [33], but rather that

public cooperation may be additionally promoted by means

of enhanced spatial reciprocity that sets in for very large

groups where individuals have the opportunity to collect

pay-offs separately from their direct opponents. However,

very large groups also offer very large benefits to invading

defectors, especially if they are rare, and it is this back door

that limits the success of large groups to sustain cooperation

and limits the pure number-in-the-group effect [34]. Figure 4

features two characteristic snapshots and further details to

that effect. It is also worth emphasizing that the joint mem-

bership in large groups will indirectly link vast numbers of

players, thus rendering local as well global structural
properties of interaction networks practically irrelevant for

the final outcome of the public goods game.

2.2. Heterogeneities in the dynamics
Group interactions on structured populations are thus different

from the corresponding sum of pairwise interactions. Conse-

quently, not just the group size, but also the distribution of

pay-off within the groups becomes important. As shown in

Shi et al. [35] and Perc [36], heterogeneous pay-off distributions

do promote the evolution of cooperation in the public goods

game, yet, unlike games governed by pairwise interactions

[37], uniform distributions outperform the more hetero-

geneous exponential and power law distributions. The set-up

may also be reversed in that not the pay-offs but rather the con-

tributions to the groups are heterogeneous. In Gao et al. [38]

and Vukov et al. [39], it was shown that correlating the contri-

butions with the level of cooperation in each group markedly

promotes prosocial behaviour, although the mechanism may

fail to deliver the same results on complex interaction networks

where the size of groups is not uniform. Conceptually similar

studies with likewise similar conclusions have also been

described [40–42], although they rely on differences in the

degree of each player to determine pay-off allocation. The

latter will be reviewed in §3 where the focus is on public

goods games that are staged on complex networks. Another

possibility to introduce heterogeneity to the spatial public

goods game is by means of different teaching activities of

players, as was conducted in Guan et al. [43]. In this case, how-

ever, the results are similar to those reported previously for

games governed by pairwise interactions [44], in that there

exists an optimal intermediate density of highly active players

at which cooperation thrives best.

Aside from heterogeneous distributions of pay-offs and

initial investments, group interactions are also amenable

to different public benefit functions, as demonstrated in

figure 5. While traditionally it is assumed that the produc-

tion of public goods is linearly dependent on the number of

cooperators within each group, it is also possible to use

more complex benefit functions. The idea has been explored

already in well-mixed populations [15,45–47], and in struc-

tured populations, the possibilities are more. One is to

introduce a critical mass of cooperators that have to be pre-

sent in a group in order for the collective benefits of group

membership to be harvested [48]. If the critical mass is not

reached, the initial contributions can either go to waste or

they can also be depreciated by applying a smaller multipli-

cation factor in that particular group [49,50]. Although such

models inevitably introduce heterogeneity in the distribution

of pay-offs [51], they can also lead to interesting insights that

go beyond ad hoc introduced heterogeneity. In Szolnoki &

Perc [48], for example, it was shown that a moderate fraction

of cooperators can prevail even at very low multiplication fac-

tors if the critical mass M is minimal. For larger multiplication

factors, however, the level of cooperation was found to be the

highest at an intermediate value of M. Figure 6 features two

characteristic scenarios. Notably, the usage of nonlinear benefit

functions is unique to group interactions, and in general it

works in favour of public cooperation [49,50].

2.3. Strategic complexity
Besides heterogeneity in pay-offs and nonlinearity in public

benefit functions, introducing strategic complexity is another



(a)

(b)

Figure 4. Characteristic snapshot of the evolutionary process for (a) small (G ¼ 5) and (b) large (G ¼ 301) groups. Cooperators are depicted by blue, whereas
defectors are depicted by red. For small groups, the evolution of strategies proceeds with the characteristic propagation of the fronts of the more successful strategy
(in this case D) until eventually the maladaptive strategy C goes extinct. For large groups, however, the cooperative clusters are strong and can outperform the
defectors, even if r is very small. Still, as the density of defectors decreases, their pay-off suddenly becomes very competitive, and thus they can invade the see-
mingly invincible cooperative clusters. Such an alternating time evolution is completely atypical and was previously associated only with cooperators.

S/G

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

B(S)

Figure 5. Different realizations of the public benefit function B(S) ¼ 1/
(1 þ exp[2b(Si 2 T )]), where T represents the threshold value and b

is the steepness of the function [45]. For b ¼ 0, the benefit function is
a constant equalling 0.5, in which case the produced public goods are insen-
sitive to the efforts of group members. Conversely, for b ¼ þ1, the
benefit function becomes step-like so that group members can enjoy the
benefits of collaborative efforts via r only if the total amount of contributions
in the group S exceeds a threshold. Otherwise, they obtain nothing. The
depicted curves were obtained for T ¼ 2.5 and b ¼ 0.1 (dotted red), 1
(dashed green) and 10 (solid blue).
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way of bringing the public goods game closer to reality. As

