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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Visual stimuli evoke fast-evolving activity patterns that are distributed across multiple corti-

cal areas. These areas are hierarchically structured, as indicated by their anatomical projec-

tions, but how large-scale feedforward and feedback streams are functionally organized in

this system remains an important missing clue to understanding cortical processing. By ana-

lyzing visual evoked responses in laminar recordings from 6 cortical areas in awake mice,

we uncovered a dominant feedforward network with scale-free interactions in the time

domain. In addition, we established the simultaneous presence of a gamma band feedfor-

ward and 2 low frequency feedback networks, each with a distinct laminar functional con-

nectivity profile, frequency spectrum, temporal dynamics, and functional hierarchy. We

could identify distinct roles for each of these 4 processing streams, by leveraging stimulus

contrast effects, analyzing receptive field (RF) convergency along functional interactions,

and determining relationships to spiking activity. Our results support a dynamic dual coun-

terstream view of hierarchical processing and provide new insight into how separate func-

tional streams can simultaneously and dynamically support visual processes.

Introduction

Visual processes exhibit complex patterns of fast-evolving activity that are distributed across

cortex. Within 100 ms after stimulus onset, activity spreads throughout visual cortex and

beyond, both in primates and rodents [1,2], enabling functional cortico–cortical interactions

that are necessary for even the most elementary visual operations [3,4]. Such networked pro-

cessing occurs over dense anatomical projections that reciprocally connect cortical areas.

Across visual cortex, the structure of projections indicates a hierarchical organization, with

feedforward projections that can propagate sensory activity from lower to higher level areas,

and feedback projections that can exert downstream influences [5–7]. Understanding how

visual cortex enables fast, distributed processing over its fixed hierarchical structure may pro-

vide important clues to further understanding large-scale cortical function.

Visual processing critically depends on both feedforward and feedback processes [8]. Based

on onset latencies after stimulation, it was shown that the feedforward spread of activity from
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V1 mostly follows the structurally defined hierarchy [1,2] and that a fast feedforward sweep

precedes feedback signals from higher-order areas [9]. But due to the fast mixing of activities

after onset, it remains unclear how feedforward and feedback interactions dynamically shape

visual processing, which mostly occurs after activity onset.

Candidate mechanisms for how visual cortex could support a mixture of feedforward and

feedback processes have been proposed based on the laminar structure of hierarchical projec-

tions and the rhythmicity of neural activity. Recordings across cortical columns have indicated

laminar and frequency differences in feedforward and feedback activities [4,10], where gamma

activity in supragranular layers is thought of as feedforward propagation [10–13], and lower

frequency activity in infragranular layers is associated with interareal feedback [14,15]. But,

although quasiperiodic activity is pervasive in neural systems and much studied, there is no

strong consensus on the functional role of different frequency bands [15–17]. In addition,

scale-free activity without a dominant rhythm is an equally widespread phenomenon in neural

systems [18,19].

To functionally characterize feedforward and feedback streams in the time and frequency

domain, we used visually evoked activity recorded in awake mice across the visual hierarchy

with laminar resolution. By using Parallel Factor Analysis (PARAFAC) of directed cortico–

cortical networks, we uncovered the simultaneous presence of 2 feedforward and 2 feedback

networks, each with distinct laminar connectivity profiles, operational frequencies, temporal

dynamics, and functional hierarchical organization. TAU : PleasecheckwhethertheeditstothesentenceThedominantnetworkhadscale � freeproperties:::arecorrect; andprovidecorrectwordingifnecessary:he dominant network had scale-free

properties in the time domain, and for each of the 4 processing streams, we could determine

distinct roles by leveraging well-described effects of stimulus contrast, analyzing receptive field

(RF) convergency [20,21], and determining its relation to spiking activity dynamics across the

cortical hierarchy.

Results

Neural activity and functional interactions show complex dynamics

We analyzed local field potentials (LFPs) from 11 awake wild-type mice recorded simulta-

neously from 5 or 6 visual areas with laminar resolution during presentation of high or low

contrast drifting gratings (Fig 1A and 1B). These data were made available by the Allen Insti-

tute for Brain Science (see Methods). Stimulus-evoked LFPs showed expected fast dynamic

responses across layers and areas throughout the cortical hierarchy (Fig 1C) [2], in line with

results from nonhuman primates [1].

To derive functional interaction strengths between all areas and layers, we used an opti-

mized Kalman filter to model dependencies between LFPs and calculated the information par-

tial directed coherence (iPDC) [22,23]. iPDC provides a multivariate measure of directed

functional connectivity (Granger causality) with high temporal and frequency resolution. It

indicates how well activity in each layer predicts activity in all other layers, within and between

areas. The resulting directed functional connectivity matrices revealed a detailed time–fre-

quency representation of between-area interaction strengths across visual cortex. After stimu-

lus onset, the overall interaction strengths quickly and transiently increased across the

frequency spectrum (Fig 1D). This was followed by sustained interactions in the beta and low

gamma band, with a narrowband power reduction around 60 Hz [24,25]. The area-by-area

summary showed that fast broadband increases occurred for interaction strengths from all

areas, but that outgoing interactions from V1 showed the strongest response, with clearly sus-

tained interactions across time (Fig 1E). The overall laminar profile revealed that the strongest

interactions came from L2 (mostly targeting L2, L4, and L5 in other areas), L3 (to L2 and L3),
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L4 (to L2 and L3), L5 (to L2), and L6 (to L2 and L6), while interactions from L1 were weaker

by comparison (Fig 1F).

Averaging across areas and layers, we confirmed that stimulus onset induced statistically

robust functional connectivity changes and found that the interactions were contrast sensitive.

Induced connectivity onset was around 50 ms for high contrast and 85 ms for low contrast sti-

muli (Fig 2), following known contrast dependency of LFPs [20]. The initial response was fol-

lowed by sustained, frequency-specific increases in gamma band interactions that peaked

around 35 and 25 Hz for high and low contrast stimuli, respectively. This indicates that reduc-

ing stimulus contrast lowers the gamma band interaction frequency, similar to its effect on

LFP power spectra [16,26,27].

The overall power spectral density (PSD) in the time and frequency domain showed an

important resemblance to the overall iPDC results. For high contrast stimuli, PSD showed a

quick broadband increase in power that was followed by sustained activity in the beta and

lower gamma band. For low contrast stimuli, a rhythmic modulation of power in these bands

was apparent, together with induced power in the theta band. The area- and layer-specific PSD

for low and high contrast stimuli are provided in S1 Fig. These supplementary PSD data also

Fig 1. Visual stimuli evoke large-scale activity and functional interactions. (a) Laminar recording sites across cortical areas from 11 mice, in the

Allen Institute for Brain Science’s standard CCFv3 space. (b) Visual stimuli were drifting gratings (2 Hz) of high (80%) or low (10%) contrast,

presented for 2 S. (c) Grand average bipolar LFPs for high contrast stimuli, for L1 to L6 in 6 visual areas, shown in anatomical hierarchical order [7].

