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A B S T R A C T

Metabolic engineering is a key technology for cell factories construction by rewiring cellular resources to achieve
efficient production of target chemicals. However, the existence of bottlenecks in synthetic pathway can ser-
iously affect production efficiency, which is also one of the core issues for metabolic engineers to solve.
Therefore, developing an approach for diagnosing potential metabolic bottlenecks in a faster and simpler
manner is of great significance to accelerate cell factories construction. The cell-free reaction system based on
cell lysates can transfer metabolic reactions from in vivo to in vitro, providing a flexible access to directly change
protein and metabolite variables, thus provides a potential solution for rapid identification of bottlenecks. Here,
bottleneck diagnosis of the N-acetylneuraminic acid (NeuAc) biosynthesis pathway in industrially important
chassis microorganism Bacillus subtilis was performed using cell-free synthesis system. Specifically, a highly
efficient B. subtilis cell-free system for NeuAc de novo synthesis was firstly constructed, which had a 305-fold
NeuAc synthesis rate than that in vivo and enabled fast pathway dynamics analysis. Next, through the addition of
all potential key intermediates in combination with substrate glucose respectively, it was found that insufficient
phosphoenolpyruvate supply was one of the NeuAc pathway bottlenecks. Rational in vivo metabolic engineering
of NeuAc-producing B. subtilis was further performed to eliminate the bottleneck. By down-regulating the ex-
pression level of pyruvate kinase throughout the growth phase or only in the stationary phase using inhibitory N-
terminal coding sequences (NCSs) and growth-dependent regulatory NCSs respectively, the maximal NeuAc titer
increased 2.0-fold. Our study provides a rapid method for bottleneck diagnosis, which may help to accelerate the
cycle of design, build, test and learn cycle for metabolic engineering.

1. Introduction

Identification and elimination of bottlenecks in metabolic pathways
such as rate-limiting steps and allosteric regulation is one of the key
issues to be solved during cell factories construction [1–3]. A number of
in vivo modular pathway engineering tools and algorithms have been
widely used to debottleneck pathway limitations by re-cast biosynthesis
pathway into multiple modules [4–8]. Though changing the expression
level of each enzyme or balancing multiple modules can effectively
diagnose and eliminate bottlenecks, it becomes both time-consuming
and laborious with the increase numbers of biosynthetic steps [9].
Therefore, efficient methods for bottlenecks diagnoses without genetic
engineering need to be developed.

Cell-free biosynthetic system has been developed, which transferred
multiple enzymatic reactions from in vivo to in vitro system, offering a
convenient and flexible access to living system without the blocks of
cytomembrane and cytoderm and can be potentially used for pathway
diagnosis [10–14]. Currently, cell-free bioproduction of protein and
chemical platforms for Escherichia coli, Streptomyces clavuligerus, Vibrio
natriegens and Pseudomonas putida has been investigated [15–19]. And it
has been wildly applied in protein synthesis, chemical synthesis, en-
zyme bottlenecks diagnoses, genetic circuits testing, mutant enzymes
screening, gene expression elements characterization and environ-
mental monitoring [20–27]. Though in vivo cellular dynamics and cel-
lular metabolites pools are not necessarily consistent with the in vitro
cellular dynamics and metabolite pools and cellular compartment, and
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cellular transport mechanisms were not likely investigated in cell-free
system, in vitro testing of biosynthetic pathway has great potential to
identified enzyme bottlenecks. Bacillus subtilis is the Gram-positive
model microorganism in laboratory and industrially important chassis
microorganism, which has been certified for producing Generally re-
garded as Safe (GRAS) grade products by the Food and Drug Admin-
istration (FDA) in the United States [28–40]. However, B. subtilis cell
free system has not been developed for aiding pathway bottleneck
analysis and further pathway engineering.

In previous work, engineered B. subtilis has been constructed for
bioproduction of N-acetylneuraminic acid (NeuAc), which is the most
common sialic acid form, playing a pivotal role in promoting infancy
brain development, inflammation resistance, aging resistance, and is
also precursor of many anti-virus drugs [41,42]. However, 13 enzy-
matic reactions of two branch pathways are involved in the biosynthesis
pathway of NeuAc, making it a big challenge to identify the potential
bottleneck in biosynthesis pathways in B. subtilis. Hence, it is a great
potential that the bottleneck of NeuAc synthesis can be quickly iden-
tified by in vitro testing of B. subtilis cell-free NeuAc biosynthetic system.