noted above, the willingness to cooperate may depend on

the behaviour of others in the group. Correlating the contri-

butions with either the level of cooperation in each group

[38,39] or the degree of players [40–42] can thus be seen

not just as heterogeneous contributing, but also as con-

ditional cooperation [52]. An explicit form of this was

studied in Szolnoki & Perc [53], where a conditional coopera-

tor of the type Cj only cooperate provided there are at least j
other cooperators in the group. It was shown that such strat-

egies are the undisputed victors of the evolutionary process,

even at very low synergy factors. Snapshots of the spatial

grid reveal the spontaneous emergence of convex isolated

‘bubbles’ of defectors that are contained by inactive con-

ditional cooperators. While the latter will predominantly
cooperate with the bulk of active conditional cooperators,

they will certainly defect in the opposite direction, where

there are defectors. Consequently, defectors cannot exploit

conditional cooperators, which leads to a gradual but un-

avoidable shrinkage of the defector quarantines. Notably,

conditional strategies introduced in this way have no

impact on the mixed state in unstructured populations and

are thus of interest only on structured populations.

Apart from conditional strategies, the impact of loners,

sometimes referred to as volunteers, has also been studied in

the realm of the spatial public goods game [54]. While in

well-mixed populations volunteering leads to cyclic domi-

nance between the three competing strategies [55,56], on

lattices, the complexity of the emerging spatial patterns enables

the observation of phase transitions between one-, two- and

three-strategy states [54], which either fall in the directed

percolation universality class [57] or show interesting analogies

to Ising-type models [58].

The complexity of solutions in spatial public goods games

with three or more competing strategies is indeed fascinating,

which can be corroborated further by results reported

recently for peer-punishment [59–61], pool-punishment

[62,63], the competition between both [64] and for reward

[65]. In general, the complexity is largely due to the spon-

taneous emergence of cycling dominance between the

competing strategies, which can manifest in strikingly differ-

ent ways. By pool-punishment, for example, if the value of r
is within an appropriate range [62], then the pool-punishers

can outperform defectors, who in turn outperform coopera-

tors, who in turn outperform the pool-punishers, thus

closing the loop of dominance. Interestingly, in the absence

of defectors, peer-punishers and pure cooperators receive

the same pay-off, and hence their evolution becomes equival-

ent to that of the voter model [58]. Notably however, the

logarithmically slow coarsening can be effectively accelerated

by adding defectors via rare random mutations [61].

Similarly, complex solutions can be observed for rewarding

[65]. There, if rewards are too high, defectors can survive

by means of cyclic dominance, but, in special parameter

regions, rewarding cooperators can prevail over cooperators

through an indirect territorial battle with defectors,



(a)

(b)

Figure 6. Time evolution of strategies on a square lattice having G ¼ 25, for the critical mass (a) M ¼ 2 and (b) M ¼ 17 at r/G ¼ 0.6 [48]. Defectors are marked
by red, whereas cooperators are depicted by blue if their initial contributions are exalted or white if they go to waste. Accordingly, cooperators can be designated as
being either ‘active’ or ‘inactive’. When M is low all cooperators are active, yet they do not have a strong incentive to aggregate because an increase in their density
will not elevate their fitness. Hence, only a moderate fraction of cooperators coexists with the prevailing defectors in the stationary state. If the critical mass is
neither small nor large, the status of cooperators varies depending on their location on the lattice: there are places where their local density exceeds the threshold
and they can prevail against defectors. There are also places where the cooperators are inactive because their density is locally insufficient and loose against defec-
tors. The surviving domains of active cooperators start spreading, ultimately rising to near dominance.

(a)

(b)

Figure 7. Indirect territorial battle between (a) pure cooperators (blue) and peer-punishers (green), and between (b) pure cooperators (blue) and rewarding coop-
erators (light grey). In (a), pure cooperators and peer-punishers form isolated clusters that compete against defectors (red) for space on the square lattice. Because
peer-punishers are more successful in competing against defectors than pure cooperators (also frequently referred to as second-order free-riders [66]), eventually the
latter die out to a leave a mixed two-strategy phase ( peer-punishers and defectors) as a stationary state (see Helbing et al. [59] for further details). In (b), defectors
are quick to claim supremacy on the lattice, yet pure and rewarding cooperators both form isolated compact clusters to try and prevent this. While rewarding
cooperators can outperform defectors, pure cooperators cannot. Accordingly, the latter die out, leaving qualitatively the same outcome as depicted in (a) (see
Szolnoki & Perc [65] for further details).
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qualitatively identical to those reported for peer-punishment