(d) Directed functional connectivity (iPDC) in the time and frequency domain, averaged over all areas, layers, and animals. (e) Time–frequency

connectivity between areas, averaged over layers, and animals. (f) Time–frequency connectivity between layers, averaged over areas, and animals.

Heatmaps show percentage of poststimulus change following the colormap in d, columns indicate sources, and rows indicate targets of directed

functional interactions. Underlying data: https://osf.io/pqf7z. iAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1 � 6:Pleaseverifythatallentriesarecorrect:PDC, information partial directed coherence; LFP, local field potential.

https://doi.org/10.1371/journal.pbio.3001534.g001
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further illustrate the previously observed narrowband 60-Hz power decreases and their rela-

tion to stimulus contrast [24,25]. Resemblance between iPDC and PSD in the time–frequency

domain is expected, because power in an area is necessary (although not sufficient) for it to

exert casual influence onto another area (in both the physical and statistical sense of causal),

and it confirms that interactions occurred together with induced spectral power in the source

regions [28].

Using the corresponding spike-sorted data from the Allen Institute for Brain Science [2],

we confirmed that neuronal firing rates reflect key aspects of the functional connectivity and

spectral power dynamics. Averaged spiking activity showed robust responses shortly after

stimulus onset, in all cortical areas and most layers (Fig 2). Spiking activity showed typical

early onsets in L4 of V1 and a quick temporal progression of activity across areas and layers

[2]. In addition, rhythmic activity was apparent across layers for low contrast stimuli induced,

and it appeared to be more synchronized across areas in the infragranular layers [29]. These

results confirm that the iPDC and PSD data are supported by local spiking activity that follows

a similar dynamic across layers and areas. We next leveraged the directionality of the iPDC

results by investigating the 2-way functional interactions between all layers and areas.

Four concurrent networks in mouse visual cortex

To further analyze the time- and frequency-resolved functional connectivity across visual cor-

tex, we used PARAFAC, a tensor rank decomposition method that provides robust and inter-

pretable results [30]. PARAFAC has previously been used to identify constituent components

of time-varying PSD [31,32] and functional connectivity [33]. PARAFAC guarantees a unique

solution when the appropriate number of components is selected. To select this number, we

combined multiple criteria, including the core consistency diagnostic, mean square error,

model convergence, and visual inspection [30,32,34]. This showed that the functional connec-

tivity matrices were best decomposed into 4 components, independently for low and high

Fig 2. Stimulus-related functional connectivity, PSD, and spiking activity. (a) The upper left panel shows time–frequency plots of statistically significant functional

connectivity increases with respect to baseline (1-way t tests p< 0.05, Bonferroni corrected), for high contrast stimuli. Data averaged across layers and areas, the

marginal distributions reflect t-values. The lower left panel shows overall changes in PSD (Morlet wavelet) with respect to prestimulus time. The panels on the right show

averaged spike rate changes with respect to prestimulus time for L2 to L6 of each area. (b) Shows the corresponding results for low contrast stimuli. Underlying data:

https://osf.io/pqf7z. PSD, power spectral density.

https://doi.org/10.1371/journal.pbio.3001534.g002
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contrast conditions, and explaining around 90% of total variance. We confirmed the reliability

and validity of the 4-way model across animals using a bootstrap analysis that showed high

consistency across bootstraps for each component (average correlation coefficients for all

components > 0.81, p< 0.05) and low correlations between components (average correlation

coefficients = 0.21, not significant).

This way, we established that the dynamic laminar functional connectivity pattern across

the visual hierarchy can be decomposed into 4 distinct networks, each of which reflects a dis-

tinct processing stream defined by its directed connectivity strengths between areas over

source layers, target layers, frequency spectrum, and temporal dynamics (Fig 3).

Fig 3. Four concurrent functional networks in visual cortex. (a) Laminar input and output strengths (loadings) for the 2 FF and 2 FB

networks. Blue stars indicate layers with larger amplitude than the uniform distribution, calculated based on 95% confidence interval. (b)

Frequency distributions of each network. (c) Temporal dynamics per network, as percentage of change compared to prestimulus period,

calculated from temporal loadings. Shading indicates statistically significant increases from baseline. (d) Functional hierarchy scores calculated

from between-area connectivity loadings (see Methods). The higher and lower limits of box plots indicate bootstrapped 25 and 75 quantiles of

the hierarchy scores, and whiskers indicate extreme values excluding outliers. For a, b, and c, error bars and gray shading indicate SDs over

bootstraps (n = 500). Underlying data: https://osf.io/pqf7z. FB, feedback; FF, feedforward.

https://doi.org/10.1371/journal.pbio.3001534.g003

PLOS BIOLOGY Four concurrent feedforward and feedback networks with different roles in the visual cortical hierarchy

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001534 February 10, 2022 5 / 22

https://osf.io/pqf7z
https://doi.org/10.1371/journal.pbio.3001534.g003
https://doi.org/10.1371/journal.pbio.3001534


A dominant scale-free network

We found that a network with scale-free properties in the time domain was the dominant net-

work, accounting for about 50% ± 5% (mean ± SD) of the PARAFAC model amplitude, in

both stimulus contrasts. The connectivity strengths in this network were relatively uniformly

distributed over source and target layers, but showed significantly stronger connections from

L4 and L5 and toward L5 than expected by chance (Fig 3A). This pattern of laminar connectiv-

ity resembles the distribution of feedforward targeting neurons through infragranular layers,

particularly L5, as established by retrograde tracing in mouse [7] and monkey [6].

The network’s frequency spectrum followed a power law distribution for both low and high

contrast stimuli, revealing a scale-free temporal dynamic where no particular rhythm domi-

nates the functional interactions (Fig 3B). Power law distributions take the form 1/fβ, where β
quantifies the self-similarity in the time domain (autocorrelation). Model fitting of the scale-

free network showed a β exponent of 0.4, lower than typical autocorrelations for electrophysio-

logical data, which fall in the range of 1 to 3 for the frequency range of 1 to 100 Hz [19]. To test

whether the low β values are characteristic of the network or of the underlying LFPs, we fitted

power law distributions to the PSDs of LFPs in all areas. This revealed higher β exponents

(2 ± 0.5 mean ± SD over bootstraps), demonstrating that low self-similarity rather is a property

of the scale-free network than of the underlying LFPs. We note that the iPDC calculation

involved a normalization that was done independently for each time and frequency point,

which avoids systematic effects of 1/f from the LFP. These results indicate that between-area

functional interactions have greater agility in time than the within-area activity.