As a proof of concept application, B. subtilis cell-free NeuAc bio-
synthetic system was firstly constructed by optimizing cell lysis con-
ditions, protease inhibitor addition and buffer composition in this
study. Next, by adding NeuAc synthesis intermediates into cell-free
reaction, the potential metabolic bottleneck was identified (Fig. 1).
Finally, rational metabolic engineering of B. subtilis was carried out to
eliminate pathway bottlenecks for improved NeuAc production in vivo.

2. Methods

2.1. Strains and plasmids

Homologous recombination with 500 bp homologous arms was used
to edit the genome of B. subtilis. Cre-lox system was used to eliminate
the resistance selection markers on genome. All strains and plasmids
used in this study have been provided in Table 1.

2.2. Strains cultivation

Luria-Bertani (LB) medium (10 g/L tryptone, 5 g/L yeast extract,
and 10 g/L NaCl) B. subtilis fermentation medium (BFM) medium (12 g/
L yeast extract, 6 g/L tryptone, 6 g/L (NH4)2SO4, 12.5 g/L
K2HPO4·4H2O, 2.5 g/L KH2PO4, 3 g/L MgSO4·7H2O, and 60 g/L glu-
cose, the pH of the medium was titrated to 7.0 using saturated NH4OH
solution) was used for cell cultivation.

Fermentation experiment for NeuAc production: first, colonies on
the plates were picked and inoculated into 3 ml fresh LB medium. Then,
it was cultured at 37 °C for 8 h with shaking at 220 rpm. Next, 2.5 ml of
the culture was inoculated in a 500 ml shake flask containing 50 ml
fresh BFM medium, which was then cultured at 37 °C for 48 h with
shaking at 220 rpm.

Cells cultured for cell-free system making protocol: the cultivation
method is the same as that of the fermentation experiment, but the
cultivation time of the cells in 500 ml shake flasks was reduced to 16 h.

2.3. Preparation of crude cell extracts

The culture from 500 ml shake flasks were firstly harvested by
centrifugation at 5000 x g and 4 °C for 10 min. The centrifuged cell

Fig. 1. Diagram of cell-free system based metabolic bottleneck diagnosis. (a) Establishing a B. subtilis cell-free (BCF) system. (b) Establishing a B. subtilis cell-free
synthesis (BCFS) system for NeuAc. (C) Bottleneck identification based on BCFS system and bottleneck elimination using NCSs.
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pellets were then washed three times by cell free phosphate balanced
saline buffer (CFPBS buffer, 4 g/L NaCl, 1.815 g/L Na2HPO4·12H2O,
0.1 g/L KCl, 0.135 g/L KH2PO4, 1 g/L MgCl2·6H2O, 0.31 g/L dithio-
threitol) or S30A buffer (50 mM Tris–acetate buffer with 0.1 g/L KCl,
0.135 g/L, 1 g/L MgCl2·6H2O and 0.31 g/L dithiothreitol) to remove
extracellular metabolites and proteases [14]. After weighed, 1 g har-
vested cell pellets were resuspended in 2 ml CFPBS buffer or S30A
buffer. Next, cells were lysed by sonication using an ultrasonic cell
disruptor (10180302, Ningbo Xinzhi Biotechnology Co., Ltd.) in an ice-
water bath for 120 min at 30% of the total power of 950 W. Short pulses
(2 s) with pauses (4 s) were used to maintain low temperature. And the
cell lysate was further centrifuged at 4 °C, 12000 x g for 20 min. After
taking all the supernatant as crude cell extracts, the protein con-
centration was tested, which was about 20–25 g/L.

2.4. Cell-free reaction

First, prepare BCFS reaction buffer on ice according to Table 2 in to
a 1.5 ml EP tube. After incubated at 37 °C for 10 min with shaking at
800 rpm, all the reaction substrate stock buffer (glucose, F6P (Fructose-
6P), GlcN6P (glucosamine-6P), GlcNAc6P (N-acetylglucosamine-6P),
GlcNAc, ManNAc (N-acetylmannose), PEP (Phosphoenolpyruvate)) was
added into the reaction system to turn on the reaction system. The re-
action time was fixed to 10 min unless noted otherwise. Trichloroacetic
acid solution (50 g/L) was used to terminate the reaction. Finally, the
terminate reaction buffer was centrifuged at 4 °C, 12000 x g for 15 min
and the supernatant was used for further liquid chromatography de-
tection.