[59]. Figure 7 features two sequences of snapshots that

demonstrate both evolutionary scenarios. Altogether, these

results indicate that second-order free-riding [67,68], referring

to cooperators who refrain from either punishing or reward-

ing, finds a natural solution on structured populations that

is due to pattern formation. The aptness of structured

populations for explaining the stability and effectiveness of

punishment can, in fact, be upgraded further by means

of coevolution [69], as we will review in §4. On the

contrary, while experiments attest to the effectiveness of

both punishment [70] and reward [71] for elevating colla-

borative efforts, the stability of such actions in well-mixed
populations is rather elusive, as reviewed comprehensively

in Sigmund [72].
2.4. Statistical physics: avoiding pitfalls
Before concluding this section and devoting our attention to

more complex interaction networks and coevolutionary

models, it is important to emphasize difficulties and pitfalls

that are frequently associated with simulations of three or

more competing, possibly cyclically dominating, strategies

on structured populations. Here, methods of statistical

physics, in particular that of Monte Carlo simulations

[58,73,74], are invaluable for a correct treatment. Foremost,



(a) (b)
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Figure 8. When the public goods game is staged on a complex network, cooperators can either bear a fixed cost per game, z (a), or this cost can be normalized with the
number of interactions, i.e. z/(kiþ 1), where ki is the number of neighbours of each particular cooperator i. In the latter case, one effectively recovers a fixed cost per
individual (b). This distinction has significant consequences for the evolution of public cooperation on complex interaction networks, as originally reported by Santos et al.
[90]. Only if the cost is normalized with the number of neighbours does social heterogeneity significantly promote the evolution of public cooperation.
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it is important to choose a sufficiently large system size and

to use long enough relaxation times. If these conditions

are not met, then the simulations can yield incorrect one-

and/or two-strategy solutions that are unstable against the

introduction of a group of mutants. For example, the homo-

geneous phase of cooperators or pool-punishers can be

invaded completely by the offspring of a single defector

inserted into the system at sufficiently low values of r [62].

At the same time, defectors can be invaded by a single

group of pool-punishers (or cooperators) if initially they

form a sufficiently large compact cluster. In such cases, the

competition between two homogeneous phases can be

characterized by the average velocity of the invasion fronts

separating the two spatial solutions. Note that a system

with three (or more) strategies has a large number of possible

solutions, because all the solutions of each subsystem

(comprising only a subset of all the original strategies) are

also solutions of the whole system [23]. In such situations,

the most stable solution can be deduced by performing a

systematic check of stability between all the possible pairs

of subsystem solutions that are separated by an interface in

the spatial system. Fortunately, this analysis can be per-

formed simultaneously if one chooses a suitable patchy

structure of subsystem solutions where all relevant interfaces

are present. The whole grid is then divided into several

domains with different initial strategy distributions contain-

ing one, two or three strategies. Moreover, the strategy

adoptions across the interfaces are initially forbidden for

a sufficiently long initialization period. By using this

approach, one can avoid the difficulties associated either

with the fast transients from a random initial state or with

the different time scales that characterize the formation of

possible subsystem solutions. It is easy to see that a

random initial state may not necessarily offer equal chances

for every solution to emerge. Only if the system size is

large enough can the solutions form locally, and the most

stable one can subsequently invade the whole system. At

small system sizes, however, only those solutions whose

characteristic formation times are short enough can evolve.

The seminal works considering punishment on structured

populations [75,76], as well as the most recent anti-social punish-

ment [77], could potentially benefit from such an approach, as it

could reveal additional stable solutions beyond the well-mixed

approximation [55,78–80].
3. Complex networks
With the maturity of methods of statistical physics, the

availability of vast amounts of digitized data and the compu-

tational capabilities to process them efficiently, it has become

possible to determine the actual contact patterns across various

socio-technical networks [81–83]. These studies have shown

that the degree distribution P(k) of most real-world networks

is highly skewed, and that most of the time it follows a

power law PðkÞ � k�g [84]. The heterogeneity of degrees

leads to social diversity, which has important consequences

for the evolution of cooperation. Although many seminal

works concerning evolutionary games on networks have

focused on pairwise interactions [23,24], games governed by

group interactions are rapidly gaining in popularity.
3.1. Social heterogeneity
Owing to the overwhelming evidence indicating that social

heterogeneity promotes the evolution of cooperation in pair-

wise social dilemma games [85–89], it is natural to ask what

is its impact on games governed by group interactions.

Santos et al. [90] have therefore reformulated the public

goods game to be staged on complex networks. Every player

i plays ki þ 1 public goods games, as described before

for lattices, only here the degree ki of every player can be

very different. Because the groups will thus also have dif-

ferent size, cooperators can contribute either a fixed amount

per game, ci ¼ z, or a fixed amount per member of the group,

ci ¼ z/(ki þ 1), as depicted in figure 8. Identical to the tra-

ditional set-up, the contributions within different groups are

multiplied by r and accumulated. However, the pay-off of an

otherwise identical player is not the same for the two different

options. By defining the adjacency matrix of the network as

Aij ¼ 1 when individuals i and j are connected and Aij ¼ 0

otherwise, we obtain the following net benefit Pi for both

versions of the game:

Pi ¼
XN

j¼1

Aij
rð
PN

l¼1 A jlslcl þ sjcjÞ
kj þ 1

þ
rð
PN

j¼1 Aijsjcj þ siciÞ
ki þ 1

� ðki þ 1Þsici; ð3:1Þ

where, however, the precise value of ci is set depending on

whether cooperators bear a fixed cost per game or a fixed
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cost per player. After each full round of the game, all players

decide synchronously whether or not they will change their

strategy. This is done by following the finite population ana-

logue of the replicator rule. An individual i with pay-off Pi

randomly selects one neighbour j among its ki contacts. If

Pi � Pj nothing changes, but if Pi , Pj player i adopts the strat-

egy of the more successful neighbour j with a probability that

depends on the difference DP ¼ Pi 2 Pj.