The scale-free network showed robust amplitude increases quickly after stimulus onset,

which decreased after around 150 ms, but exceeded prestimulus values throughout the epoch

(p< 0.05, Bonferroni corrected, Fig 3C). This fast network activation, together with its laminar

profile, supports the idea that sensory activation is quickly relayed across areas over infragra-

nular layers [35]. The scale-free network showed different dynamics depending on stimulus

contrast. With low contrast, onset latencies were delayed (from around 50 to 80 ms), and a

more pronounced second peak occurred at around 300 ms before amplitudes decreased (cf

Fig 2).

To characterize whether the direction of interactions followed a predominant feedforward

or feedback pattern, we derived functional hierarchy scores per area, using the asymmetry of

between-area functional connectivity strengths [12] (see Methods). Each area was assigned a

level in a functional hierarchy, such that the net functional interactions went from lower to

higher level areas. By comparing the functional hierarchies to the structural hierarchy estab-

lished from axonal projections [7], we inferred the predominant flow direction. For example,

when the functional hierarchy follows the structural hierarchy, this indicates a feedforward

flow since structurally defined low-level areas are driving higher level areas more strongly than

the other way around. Vice versa, when structurally defined high-level areas are at the bottom

of the functional hierarchy, this suggests a feedback network because high-level areas more

strongly drive lower-level areas.

The scale-free network showed a functional hierarchy with V1 and LM at the bottom fol-

lowed by the other areas (Fig 3D), indicating a mainly feedforward direction of interactions.

The functional hierarchy resembled the structural hierarchy established from axonal projec-

tions [2,7], but it put PM at a lower ordinal position. Area PM, like V1, preferentially responds

to low temporal and high spatial frequencies, while LM, AL, RL, and AM prefer high temporal

and low spatial frequencies [36]. The temporal and spatial frequencies of the drifting gratings

were closer to the preferred frequencies of PM, allowing it to more strongly drive activity in

other areas, thus lowering its position in the functional hierarchy.
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In summary, we found a dominant scale-free network whose laminar connectivity profile

and functional hierarchy indicate a predominant feedforward direction of interactions. The

network responds strongly but transiently to stimulus onsets with some contrast sensitivity.

Visual stimuli recruit a feedforward gamma band network

The second strongest network contributed 18% ± 2% of total model amplitude, for both stimu-

lus contrast. Its laminar connectivity pattern showed L2 and L3 as both the strongest source

and target layers (Fig 3A), a pattern that is typically associated with feedforward processing

streams in mouse and primate [6,37–39].

This network showed clear peak amplitudes in the gamma band, broadly defined as 25 to

100 Hz. Visually induced gamma band activity is typically linked to feedforward processes

[11,26] and may help synchronize activities between cortical regions [13]. The network’s peak

frequency changed with stimulus contrast, centering around 38 Hz for high contrast and

around 26 Hz for low contrast (Fig 3B), resembling the frequency shift observed in overall func-

tional connectivity strengths (Fig 2), and the contrast sensitivity of gamma band LFP responses

[16,27]. Such strong contrast sensitivity indicates a role in processing stimulus content.

The gamma band network also showed contrast dependency in its temporal dynamics (Fig

3C). For high contrast stimuli, this network showed increased amplitudes after 50 ms that

were sustained throughout stimulus presentation. In the low contrast condition, amplitude

increase started around 70 ms and were sustained with an apparent rhythmic modulation.

These effects resemble the contrast effects in the scale-free network, as well as those observed

in overall functional connectivity, spectral power, and spiking activity. The specific rhythmic-

ity with low but not high contrast stimuli makes it unlikely that the induced rhythm simply

reflects the grating temporal frequency (2 Hz).

Functional hierarchy analysis confirmed the feedforward character, with V1 located lowest

and the ordinal position of the other areas following the structural hierarchy [7,38]. As in the

scale-free network, the gamma band network showed a relatively low hierarchical position for

area PM, possibly due to the stimulus characteristics and response properties of this area [36].

In sum, the gamma band network shows a laminar interareal connectivity pattern and hier-

archical organization that conforms to known feedforward structural connectivity patterns.

The network showed a sustained response to visual stimulation that strongly depended on

stimulus contrast.

Two low frequency feedback networks

In addition to the feedforward networks, we uncovered 2 feedback networks that accounted

for 17% ± 2% and 15% ± 4% of model amplitude. One was a supragranular network, with puta-

tive L1 as the main source and target of interareal connections, and the other was an infragra-

nular network with L6 as the main source and target (Fig 3A). Anatomical studies of primate

visual cortex in monkey established that besides the well-known feedback pathway over L6,

another feedback pathway exists over supragranular layers L1 and L2 [6,38,39]. Our findings

for the first time distinguish these 2 feedback pathways using analysis of functional data and

demonstrate their presence in mouse.

In accord with a presumed feedback function, we found that both networks showed a

broad low frequency distribution, which peaked at 5 and 6 Hz, respectively, and included the

alpha band (full width half maximum of 1 to 14 Hz and 2.5 to 15.5 Hz, respectively). Previous

works identified low frequency interactions as signatures of feedback processing in visual cor-

tex of cat and monkey, using functional connectivity analysis and causal interference [10,40],

although theta has also been associated with feedforward processes [12,41].
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The 2 feedback networks showed strikingly different response dynamics and contrast sensi-

tivities. The supragranular feedback network showed fast and transient amplitude increases

with typical contrast sensitivity, i.e., slower onset and reduced amplitudes for low contrast sti-

muli (50 versus 85 ms). In addition, low contrast stimuli induced a second amplitude increase

at around the same latency that the feedforward networks showed a second low contrast peak.

The infragranular feedback network, conversely, showed quickly decreased amplitudes for

high contrast stimuli, between 50 and 120 ms, but increased amplitudes for low contrast sti-

muli at longer latencies, between 155 and 280 ms. This indicates enhanced feedback for low

contrast stimuli at longer latencies [9,21]. In addition, these findings show how stimulus con-

trast differentially recruits the 2 feedback pathways, first over infragranular and then over

supragranular pathways, suggesting a functional dissociation of feedback streams.