2.5. Analytical methods

Biomass was determined by measuring optical density at 600 nm
(OD600).

Citation 3 Multi-Mode Reader (BIOTEK, USA) was used to mea-
suring fluorescence intensities with an excitation wavelength of 488
and an emission wavelength of 523. The background fluorescence in-
tensities of CFPBS buffer were first subtracted from total detected
fluorescence values. Then, all average fluorescence intensities were
normalized from 0 to 100.

Protein concentration was detected using a BCA (Bicinchoninic
Acid) protein concentration determination kit (Tiangen Biochemical
Technology Co., Ltd., Beijing, China).

NeuAc concentration was detected using a high-performance liquid
chromatography (HPLC, Agilent 1200 Series, USA) with an ultraviolet
absorption detector (210 nm) and an Aminex HPX-87H column
(300 × 7.8 mm, Bio-Rad, Hercules, CA, USA) with a flow rate of
0.6 mL/min at 40 °C.

2.6. Model simulation

The genome-scale metabolic model of B. subtilis was used to predict
the essential ions of the BCFS system [43]. First, the reaction from
GlcNAc to ManNAc and from ManNAc to NeuAc was added to the
model. After changing the objective of the model to NeuAc synthesis
using changeObjective function, the theoretical maximum yield of
NeuAc was calculated using optimizeCbModel function. According to
the simulated results, Mn2+, Zn2+, phosphate and SO42+ was uptake
by the cell for bioreaction. So Mn2+ and Zn2+ was extra tested with a
concentration of 0.33 mg/L MnSO4·H2O and 3.8 mg/L ZnSO4·7H2O as
the same concentration of the culture medium.

3. Results

3.1. Developing a B. subtilis cell-free system

In order to construct a B. subtilis cell-free (BCF) system, optimization
of cell lysis methods was first carried out. As a Gram-positive bac-
terium, B. subtilis's cell wall is more difficult to be disrupted compared
to Gram-negative bacterium E. coli. When cells are lysed by sonication,
the volume of the bacterial suspension and the processing time affect
both the degree of cell disruption and protein activity. To monitor the
protein degradation in the lysate, B. subtilis that expresses green fluor-
escent protein (GFP) intracellularly was used. By monitoring the

Table 1
Strains and plasmids used in this study.

Names Characteristics Source or Reference

Strains
BSU168 B. subtilis 168 trpC2 BGSC 1A1
BSU168- pP43NMK-GFP B. subtilis 168 trpC2 harboring pP43NMK-GFP Tian et al. [42]
BSGN6 B. subtilis 168 derivate Liu et al. [46]
B6AN BSGN6 harboring plasmid pP43NMK-AGE-NEUB Zhang et al. [41]
B6AN-NgroeS-pyk B6AN derivate, with NgroeS inserted into the 5′ end of the pyk gene This work
B6AN-NpepF-pyk B6AN derivate, with NpepF inserted into the 5′ end of the pyk gene This work
B6AN-NydiC-pyk B6AN derivate, with NydiC inserted into the 5′ end of the pyk gene This work
B6AN-NrpsD-pyk B6AN derivate, with NrpsD inserted into the 5′ end of the pyk gene This work
B6AN-NlipA-pyk B6AN derivate, with NlipA inserted into the 5′ end of the pyk gene This work
B6AN-Nhbs-pyk B6AN derivate, with Nhbs inserted into the 5′ end of the pyk gene This work
B6AN-NyxjG-pyk B6AN derivate, with NyxjG inserted into the 5′ end of the pyk gene This work
B6AN-NmenK-pyk B6AN derivate, with NmenK inserted into the 5′ end of the pyk gene This work
B6AN-NyoaD-pyk B6AN derivate, with NyoaD inserted into the 5′ end of the pyk gene This work
B6AN-NyvgN-pyk B6AN derivate, with NyvgN inserted into the 5′ end of the pyk gene This work

Plasmids
pP43NMK-GFP pP43NMK derivate with gfp cloned under the control of P43 promoter Tian et al. [42]
pP43NMK-AGE-NEUB pP43NMK derivate with age and neuB cloned under the control of P43 promoter Zhang et al. [41]

Table 2
BCFS reaction system.