Results presented in Santos et al. [90] show that

heterogeneous networks promote the evolution of public

cooperation. Yet, this is particularly true when cooperators

pay a fixed cost per individual. Cooperation is then viable

already at h ¼ r/(kkl þ 1)¼ 0.3 (normalized multiplication

factor), which is less than half of the critical value obtained on

lattices. Moreover, heterogeneous networks enable complete

cooperator dominance well before cooperative behaviour even

emerges on regular networks. Phenomenologically, the pro-

motion of cooperation is due to the diversity of investments,

which is a direct consequence of the heterogeneity of the under-

lying network. As cooperators pay a cost that depends on their

degree, namely c/(k þ 1), the fitness landscape becomes very

rich and diverse—a feature absent for lattices. In fact, for a

single public goods game, the difference between the pay-off

of a cooperator and defector is no longer proportional to c,

but rather inversely proportional to the number of games

each player plays. This gives an evolutionary advantage to

cooperative hubs, i.e. players with a high degree.

The seminal study by Santos et al. [90] motivated

many others to study the evolution of public cooperation

on complex networks. As evidenced by preceding works

considering pairwise social dilemmas, the degree distribu-

tion is not the only property that affects the outcome of

an evolutionary process [91–95]. Other properties, such as

the average path length, the clustering coefficient or the

presence of correlations among high-degree nodes, can be

just as important [23]. Rong & Wu [96] have explored how

the presence of degree correlations affects the evolution

of public cooperation on scale-free networks. They found

that assortative networks—those in which alike nodes are

likely to be connected to each other—act detrimentally as

heterogeneity no longer confers a natural advantage to coop-

erative hubs. Conversely, if players with dissimilar degrees

are more likely connected, then the onset of cooperation

occurs at lower values of r. Similarly, Rong et al. [97] have

investigated the evolution of public cooperation on highly

clustered heterogeneous networks, discovering that cluster-

ing has a beneficial effect on the evolution of cooperation as

it favours the formation and stability of compact cooperative

clusters. Yang et al. [98], on the other hand, adopted a differ-

ent approach by trying to optimize the number of cooperative

individuals on uncorrelated heterogeneous networks. They

have considered a variation of the original model [90], in

which potential strategy donors are no longer chosen ran-

domly but rather proportionally to their degree. It was

shown that the promotion of cooperation is optimal if

the selection of neighbours is linearly proportional to their

degree. While these results indicate that correlations are

very important for the evolution of public cooperation,

further explorations are needed to fully understand all the

details of results presented previously [96–98], which we

have here omitted.

We end this section by revisiting the role of heterogeneities

in the dynamics of investments and pay-off distributions, as
reviewed before in §2.2. Unlike lattices, complex networks

make it interesting to correlate the degree of players with

either (i) the investments they make as cooperators [40,99] or

(ii) the pay-offs they are receiving from each group [41,100],

or (iii) with both (i) and (ii) together [42]. These studies exploit

the heterogeneity of scale-free networks to implement degree-

based policies aimed at promoting cooperation. In Cao et al.
[40], for example, it has been shown that positively correlating

the contributions of cooperators with their degree is strongly

detrimental to the evolution of public cooperation. On the

other hand, if cooperators with only a few connections are

those contributing the most, cooperation is promoted. An

opposite relation has been established with respect to the cor-

relations between the degrees of players and the allocation of

pay-offs [41,100]. In particular, cooperation thrives if players

with the highest degree receive the biggest share of the

pay-off within each group. Moreover, the impact of degree-

correlated aspiration levels has also been studied [101],

and it was shown that a positive correlation, such that the

larger the degree of a player the higher its aspiration level,

promotes cooperation. Together, these results indicate that

favouring hubs by either decreasing their investments or

increasing their pay-offs or aspiration promotes the evolution

of public cooperation, which in turn strengthens the impor-

tance of hubs as declared already in the seminal paper by

Santos et al. [90].
3.2. Accounting for group structure: bipartite graphs
The implementation of the public goods game as introduced

in Santos et al. [90] makes an important assumption regard-

ing the composition of groups in which the games take

place. This assumption relies on the fact that each group is

defined solely on the basis of connections making up the

complex interaction network. However, it is rather unrealistic

that this definition holds in real social networks, such as

collaboration networks [102]. Figure 9 features a schematic

display of this situation. Suppose we know the actual inter-

action structure of a system composed of six individuals

performing collaborative tasks arranged into four groups

(figure 9b). If we merge this structure into a projected

(one-mode) complex network, the collection of groups is

transformed into a star-like graph (figure 9a) having a central

hub (node 6) with five neighbours. By making this coarse-

graining, we have lost all the information about the group

structure of the system, and it is easy to realize that following

Santos et al. [90] to construct the groups we recover a very

different composition made up of six groups of sizes 6, 4 (2),

3 (2) and 2, respectively. Moreover, it is important to note

that a scale-free distribution of interactions PðkÞ � k�g maps

directly to a scale-free distribution of group sizes PðgÞ � g�g.