The feedback networks had distinct functional hierarchies. The supragranular network

showed AM and V1 at the bottom of a hierarchical organization that otherwise resembled the

structural hierarchy [2,7], but with lower hierarchy scores for RL and AL than in the feedfor-

ward networks. The low hierarchical positions of high-level visual areas characterize the supra-

granular network as a feedback network, in line with its laminar connectivity and frequency

spectrum. For the infragranular network, area RL showed the lowest hierarchy score, but the

other areas appeared not to be hierarchically ordered, with V1 having a higher hierarchy score

than in any of the other networks. The low RL position supports a predominant feedback

directionality for the infragranular network.

Taken together, these findings distinguish 2 feedback networks, 1 operating over supragra-

nular and 1 over infragranular layers. The networks share a low frequency profile but differ in

how they respond to stimulus onset, their contrast sensitivity, and their functional hierarchies.

This differentiation is in line with the distinct influences of feedback arriving in the superficial

or deep layers and how this affects neural activity in the cortical column [35,42–44].

Rhythmic modulation of feedforward networks

The feedforward networks appeared to show rhythmic amplitude modulations in time, espe-

cially for low contrast stimuli (Fig 3). These modulations were similar to the rhythmicity

observed in PSD, spiking activity dynamics (Fig 2, S1 Fig), and bipolar LFPs (S2 Fig). To fur-

ther investigate this modulation, we applied Fourier transformation on the poststimulus win-

dow of temporal loadings, after removing linear trends. This revealed a rhythmic modulation

of both feedforward networks that was most prominent for low contrast stimuli and had a

peak frequency of around 5 Hz (Fig 4).

Theta band rhythms in mice are common in hippocampus, but also occur in sensory areas

[15,45]. In the current data, the theta modulation is likely of cortical origin and unlikely to

result from micro-saccades, because of how it varies with stimulus contrast. The possibility

that accounts for the theta modulation of feedforward networks was excluded in a control

analysis. Theta rhythms in sensory cortex have been shown to organize local activity, in mouse

and monkey [41,45,46]. Although theta rhythmic functional interactions were previously

reported in monkey [47] and cat [14], our results show a rhythmic amplification of entire feed-

forward networks, particularly when stimuli are less visible.

RF distances and functional connectivity

Considerable evidence shows that feedforward projections tend to converge onto matching

RFs in upstream areas, whereas feedback projections tend to be more divergent [6,8,48]. Con-

vergent and divergent projections play different roles in spatial processing, and we therefore

asked how interareal functional connectivity strengths related to the distance between RF
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centroids in the source and target location. We hypothesized that functional connectivity

strengths would increase with RF overlap for feedforward, but not for feedback networks.

To test this, we modeled functional connectivity strength as a function of distance between

RF centroids for all recording locations (areas and layers), using linear mixed-effect models

with bootstrap as a factor (see Methods). This confirmed the convergent nature of interactions

for the gamma band feedforward network (p < 0:001; R2
adj ¼ 0:88), but not for the scale-free

network (p ¼ 0:26; R2
adj ¼ 0:76) (Fig 5). In addition, this analysis uncovered a divergent pat-

tern of interactions for the infragranular feedback network, with stronger interactions toward

more spatially distinct RFs (p < 0:001; R2
adj ¼ 0:89). No RF dependence was observed for the

supragranular feedback network (p ¼ 0:16; R2
adj ¼ 0:7). These results reveal spatial processing

differences between the feedforward and feedback networks by showing how the spatial orga-

nization of RFs in the source and target location codetermine functional interaction strengths.

Spiking activity is tied to feedforward networks

Our network results were based on bipolar LFP signals, which reflect an aggregate of synaptic

and postsynaptic currents across the recorded neuronal population (here: 80 μm of cortex)

[49,50]. It is well established that LFPs often correlate with spiking activity, particularly in the

Fig 5. Connectivity as a function of RF distance. Dots represent values across bootstraps, dashed lines represent the

regressed line, and the shaded areas indicate 95% confidence intervals (on intercept and slope of the model). Data from

high contrast condition. Underlying data: https://osf.io/pqf7z. RF, receptive field.

https://doi.org/10.1371/journal.pbio.3001534.g005

Fig 4. Spectral power of FF network dynamics. Fourier transformation of temporal dynamics for FF networks, for 2

contrast conditions. Shaded area indicates SD over bootstraps. Underlying data: https://osf.io/pqf7z. FF, feedforward.

https://doi.org/10.1371/journal.pbio.3001534.g004
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gamma band [10,49], but how neuronal activity relates to functional networks across visual

cortex remains unexplored. Establishing the relationship between spiking activity and directed

interactions in the visual hierarchy can potentially shed light on what areas and layers are driv-

ing network dynamics and what the effects of network activity on local spiking are. To investi-

gate this, we correlated the amplitude dynamics of each of the 4 networks with time series of

laminar firing rates. In this analysis, positive correlations indicate that network amplitudes

evolve in synchrony with neuronal activity, suggesting that activity drives the network and/or

that the network drives the activity to some extent. Negative correlations indicate that neural

firing decreases with increased network presence and rebounds with network absence, in line

with a possible inhibitory influence of the network.

The results showed statistically significant positive correlations between the scale-free net-

work and local spiking activity (p< 0.05, 2-tailed bootstrapped distribution), in all areas and

almost all layers (28/30 areas and layers; r = 0.67 +/− 15) for high contrast stimuli (Fig 6). In

addition, the gamma band network correlated positively with activity at L4 of area AL

(r = 0.19) and negatively with L2 of V1 (r = −0.75). No significant correlations with the puta-

tive feedback networks were observed. For low contrast stimuli, spiking activity showed

Fig 6. Correlations between network amplitudes and spiking activity. (a) Correlation coefficients (r) per area and layer for

high contrast stimuli and (b) for low contrast stimuli. Colored areas indicate statistically significant correlations at p< 0.05,

2-tailed bootstrapped distribution. L1 was excluded for lack of spiking activity. Underlying data: https://osf.io/pqf7z. FF,

feedforward.

https://doi.org/10.1371/journal.pbio.3001534.g006
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statistically significant positive correlations between with the scale-free network, at 24/30 sites

(r = 0.61 +/− 17). In addition, widespread positive correlations were found for the gamma

band network, at 22/30 sites (r = 0.41 +/− 17). This suggests that low contrast stimulation

enhances the link between neuronal activity and feedforward gamma band interactions across

the cortical hierarchy. Negative correlations appeared with L2 of V1 (r = −0.37), as observed

for high contrast stimuli, and L2 of area PM (r = 0.36). The supragranular network, further-

more, positively correlated with activity in L4 of V1 (r = −0.38), in line with the idea that feed-

back enhances weak inputs [9,21]. The infragranular network showed negative correlations

with activity in L5 of V1 and PM (r = −0.42 and −0.49, respectively), possibly through inhibi-

tion of activity by way of feedback interactions over infragranular layers [51].