Compound Stock
concentration

Volume Final
concentration

ATP (x20) 60 mM 62.5 μL 3 mM
NAD+ (x100) 57.5 mM 12.5 μL 0.575 mM
ADP (x50) 150 mM 25 μL 3 mM
Sodium phosphate buffer

(Na2HPO4 and NaH2PO4,
pH = 7.0)

100 mM 100 μL 10 mM

Crude cell extracts 1000 μL
Total ~1.2 mL
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fluorescence intensity in the supernatant, changes in protein content in
the lysate can be easily characterized. First, the lysis volume is opti-
mized. When the lysis volume is reduced, the bacterial suspension can
fully contact the ice bath, which can slow down the protein denatura-
tion, but the local high temperature around the ultrasonic probe will
also accelerate the protein denaturation. As the lysis volume increase,
the system temperature may rise due to insufficient ice bath. However,
the damage of protein activity by local high temperature around the
ultrasonic probe can be weakened. Three gradient volumes were se-
lected for testing: 1 ml, 7.5 ml and 15 ml. At the same time, we took
samples at different sonication times as insufficient time may cause
incomplete cell lysis and excessive time may cause protein degradation
or inactivation. It can be seen from the results that the maximum
amount of active protein can be obtained after a 25-min sonication of
15 ml bacterial suspension (Fig. 2a).

At the same time, the protease of B. subtilis needs to be considered
when establishing the BCF system. B. subtilis has a strong ability to
secrete extracellular proteases, and a large amount of extracellular
protease will be produced after the logarithmic growth phase, which
can seriously affect the stability of the cell-free reaction system.
Therefore, additional protease inhibitors are needed to slow down the
degradation of key proteins by protease during the reaction. To inhibit
a variety kind of proteases, including serine proteases, cysteine pro-
teases, aspartic proteases and metalloproteases, protease inhibitor
cocktails are chosen to achieve inhibition of various proteases. After
adding the protease inhibitor cocktail, the protein degradation rate was
slowed down, and the decrease in fluorescence intensity was reduced
by 8.2% at 1.5 h (Fig. 2b).

3.2. Establishing a B. subtilis cell-free NeuAc synthesis system

The B. subtilis cell-free synthesis (BCFS) system suitable for NeuAc in
vitro synthesis was further established. First, the cell culture time was
carefully selected. During the fermentation process, the cell activity at
different growth stages varies greatly. Harvesting cells at the time point
when the NeuAc production rate is highest can accelerate the rate of
NeuAc synthesis during the cell-free reaction. Therefore, the growth
curve and the NeuAc biosynthesis curve of the NeuAc biosynthesis
strain were measured, and the NeuAc specific synthesis rate per cell per
hour was calculated (Fig. 3a). The fermentation curve showed that the
NeuAc ratio synthesis rate reached the maximum in the middle of
logarithmic growth (16 h), which was 0.005 g/L/OD600/h (Fig. 3a).
Therefore, the bacterial cell harvest time was fixed at 16 h.

Next, the NeuAc extracellular biosynthesis buffer was optimized to
ensure efficient cell-free reactions. First, two commonly used enzymatic
reaction buffers were selected for further testing of cell-free reactions:
cell-free phosphate balanced saline (CFPBS) and S30A buffer. In the
BCF system, some ions are considered to be the key factors affecting

enzyme activity, such as Mg2+ and K+, which are already components
of two buffers. However, for the biosynthesis of NeuAc by B. subtilis,
there may be additional ions necessary for NeuAc synthesis. To search
for these specific ions, a genome-scale metabolic model of B. subtilis was
used [43].

After adding the NeuAc biosynthetic pathway to the model, the
objective of the model was changed to NeuAc synthesis. The simulation
results show the absorption of Mn2+, Zn2+, and SO42+. Therefore,
additional addition of these ions was performed in both buffers to verify
its effectiveness. The experimental results show that the highest titer of
NeuAc in S30A buffer is 11.4% higher than that in CFPBS, reaching
0.265 g/L (Fig. 3b). However, the additional addition of predicted ions
can only slightly promote NeuAc synthesis. The possible reason is that
the cell lysate itself contains enough essential ions, or that these pre-
dicted ions play a key role in other cell functions, but have little effect
on NeuAc synthesis. In summary, a BCFS system that can efficiently
produce NeuAc has been established, and its NeuAc biosynthesis rate
(25.633 g/L/h) is 305-fold than that of fermentation (0.084 g/L/h),
which laid the foundation for further diagnosis potential bottlenecks in
biosynthesis pathways for NeuAc.