However, in reality, individuals tend to perform collaborative

tasks in groups of a rather homogeneous size [104], regardless

of the size of the set of their overall collaborators. Accordingly,

the distribution of group size is better described by an

exponential distribution PðgÞ � expð�agÞ.
To preserve information about both the structure of

pairwise ties and the structure of groups, Gómez-Gardeñes

et al. [103,105] have introduced the use of bipartite graphs.

A bipartite representation, as depicted in figure 9c, contains

two types of nodes. One denoting individuals (circular

nodes), and the other denoting groups (square nodes),

whereas links connect them as appropriate. Such a bipartite
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framework is well suited for studying dynamical processes

involving N-player interactions.

The set-up of the public goods game on bipartite networks

is similar to that on one-mode networks, with deviations as

described in Gómez-Gardeñes et al. [103,105]. The graph is

composed of N agents playing the game within G (not necess-

arily equal to N) groups whose connections are encoded in a

G � N matrix Bij. The ith row of this matrix accounts for all

the individuals belonging to group i, so that Bij ¼ 1 when

agent j participates in group i while Bij ¼ 0 otherwise. Alterna-

tively, the information in the ith column encodes all the groups

containing agent i, i.e. Bji ¼ 1 when agent i participates in

group j and Bji ¼ 0 otherwise. At each time step, player i
plays a round of the game in every group it is a member. The

total pay-off after being involved in qi ¼
PG

j¼1 B ji groups can

be expressed as

Pi ¼
XG

j¼1

rB ji

mj

XN

l¼1

B jlslcl

" #
� siciqi; ð3:2Þ

where mj ¼
PN

i¼1 B ji is the number of individuals in group j.
Although, in principle, one could take further advantage of

the group structure in order to define different scenarios for

the update of strategies, the evolutionary dynamics is defined

identically to that for one-mode projected networks [103,105].

The updating can rely on the usage of a replicator-like rule

[90], or the Fermi rule introduced in equation (2.2).

Results presented in Gómez-Gardeñes et al. [103] indicate

that, regardless of the update rule and the details of the

public goods game, the actual group structure of collaboration

networks promotes the evolution of cooperation. One arrives at

this conclusion by comparing the cooperation level on the

bipartite representation of a real collaboration network (con-

taining author–article links) with the cooperation level on a

projected one-mode network that is composed solely of

author–author ties (figure 10). On the other hand, by compar-

ing the performance of two bipartite structures having

different social connectivity—one having scale-free and the

other a Poissonian distribution of degree—but the same

group structure [105], we find that it is the group structure

rather than the distribution of degree that determines the evol-

ution of public cooperation. In particular, the promotion of

cooperation owing to a scale-free distribution of degree as

reported in Santos et al. [90] is hindered when the group struc-

ture is disentangled from the social network of contacts by

means of the bipartite formulation.
Notably, the bipartite formulation has recently been revisi-

ted by Peña & Rochat [106], who compared the impact of

different distributions used separately for group sizes and

the number of individual contacts. They showed that a key

factor that drives cooperation on bipartite networks is the

degree of overlap between the groups. The latter can be inter-

preted as the bipartite analogue of the clustering coefficient

in one-mode networks, which, as reviewed above, is highly

beneficial for the evolution of public cooperation. The results

reported in Peña & Rochat [106] also help us to understand
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Figure 11. (a) The multilevel hierarchical structure introduced in Wang et al.
[107], where groups are hierarchically ordered as modules of a network in
which the public goods game is played. (b) Two interdependent lattices
as studied in Wang et al. [108]. Players can adopt different strategies
within each layer, but coupling between the pay-offs obtained in each of
the two layers (see equation (3.3)) makes their evolutionary dynamics
interdependent.
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the high level of cooperation observed in one-mode scale-free

networks [90], because the assumption that the structure of

groups is implicitly defined by the network itself imposes a

high degree of overlap between the groups, especially for

scale-free networks.
3.3. Other network-based frameworks
In addition to the distributions of individual contacts and

group sizes, the impact of other topological features of

social networks has also been studied. In particular, in

Wang et al. [107], the authors studied a hierarchical social

structure composed of communities or modules in which

several public goods games are played simultaneously. For

a set-up with two hierarchical levels, we thus have the follow-

ing framework: player i is a member in one group of size m at

the lowest level and, simultaneously, it is also a member in a

larger group together with the rest of the population. This

set-up can be generalized to systems composed of n
hierarchical levels, as shown in figure 11a for n ¼ 3. The coup-

ling between the evolutionary dynamics in each of the levels

is accomplished by splitting the contribution c of each coop-

erator by the number of groups, and by choosing a different

probability for the updating rules within and between mod-

ules. Results reported in Wang et al. [107] indicate that public

cooperation is promoted when imitation between players

belonging to different modules is strong, while, at the same

time, the imitation between players within the same lowest

level module is weak. This combination of strengths leads

to the onset of groups composed solely of cooperators, but

it also enables cooperators who coexist with defectors to

avoid extinction.