These results reveal a close link between spiking activity and the presence of the scale-free

network. They extend the previously established influence of spiking activity on scale-free LFP

signals [52] by showing that the dynamics of neuronal activity synchronize with scale-free

feedforward interactions across visual cortex. By contrast, the feedback networks appeared not

to be closely linked to neuronal firing. This suggests that feedback network dynamics are not

synchronized with activity dynamics, which may have been expected given the relatively weak

presence of feedback in these data.

Discussion

We found that functional interactions across visual cortex can be reliably decomposed into 4

constituent directed networks, based on their distinct laminar connectivity profiles, opera-

tional frequencies, temporal dynamics, and hierarchical organizations. The laminar connectiv-

ity pathways match anatomical knowledge and provide strong functional evidence for the

simultaneous presence of multiple feedforward and feedback streams [6,37] and extend the

notion of functional hierarchies in cortex [2]. We furthermore show distinct functional roles

for each of these streams in response to stimuli, reconciling the hierarchical structure of visual

cortex with its fast distributed processing.

Our analyses demonstrate the existence of 2 distinct feedforward processing streams. Previ-

ous studies have associated feedforward sensory processing with gamma band activity in

supragranular layers [10,12], in line with anatomical connectivity patterns of these layers

[6,38]. Our gamma band network provides strong functional support for a feedforward role

for layers 2/3 pathways mediated by gamma band interactions. But in addition, our results

indicate a second feedforward stream over infragranular layers that has a scale-free frequency

distribution. Evidence of an infragranular feedforward pathway has been previously reported

based on anatomical data [6], but, to our best knowledge, it has not been reported in functional

studies.

Our results identify distinct roles in visual processing for the scale-free and the gamma

band network. An important clue to the possible function of the scale-free network lies in its

power law frequency distribution. Previous works have related scale-free LFP spectra to overall

neuronal population activities [52], but at a larger scale, power law distributions can indicate

that a complex system is working near criticality, i.e., at an equilibrium point between 2 states

[18]. Dynamics near a critical point can allow neural activity states to rapidly adjust to changes

in the external environment, by providing a flexible midlevel synchronization between neuro-

nal rhythms and fast transition between states via phase resetting [53]. In our data, the scale-

free network showed the strongest amplitudes and widespread correlations with spiking activ-

ity, suggesting its relative importance and a possible role in facilitating the state and activity

changes of other frequency-specific networks in response to visual stimulation. This interpre-

tation is supported by its strong but transient response to visual stimuli and its lack of RF
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convergence. In line with such a dynamic resetting role, the scale-free network also showed

low autocorrelation in time and nonconvergent RF projections of its upstream interactions,

indicating nonspatial processing.

The gamma band network, by contrast, responded to visual stimuli with a sustained ampli-

tude increase throughout stimulus presentation. This suggests a role in processing stimulus

content that is supported by its sensitivity to stimulus contrast, both in the time and frequency

domain. In addition, the RF convergence of its interactions make it suited to process spatial

stimulus aspects, because convergent interactions preserve spatial position while propagating

induced activity up the hierarchy. The peak frequency and amplitude of the induced gamma

oscillations are previously reported to be modulated by stimulus properties such as contrast,

size, and location [11,16], as well as by selective attention [54,55]. Although gamma band inter-

actions occur in feedback too [55], it has been shown that salient or attended stimuli induce

faster and stronger gamma oscillations in early visual areas, and when competing gamma oscil-

lations exist within low-level areas, the faster oscillations have a higher chance to induce activ-

ity in higher level areas through phase coding [13,27]. Therefore, the stimulus sensitivity of

gamma oscillations has been described as an implementation of bottom-up attentional selec-

tion [13]. In our results, the contrast sensitivity of gamma peak and amplitude indicate that

elementary forms of such an effect might exist in mice.

We found strong evidence for a theta band modulation of the feedforward networks. This

theta modulation seems unlikely to be caused by the feedback networks, because they did not

show a sustained response, whereas the theta modulation persisted over the whole period of

stimulus presentation (Fig 4). Given its contrast dependency, a cortical origin seems the most

likely. Cortical theta activity in sensory areas has been linked to feedforward interactions

[12,17] and plays a role in rhythmic perceptual sampling in monkey and human [46,56]. A

proposed mechanism of perceptual sampling is based on theta–gamma cross-frequency cou-

pling, where theta modulates feedforward activity through resynchronization of gamma oscil-

lations between lower and higher visual areas by resetting of the gamma phase [13,41]. In line

with this, when the gamma band feedforward network showed a theta band modulation in

response to low contrast stimuli, its correlation with spiking activity was also increased. In

future work, investigating spike–LFP coherence could test whether local spike synchronization

plays a role in this process [50]. Our results show that entire feedforward networks can be

modulated by a theta rhythm and provide first evidence for a rhythmic visual sampling in

mouse. If behaviorally verified, this means that rhythmic visual sampling is an evolutionary

well-preserved feature and that the causal investigations possible in mice can be employed to

help further understand this phenomenon.

To best estimate directed functional interaction strengths from the nonstationary LFP

dynamics, we derived multivariate Granger causality indices (iPDC) using time-varying

MVAR models based on an optimized Kalman filter [23]. While we took utmost care in the

modeling, the limits of functional connectivity analysis apply. Granger causality is a statistical

measure that identifies systematic relations between recorded signals, which inform hypothe-

ses about neural function [57,58]. While LFP signals reflect a mixing of outgoing and incoming

synaptic activity, both of within- and between-area projections, using full multivariate model-

ing with a high number of recording sites brings functional connectivity estimates closer to

physiological reality [23,50,59]. In addition, and in contrast to other coherence measures,

iPDC is insensitive to power imbalances between signals [22]; therefore, our finding of gamma

band feedforward and low frequency feedback is unlikely to result from power gradients across

the cortical hierarchy [50].

We uncovered 2 feedback networks that operate at alpha and theta frequencies [10,12].