3.3. In vitro diagnosing NeuAc biosynthesis bottlenecks

The optimized BCFS system was further used to diagnose the po-
tential metabolic bottleneck of the NeuAc synthesis pathway (Fig. 4a).
The low flux of enzymatic reactions or competition of other metabolic
pathways for intermediates can greatly limit the synthesis rate of the
target metabolites, thus the synthesis rate of the target metabolite can
be increased by adding the corresponding intermediates. NeuAc is
synthesized from two direct precursors, including ManNAc and PEP
(Fig. 4a). Therefore, all intermediates in the ManNAc synthesis pathway
and PEP in the endogenous glycolysis pathway were added separately
to the NeuAc cell-free synthesis system at different concentrations. The
results showed that the NeuAc titer increased significantly by 94% to
0.621 g/L when 1 g/L of PEP was added, while there was no significant
change in NeuAc titer when all other intermediate metabolites were
added, revealed that insufficient PEP may be the potential bottlenecks
in biosynthesis pathways for NeuAc (Fig. 4b).

Fig. 2. Optimization of the BCF system making protocol. (a) Cell suspension
volume optimization for sonication characterized by fluorescence intensity. “CK
15 ml” indicate wild type B. subtilis 168 was lysed by sonication in a volume of
15 ml as blank control. (b) Effect of protease inhibitor cocktail on protein de-
gradation. "+", additional added; "-", no additional added. Triplicate fermen-
tation experiments were carried out, and error bars represent standard devia-
tion (SD).

Fig. 3. Optimization of the BCFS system making protocol. (a) Growth curve and
the NeuAc biosynthesis curve of the NeuAc biosynthesis strain. (b)
Optimization of cell-free reaction buffer. CFPBS buffer, cell-free phosphate
balanced saline buffer; "+", additional added; "-", no additional added.
Triplicate fermentation experiments were carried out, and error bars represent
standard deviation (SD).
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3.4. In vivo eliminating NeuAc biosynthesis bottlenecks

In vivo experiments were then carried out to verify and eliminate the
metabolic bottleneck diagnosed by the BCFS system. Since PEP is in the
high-flux glycolysis pathway when glucose is the substrate, the main
reason for the lack may be efficient conversion to pyruvate. Therefore,
blocking the formation of pyruvate from PEP can theoretically increase
the accumulation of PEP. However, knocking out pyruvate kinase (Pyk)
will greatly limit the TCA cycle and further have a greater impact on
cell growth [44,45]. Therefore, reducing the expression of Pyk to an
appropriate level is the potential optimal way to achieve a balance
between cell growth and NeuAc biosynthesis.

Among all the available gene expression regulatory elements, N-
terminal coding sequences (NCSs) were selected to regulate the ex-
pression level of pyk due to its easy-to-operate characteristics, wide
range of expression regulation levels and dynamic patterns [42]. First,
five inhibitory NCSs (N groeS, N pepF, N ydiC, N rpsD, N lipA) and five
growth-dependent regulatory NCSs (N hbs, N yxjG, N menK, N yoaD, N
yvgN) was chosen for down-regulating pyk expression level throughout
the growth phase or only in the stationary phase by fused to the 5 'end
of the pyk gene on genome, respectively (Fig. 4c). Fermentation ex-
periments showed that all engineered strains have achieved different
degrees of increase in NeuAc titer and the N ydiC fusion strain reached a
titer of 3.015 g/L, which is 2.05-fold of the control. Maximum OD600 of
N ydiC fusion strain was 14.35, which decreased 15.84% compared to
that of control. As our experimental results indicated, the existence of
metabolic bottlenecks in the NeuAc biosynthetic pathway in B. subtilis
was demonstrated and further eliminated.

4. Conclusion

Our study provides an example to take easy access to in vivo reac-
tions and achieve quick identification of metabolic bottlenecks. A
highly efficient NeuAc cell-free synthesis system based on B. subtilis cell
lysate was developed and used to diagnose the potential metabolic
bottleneck of the NeuAc synthesis pathway in B. subtilis. The experi-
mental results revealed that insufficient PEP severely limit the synthesis
of NeuAc. We also verified the identified metabolic bottlenecks in vivo,
achieving an increase of NeuAc production level. In addition, the
method of constructing and optimizing the cell-free reaction system can
be extended to other microorganisms and for other applications in
metabolic engineering, such as efficient synthesis of cytotoxic proteins,
efficient synthesis of cytotoxic compounds, kinetic monitoring of in-
termediates, characterization of gene expression regulatory elements

and efficient gene amplification.
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