Another important structural feature recently addressed

is multiplexity [109–111], or the coupling between several

network substrates. Although this structural ingredient has

only recently been tackled in the field of network science,

some literature on the subject has already appeared in the

context of evolutionary games [108,112]. In Wang et al.
[108], where the focus was on group interactions, the authors

have studied a simple layered framework in which two regu-

lar lattices were coupled, as depicted schematically in

figure 11b. The rationale is that a given individual is rep-

resented in each of the two layers, although, in principle, it

can adopt different strategies in each of them. The coupling

between layers is solely due to the utility function, which

couples the pay-off Pi
A obtained on layer A and the pay-off

Pj
B obtained on layer B as

Ui ¼ aPA
i þ ð1� aÞPB

i ; Uj ¼ ð1� aÞPB
j þ aPA

i : ð3:3Þ

The parameter a [ [0,1] determines the bias in each layer.

When a! 0 (a! 1), the dynamics of layer A (B) is almost

fully driven by layer B (A). An intriguing result reported in

Wang et al. [108] is that, as one layer almost dominates the

other, cooperation is very much favoured in the slave layer,

i.e. in A when a! 0 or in B when a! 1. Obviously, the

master layer then behaves almost equally as an isolated

graph, showing a greater vulnerability to defection than the

slave layer. These initial results invite further research con-

cerning the impact of multiplexity of social networks on the

evolution of cooperation.
3.4. Populations of mobile agents
Prior to focusing on coevolutionary rules, we review one

special case in which a population of mobile players is

embedded in a physical space so that a time-varying network

of interactions is constructed sequentially and in accordance

with their movements. Two possible scenarios must be dis-

tinguished. First, there are studies in which the movement

of players is independent of the evolutionary dynamics

[113–116]. Effectively, the movements thus correspond to a

random walk. Second, the motion of players can be affected

by the outcome of the game [117–123]. In addition to this

classification, we must also distinguish two different types

of space in which the players live. In particular, players can

either move on a lattice or they can move across continuous

space. In the former case, the network of interactions is set

simply by considering two players occupying two adjacent

sites as connected, so that the resulting graph is a square

lattice with a certain fraction of missing links [124]. The

usage of continuous space, on the other hand, requires the

construction of a random geometric graph every time after
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Figure 12. Coevolution of strategy and structure leads to high levels of public cooperation. Networks depict snapshots in time at (a) 0, (b) 2000 and (c) 20 000
iterations, whereby green links connect defector – cooperator pairs, blue links connect two defectors, while red links connect two cooperators. Accordingly, coop-
erators are depicted by red and defectors are depicted by blue. This figure was adapted from Wu et al. [127], where further details with respect to the simulation
set-up can also be found.
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all the players have changed their position. Such graphs are

typically constructed by connecting together all pairs of

players who are less apart than a given threshold R. This

introduces an additional parameter that allows an inter-

polation between a fully unconnected (R ¼ 0) and a fully

connected (R!1) graph.

An interesting study in which the movements were uncor-

related with the evolutionary dynamics was performed by

Cardillo et al. [116]. The players moved randomly with a con-

stant velocity v in a continuous two-dimensional plane,

establishing a random geometric graph with constant radius

R after all agents have made a move. The groups in which

the public goods game was played were then constructed as

introduced in Santos et al. [90]. Two resonance-like phenomena

were reported, given that the fraction of cooperators exhibited a

bell-shaped dependence on both v and R. Accordingly, an

intermediate degree of mobility as well as an intermediate

level of connectedness among the mobile players were found

to be optimal for the evolution of cooperation. The maximum

was found to be closely related to the percolation threshold of

a random geometric graph, much in agreement with preceding

results on static networks [125].

The set-up where the mobility was driven by the evol-

utionary dynamics was explored more often, especially for

games governed by pairwise interaction. Factors that can

affect how and when the players move include their fitness

[117,118], aspiration level [119,120], as well as reputation

[122]. In terms of group interactions, Roca et al. [121] con-

sidered a system of N agents occupying an L � L . N square

lattice. The players were allowed to move to an empty site if

their aspirations were not met. They have showed that only

moderate greediness leads to high levels of public cooperation

and social agglomeration. A similar model was studied

by Xia et al. [123], who showed that the provisioning of local

information about the pay-offs of nearest neighbours

does not alter the original conclusions presented in Roca &

Helbing [121].