While the theta band is not exclusively tied to feedback functions [17,41,60], the laminar and

PLOS BIOLOGY Four concurrent feedforward and feedback networks with different roles in the visual cortical hierarchy

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001534 February 10, 2022 12 / 22

https://doi.org/10.1371/journal.pbio.3001534


hierarchy results indicate that these 2 networks are more in line with a feedback than a feedfor-

ward role. Moreover, each feedback network showed distinct laminar connectivity, functional

hierarchy, contrast sensitivity, and relationship with RF distances (Fig 3), suggesting a func-

tional dissociation between feedback streams for stimulus-dependent spatially organized feed-

back and global modulatory feedback [8]. The infragranular feedback stream showed a

particular contrast sensitivity, with fast amplitude decreases for high contrast, and slower but

amplitude increases for low contrast stimuli. In addition, its connectivity pattern was spatially

organized, with stronger connections to locations with nonoverlapping RFs. This organization

is compatible with a role in contextual spatial processing, such as surround suppression and

figure–ground segmentation [4,10,48], operating over infragranular layers in stimulus-specific

ways [61]. It has been shown that feedback over infragranular layers can affect local processes

in the cortical column through upward propagation [35,42]. Likewise, feedback at supragranu-

lar layers can modulate activity throughout the column [42]. In our data, the supragranular

feedback stream showed no spatial organization of connections, and less sensitivity to contrast,

making it suitable for global or nonretinotopic feedback modulations [62]. In line with this

characterization, the lowest areas in its hierarchy were motion-sensitive areas AM, LM, and

RL [36].

The supragranular network showed L1 as a feedback source. In functional connectivity

terms, this means that L1 LFPs predict activity in lower-level areas. In mouse and primate, L1

is an important target of feedback projections; it contains few, mostly inhibitory, neurons and

sends few extrinsic projections [38,63]. LFPs at L1 thus mainly reflect input from other areas,

which can modulate activity throughout the cortical column and the column’s output to other

areas [38,42–44]. Since the data used here did not include cortical areas beyond AM, we can-

not exclude the possibility that another area accounts for the observed functional feedback

connection from L1, e.g., by projecting to AM but also to lower-level areas with some delay.

Another possibility is that L1 signals partly reflect activity from L2, a known feedback source,

due to tissue compression from electrode insertion. With the current data, we can neither

exclude these possibilities nor conclusively link the putative L1 feedback role to physiology.

Both feedback networks showed a transient low frequency response that peaked in the theta

band (Figs 2C and 4), and while theta is typically observed in feedback [10,40], it has also been

associated with feedforward processes [46,60]. Likewise, gamma band activity and connectivity

changes are taken to reflect feedforward processes [11,26], but have been observed in feedback

as well [55]. This means that theta band spectra in themselves are not fundamental to feedback,

just as gamma is not fundamental to feedforward communication. Therefore, the labeling of a

network as feedforward or feedback cannot be based on frequency spectra alone. We therefore

used additional criteria based on directed network analysis, including laminar interaction

pathways, hierarchy analysis, and sensitivity to stimulus properties. Even then, we do not con-

ceive of processing streams as either strictly feedforward or feedback, but rather as situated on

a continuum between 2 theoretical extremes. For the infragranular network, for example, the

laminar connection pattern resembles anatomical feedback projections that were previously

established, and, although the functional hierarchy is not an inverted feedforward one, the fact

that area RL is at the bottom of the hierarchy speaks in favor of a feedback interpretation, as

does the network’s enhanced presence with low contrast and the absence of RF convergence.

Taken together, this characterizes the network as a predominantly feedback stream, and this

characterization helps us better understand what the transient low frequency response consti-

tutes and what its possible role in vision is.

Feedback processing is generally thought to arise after a first feedforward sweep, in a

2-stage process [9]. Our results show partial support for such a sequential view, in that infra-

granular feedback increased at longer latencies (150 ms), and selectively for low contrast
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stimuli where feedback is expected to play a greater role [21]. In addition, however, our results

show that stimuli can evoke quick feedback processing over the supragranular stream and that

they can also quickly suppress ongoing feedback processes. Suppression of theta and alpha

feedback due to attention has been previously reported [41]. Taken together, our results char-

acterize visual responses as a dynamic reweighting of feedforward and feedback processes,

which are better separable in terms of their functional hierarchies, laminar connectivity, and

operational frequencies, than they are in time.

Overall, feedback amplitudes were small compared to the feedforward amplitudes [39], and

while feedback was transient, feedforward networks showed more robust responses, for longer

time, and with widespread correlations to spiking activity. Anatomical studies in monkey

show that feedback projections are more numerous than feedforward projections, but that

feedforward projections are stronger, especially at shorter range [6]. Our results confirm this

with functional evidence and characterize the induced response as a predominantly feedfor-

ward process. But even though the stimuli and task were not optimized for investigating typical

roles attributed to feedback connections, like figure–ground segregation [4,21], contour inte-

gration [3] or selective attention [55], the demonstrated presence of 2 feedback streams in

awake but passive mice points to a fundamental importance for feedback in vision.

Our results provide support for the counterstream model of hierarchical processing, as

derived from primate anatomy [37,39]. Hierarchical projections follow a similar architecture

in rodents and primates, but there are important differences. One difference is that laminar

segregation of feedforward and feedback pathways appears less stringent in mice than in pri-

mates [63,64]. In line with this, we found that the scale-free network has a relatively homoge-

neous laminar target and source pattern (Fig 2). We can hypothesize the laminar

differentiation of scale-free feedforward connectivity to be more pronounced in primates,

should similar functional analyses become possible there. An additional difference is that L6 is

known to project to L1 in primates, but this projection seems weak or absent in mice [7]. The

infragranular network showed sources and targets in L6, without targeting L1, and therefore

resembles mouse anatomy more than primate anatomy. Since the presence of a structural con-

nection is necessary but not sufficient for a functional interaction, it may depend on the task

whether a L6–L1 functional interactions can be demonstrated. Overall, however, our results

corroborate the similarities between the large-scale functional organization of processing

streams in mouse and primates, which opens up new avenues for investigating large-scale cor-

tical function using causal manipulations.

Methods

Dataset and visual stimuli

We used publicly available recordings from the Visual Coding—Neuropixels dataset, provided

by the Allen Institute for Brain Science [2]. This dataset contains LFPs recorded simulta-

neously in 4 to 6 visual areas of awake mice, using Neuropixel probes [65] (40 μm distance

between recording channels), with 2.5-KHz sampling rate. Full details on surgery, stimulation

protocols, and recording techniques are available in the technical white paper “Allen Brain

Observatory–Neuropixels Visual Coding,” 2019 (portal.brain-map.org/explore/circuits/visual-

coding-neuropixels). The data were downloaded in the format of raw Neurodata Without Bor-

ders (NWB), using Allen SDK 1.2.0 (2019). The LFPs, spike-sorted data, and metadata can be

accessed via the AllenSDK, by following the instructions on this page: https://allensdk.

readthedocs.io/en/latest/visual_coding_neuropixels.html.

We used a subset of the Brain Observatory stimulus set with a large number of trials, the

Functional Connectivity stimulus set. From 14 available LFP recordings in wild-type mice, we
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selected 11 for analysis (average age = 126 ± 10 days, 10 males) that showed clear source and

sink patterns of current source density (CSD) and had simultaneous recordings from at least 4

separate areas (Fig 1A). These areas were V1 (recordings from 11 animals), AL [10], RL [9],

PM [7], LM [6], and AM [11] of the left hemisphere; 2 animals had simultaneous recordings in

6 areas, 6 in 5, and 3 in 4.

From the standardized battery of visual stimuli [66], we selected drifting gratings for their

reliably evoked LFP signals and high number of trials (75 trials for each grating orientation

and contrast). Gratings were presented in random order, with a high (80%) or low (10%) con-

trast at detectable levels [67], 4 different orientations (0, 45, 90, or 135 degrees), and with a spa-

tial frequency of 0.04 cycles/deg and temporal frequency of 2 Hz (drifting left to right). Stimuli

were presented monocularly to the right eye on a monitor that covered 120 × 95 degrees of

visual angle. The paradigm consisted of 2 seconds of stimulus presentation and 1 second of

interstimulus interval during which a uniform mean luminance gray was presented.

Preprocessing and layer assignment

For each trial, we considered the epoch from 300 ms before to 1,000 ms after stimulus onset.

We pooled the epochs from 4 orientations together, which resulted in 300 epochs per animal,

per contrast.

To identify representative electrodes for each cortical layer (L1 to L6) we derived CSD pat-

terns from averaged LFP data [68]. We assigned layers based on sources and sinks across corti-

cal depth, following [45], taking into account depth estimates provided with the dataset. The

average cortical depths of selected electrodes for each layer are listed in Table 1.

The Allen Institute for Brain Science provides spatially down sampled LFP data, preserving

every fourth contact point of the Neuropixel probe, resulting in 80 to 100 units per probe, with

40-μm distance between the available LFP signals. In order to remove the common reference,

which could cause spurious estimation of functional connectivity, we applied bipolar rerefer-

encing by computing the difference of the LFPs from 2 neighboring channels [69,70], subtract-

ing activity from electrodes immediately below and above the representative LFP signal for

each layer, i.e., over a 80-μm distance. LFP data were downsampled to 250 Hz after anti-alias-

ing filtering.

Functional connectivity

To estimate time- and frequency-resolved directed functional connectivity, we used a multi-

variate parametric approach, the self-tuning optimized Kalman filter (STOK) [23]. STOK uses

a Kalman filter formulation that is optimized to model rapidly fluctuating between-signal

dependencies under unknown noise conditions, resulting in a time-varying multivariate auto-

regressive (tvMVAR) model. While nonparametric methods can be used to accurately estimate

directed connectivity strengths in the time and frequency domain, when appropriately

Table 1. Average cortical depth of selected channels for each layer and area (mean ± SD).

V1 LM RL AL PM AM

L1 80 ± 25 87 ± 39 76 ± 13 73 ± 24 80 ± 0 80 ± 25

L2 160 ± 25 167 ± 39 156 ± 13 149 ± 31 183 ± 31 164 ± 28

L3 255 ± 32 253 ± 41 244 ± 13 233 ± 35 297 ± 31 269 ± 40

L4 407 ± 39 400 ± 51 360 ± 35 356 ± 52 451 ± 30 407 ± 50

L5 542 ± 55 560 ± 51 511 ± 52 495 ± 60 583 ± 31 545 ± 48

L6 785 ± 70 767 ± 39 733 ± 45 720 ± 82 777 ± 39 764 ± 55

https://doi.org/10.1371/journal.pbio.3001534.t001
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conditionalized, the optimized Kalman filter is computationally lighter and suffers less from

time–frequency trade-offs [23,59,71,72]. To estimate the tvMVAR model in STOK, a model

order parameter p should be estimated prior to analysis. This parameter indicates how much

of the past information should be included in estimation of current state. Here, we selected the

optimal model order by minimizing the difference between the tvMVAR model power spectra

and the spectra calculated by a nonparametric method based on complex Morlet wavelet [59],

for each animal separately. We then selected the maximum optimal order observed over ani-

mals (p = 15 samples or 60 ms) as the model order and calculated tvMVAR models per animal

and condition (low, high contrast) using all single trial epochs and a filter factor of 0.98. STOK

code is freely available for MATLAB (https://github.com/PscDavid/dynet_toolbox) and

Python (https://github.com/joanrue/pydynet).

After Fourier transformation, tvMVAR coefficients were normalized to express a directed

measure of functional connectivity in line with Granger causality, the information partial

directed coherence (iPDC) [22,73,74]. Resulting iPDC matrices contained the layer-specific

directed functional connectivity between all recorded areas, for every frequency between 1 and

100 Hz (1 Hz resolution) and time point between −300 to 1,000 ms around stimulus onset

(4-ms resolution). We preserved the between-area connections for further analysis, averaged

across animals, and unfolded the resulting connectivity matrix into 5 dimensions as follows:

source layers, target layers, time, frequency, and between-area connections (30 directed con-

nections between the 6 areas).

PARAFAC

PARAFAC decomposes a multiway matrix into a fixed number of components, with each

component represented by a set of loading vectors that correspond to the original data dimen-

sions [30,75]. We applied PARAFAC to the averaged five-dimensional connectivity matrices

of absolute iPDC values. The resulting PARAFAC decomposition can be expressed as follows:

iPDCsl;tl;t;f ;c ¼
XK

k¼1

asl;k:btl;k:ct;k:df ;k:ec;k;

where K is the number of components, and asl,k, btl,k, ct,k, df,k and ec,k correspond to the load-

ing vectors for component k, for each source layer, target layer, time point, frequency point,

and between-area connection. Loading vectors were estimated using alternating least square

with random initialization and a nonnegativity constraint. The variance of the data is usually

kept in one of the loading vectors of PARFAC model, and the other loading vectors are nor-

malized to have variance of 1. In our case, the variance was kept in the temporal loadings. We

used the N-way MATLAB toolbox for PARAFAC decomposition [76].

To derive the most informative and valid PARAFAC model, an appropriate number of

components needs to be selected. With too few components, the true underlying components

of the data cannot be extracted, while with too many, the results will contain correlated com-

ponents that do not represent the underlying variables. To identify the appropriate number of

components, we combined multiple indicators of model quality and visual inspection of the

resulting components, following previous works [30–34]. To exclude the possibility that com-

ponent selection was driven by data from a subset of animals, we first created bootstrapped

averages by randomly selecting 8 (out of 11) animals. For each bootstrapped average (n = 10),

we calculated Corcondia scores, variance explained, mean squared error, and model conver-

gence. Using these scores across bootstraps, we found that models with 4 components were

the best choice for our data: They substantially increased model fit as compared to sparser
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models, while including more components resulted in high correlations between some of

them.