We conclude this section by noting that pay-off-driven

mobility has also been explored in the framework of meta-

populations [126]. There, a population of N players moves

across a network of M nodes, where M . N. Thus, when sev-

eral players meet on the same node of the network, they

play a round of the public goods game. Subsequently,

based on the difference between the collected pay-off

and their aspiration level, they decide whether to stay or

to move to a neighbouring node. An interesting result

reported in Zhang et al. [126] is that the larger the ratio

M/N, and hence the larger the average size of groups in
which the game is played, the better the chances of

cooperators to survive.
4. Coevolutionary rules
Coevolutionary models go beyond structured populations in

the sense that the interaction network itself may be subject to

evolution [127–130]. However, this need not always be the

case, as the coevolutionary process can also affect system

properties other than the interaction network, such as the

group size [131], heritability [132], the selection of opponents

[133], the allocation of investments [134], the distribution of

public goods [135] or the punishment activity of individual

players [69]. Possibilities seem endless, as recently reviewed

for games governed by pairwise interactions [136]. Games

governed by group interactions have received comparatively

little attention.

One of the earliest coevolutionary rules affecting the inter-

action network during a public goods game was proposed

and studied by Wu et al. [127], who showed that adjusting

the social ties based on the pay-offs of players may significan-

tly promote cooperation. If given an opportunity to avoid

predominantly defective groups (referred to as a ‘nasty

environment’), the population can arrive at a globally coopera-

tive state even for low values of r. Interestingly, decoupling the

coevolutionary adjustment of social ties with the evolution of

strategies renders the proposed rule ineffective in terms of pro-

moting public cooperation. As depicted in figure 12, allowing

for the coevolution of strategy and structure leads to predomi-

nantly cooperative states out of an initially mixed population of

cooperators and defectors.

Alternative coevolutionary models affecting the interactions

among players have also been studied [128–130], with the pre-

vailing conclusion being that the evolution of public

cooperation can benefit greatly from the interplay between

strategy and structure. In particular, aspiration-induced

reconnection can induce a negative feedback effect that stops

the downfall of cooperators at low values of r and lead to

heterogeneous interaction networks [129], whereas strategy-

inspired additions and deletions of links between players

can lead to hierarchical clustering [130]. Also worth noting is

the first coevolutionary model making use of the bipartite

network formalism [137], where individuals can switch

groups. An implementation of social policies is thus possible,

and in Smaldino & Lubell [137] it was shown that restrict-

ing the maximum capacity of groups is a good policy for

promoting cooperation.



Figure 13. Rough interfaces enable defectors (red) to have an effective exploitation of cooperators (blue), thus hindering spatial reciprocity. Upon the introduction of
adaptive punishment (green, where darker (lighter) shades imply stronger (weaker) punishing activity), interfaces become smoother, which in turn invigorates
spatial reciprocity and prevents defectors from being able to exploit the public goods. A prepared initial state, corresponding to a rough interface, is used to
reveal the workings of this mechanism. Interestingly, here the stationary state is a pure C phase, while under the same conditions peer-punishment without coe-
volution yields a pure D phase. We refer to Perc & Szolnoki [69] for further details.
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Another interesting coevolutionary rule is the preferential

selection of opponents introduced in Shi et al. [133]. It was

shown that a simple pay-off-based selection can lead to

higher pay-offs along the boundaries separating cooperators

and defectors, which in turn facilitates spatial reciprocity and

leads to larger cooperative clusters. Likewise, leaving the inter-

actions among players unchanged is the dynamic allocation of

investments [134] and the success-driven distribution of public

goods studied in Perc [135]. Both frameworks have the ability

to promote cooperation, although in the latter case the com-

plete dominance of cooperators may be elusive owing to the

spontaneous emergence of super-persistent defectors. This, in

turn, indicates that success-driven mechanisms are crucial for

effectively harvesting benefits from collective actions, but

that they may also account for the observed persistence of

maladaptive behaviour.

Strategic complexity may also be subject to coevolution,

as proposed and studied in Perc & Szolnoki [69], where

players were allowed to adapt their sanctioning efforts depend-

ing on the failure of cooperation in groups where they were

members. Preceding models assumed that, once set, the fine

and cost of punishment do not change over time [59]. How-

ever, by relaxing this restriction, one obtains the spontaneous

emergence of punishment so that both defectors and those

unwilling to punish them with globally negligible invest-

ments are deterred. Crucial is the fact that adaptive punishers

are able to smooth the interfaces between cooperators and

defectors, as demonstrated in figure 13. This indicates that co-

evolution may be the key to understanding complex social

behaviour as well as its stability in the presence of seemingly

more cost-efficient strategies.

Before concluding this review, it is important to point

out that diffusion may also be seen as a coevolutionary process

[136], as it allows players to move in the population. In a series

of papers, Wakano et al. [138–140] have elaborated extensively

on the patterns that may arise in two-dimensional continuous

space. A detailed analysis of the spatio-temporal patterns

based on Fourier analysis and Lyapunov exponents reveals

the presence of spatio-temporal chaos [140], which fits with

the complexity of solutions one is likely to encounter when

studying group interactions on structured populations.
5. Outlook
Although our understanding of evolutionary processes that

are governed by group interactions has reached a remarkably

high level, there still exist unexplored problems that require

further attention. While physics-inspired studies account for
the majority of recent advances in this topic [23,24,136],

there also exist many experimental and theoretical results

on well-mixed populations that would be interesting to

verify on structured populations.