Finally, to verify the reliability of the PARAFAC model across animals, we bootstrapped

iPDC averages (n = 500, random selection as above) and extracted the 4 components for each

bootstrap. We checked component consistency across bootstraps by calculating the pairwise

correlations between the loading vectors of PARAFAC components, resulting in intra- and

intercomponent consistency values.

Statistical analysis on PARAFAC loadings

To specify the characteristic of each network, we investigated the loading vectors of the PAR-

AFAC models using statistical analysis. To indicate the source and target layers that contribute

most to each network, we compared the loading values of each source/target layer over boot-

straps to uniform distribution of weights over layers using t test. Uniform distribution indi-

cates no laminar specificity for the network, while layers with loading values larger than the

uniform distribution have significant contribution to that network.

For temporal loadings, we determined significant response amplitudes from baseline by

comparing the temporal loading values of each poststimulus time point with averaged presti-

mulus temporal loading values, using t test and Bonferroni correction. For visualization pur-

pose, we converted the temporal loadings to percentage of change by subtracting and then

dividing each temporal loading by its averaged prestimulus loading values.

Since the variance of the data is preserved in the temporal loadings, we indicated the relative

overall amplitude of each PARAFAC component by dividing its averaged temporal loading by

the sum of averaged temporal loadings of all components.

Model comparison of frequency distributions

To characterize frequency distribution of the PARAFAC components, we fitted 3 distributions

to the frequency loadings in each bootstrap separately. Power law (in the form of c. f−β), log-

normal (log N(μ,σ)), and exponential (c. eβ.f) distributions were fitted using nlinfit function in

MATLAB, and the mean squared error for each fitting was calculated. The model with the low-

est average mean squared error over the bootstraps was considered as the best model fit.

We also fitted the same models to the power spectrum density of LFPs, calculated from the

tvMVAR coefficients, for each bootstrap and each region of interest (RAU : PleasenotethatROIhasbeendefinedasregionofinterestinthesentenceWealsofittedthesamemodelsto::::Pleasecheckandcorrectifnecessary:OI) separately and used

mean squared error to indicate the best model fit.

Functional hierarchy analysis

We used loading vectors of between-area connectivity strengths to calculate hierarchy scores,

employing a method specifically proposed for directed functional connectivity strengths [12].

First, the directed influence asymmetry index (DAIij) was estimated based on between-area

loading vector with element eij indicating the connection from area j to i.

DAIij ¼
eij � eji
eij þ eji

WAU : PleasecheckwhethertheeditstothesentenceWescaledDAIstotherange:::arecorrect; andprovidecorrectwordingifnecessary:e scaled DAIs to the range −2.5 to 2.5 in order to allow 6 levels of hierarchy (considering

6 areas). Then, for each target area, we shifted the DAIs from all source areas so that the small-

est value was 1. Then we averaged the rescaled and shifted DAIs ( ^DAI) for each source to esti-

mate the hierarchy score of the source area as Hi ¼
P

j
^DAIij.
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RF analysis

The significant RFs were calculated based on a permutation-based method used in [2] and

using the strength of stimulus-related LFPs in a Gabor stimuli condition in the dataset. RF dis-

tances were calculated as the Euclidean distance between the centroids of the significant RFs.

We only considered the between-area connections that had source and target areas with signif-

icant RFs (80%).

To examine the relationship between RF distance and functional connectivity strengths, we

reconstructed between-area connectivity strengths from the PARAFAC results using Kro-

necker products of the loading vectors, for each component and bootstrap separately. We then

averaged the reconstructed matrix over time, frequency, and layers to obtain a single connec-

tivity value for each between-area connection.

Using linear mixed-effect regression, we modeled connectivity strengths as a function of

the continuous predictor RF distance, including bootstrap and between-area connection as

random effects over the intercept, to account for between-area and animal variability, respec-

tively. This model was preferred over a simpler fixed-effects model without random effects, as

shown by a likelihood ratio test. Modeling was done using the fitlme function with maximum

likelihood estimation in MATLAB.

Spiking activity

We used spike-sorted data as provided by the Allen Institute for Brain Science, from the same

recording sessions as the LFPs used for network analysis. We collected spikes for each layer

and area from units identified on 4 Neuropixel channels above and below the LFP channel

used, corresponding to the same 80-μm distance used for bipolar LFP referencing. Only units

with signal-to-noise ratio (SAU : PleasenotethatSNRhasbeendefinedassignal � to � noiseratiointhesentenceOnlyunitswithsignal � to � noiseratioðSNRÞ::::Pleasecheckandcorrectifnecessary:NR)>3 were included for analysis. Average spike counts were cal-

culated from stimulus onset until 1 seconds after in bins of 4 ms for each animal, region, layer,

and stimulus contrast. This way, firing rates could be reliably extracted in all areas for L3, L4,

L5, and L6. Firing rates could not be well determined for L2 of areas LM and RL (both con-

trasts). L1 showed little spiking activity overall and was excluded from further analysis.

For each network, we correlated the time series of bootstrapped PARAFAC loading

(n = 500) with the raw values of average spiking activity from the corresponding subsets of ani-

mals. This resulted in a distribution of correlation values across bootstraps, for each layer,

area, and contrast. To identify statistically significant values, we thresholded correlations

smaller and larger than the 2.5% extremes of the bootstrapped distribution, i.e., p< 0.05 for a

2-tailed distribution.

PSD

PSDs of bipolar-referenced LFP signals were calculated using a Morlet wavelet [59], with a

padding of 1 and a central frequency of 6 Hz [59], over 2-second epochs centered on stimulus

onset. Results were expressed as change to prestimulus power in the −300 to −50 ms window,

avoiding contamination by the smoothed out fast induced response.

Supporting information

S1 Fig. Laminar PSDs per area. (a) Shows visually induced PSD (Morlet wavelet) with respect

to prestimulus time, for high contrast stimuli. (b) Shows corresponding data for low contrast

stimuli. Underlying data: https://osf.io/pqf7z. PSD, power spectral density.
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S2 Fig. Grand average bipolar LFPs for low contrast stimuli. Data for L1 to L6 in 6 visual

areas. Underlying data: https://osf.io/pqf7z. LFP, local field potential.

(PDF)
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