The ‘stick versus carrot’ dilemma [141–143], for example,

is yet to be settled on structured populations. It is also

important to note that recent research related to antisocial

punishment [77,80,144,145] and reward [65,78,71,141,142] is

questioning the aptness of sanctioning for elevating colla-

borative efforts and raising social welfare. The majority of

previous studies addressing the ‘stick versus carrot’ dilemma

concluded that punishment is more effective than reward in

sustaining public cooperation [72,146]. However, evidence

shows that rewards may be as effective as punishment and

lead to higher total earnings without potential damage to

reputation [147,148] or fear from retaliation [149]. In view

of recent advances concerning punishment [59–62,64] and

reward [65] on lattices, it seems worth continuing in this

direction also with antisocial punishment and the compe-

tition between punishment and reward in general. There is

also the question of the scale at which social dilemmas are

best resolved [150], as well as the issue of the emergence of

fairness in group interactions [151], which could also both

be examined on structured populations.

Complex interactions networks also offer many possibilities

for future research on games governed by group interactions.

The concept of bipartiteness [103,105], for example, appears to

be related to multi-level selection [107,152], which, however,

was so far considered without explicit network structure

describing the interactions among players. Motivation can

also be gathered from coevolutionary games [136], where

group interactions on structured populations can still be con-

sidered as being at an early stage of development. While

initially many studies that were performed only for pairwise

social dilemmas appeared to be trivially valid also for games

that are governed by group interactions, recent research has

made it clear that at least by default this is in fact not the case.

In this sense, the incentives are clearly there to re-examine the

key findings that were previously reported only for pairwise

games on complex and coevolutionary networks and also for

games that are governed by group interactions.
6. Summary
Group interactions on structured populations can be much

more than the sum of the corresponding pairwise interactions.

Strategic complexity, different public benefit functions and co-

evolutionary processes on either lattices or complex networks
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provide a rich playground that can be explored successfully

with methods of statistical physics [23,81,153]. Research per-

formed thus far offers a thorough understanding of the many

key phenomena that can be uniquely associated with games

governed by group interactions. On lattices, group interactions

effectively link players who are members of the same groups

without there being a physical connection between them.

This renders local particularities of interaction networks

largely unimportant for the outcome of the evolutionary pro-

cess, and it introduces the deterministic limit of strategy

imitation as optimal for the evolution of public cooperation

[28]. On the other hand, the size of the group [32] as well as

public benefit functions [48] gain markedly in significance,

thus offering new possibilities for exploration. Strategic com-

plexity [54,60,62,64,65] significantly increases the complexity

of solutions owing to spatial pattern formation, yet the results

obtained provide elegant explanations for several long-stand-

ing problems in the social sciences. Examples include the

second-order free-rider problem [59], as well as the stability

of reward [65] and the successful evolution of institutions

[62,64], all of which require additional strategic complexity

on well-mixed populations in order to be explained. Complex

networks and coevolutionary models further extend the sub-

ject with insightful results concerning bipartiteness [103,105]
and the rewiring of social ties [127,129], all adding significantly

to our understanding of the provisioning of public goods in

human societies.

Although the origins of prosocial behaviour in groups of

unrelated individuals are difficult to track down—there exists

evidence indicating that between-group conflicts may have

been instrumental in enhancing in-group solidarity [154],

yet alloparental care and provisioning for someone else’s

young have also been proposed as viable for igniting the

evolution of our other-regarding abilities [155]—it is a fact

that cooperation in groups is crucial for the remarkable evol-

utionary success of the human species, and it is therefore of

importance to identify mechanisms that might have spurred

its later development [2,156]. The aim of this review was to

highlight the importance of such group interactions, and to

demonstrate the suitability of methods of statistical physics

and network science for studying the evolution of

cooperation in games that are governed by them.
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individual and institutional punishments in spatial
public goods games. Phys. Rev. E 84, 046106.
(doi:10.1103/PhysRevE.84.046106)

65. Szolnoki A, Perc M. 2010 Reward and cooperation in
the spatial public goods game. EPL 92, 38003.
(doi:10.1209/0295-5075/92/38003)

66. Fehr E. 2004 Don’t lose your reputation. Nature 432,
449 – 450. (doi:10.1038/432449a)

67. Panchanathan K, Boyd R. 2004 Indirect reciprocity
can stabilize cooperation without the second-
order free rider problem. Nature 432, 499 – 502.
(doi:10.1038/nature02978)

68. Fowler JH. 2005 Second-order free-riding
problem solved? Nature 437, E8. (doi:10.1038/
nature04201)

69. Perc M, Szolnoki A. 2012 Self-organization of
punishment in structured populations. New J. Phys.
14, 043013. (doi:10.1088/1367-2630/14/4/043013)
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112. Gómez-Gardeñes J, Reinares I, Arenas A, Florı́a LM.
2012 Evolution of cooperation in multiplex
networks. Sci. Rep. 2, 620. (doi:10.1038/srep00620)

113. Meloni S, Buscarino A, Fortuna L, Frasca M, Gomez-
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