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A predictive hemodynamic
model based on risk factors for
ruptured mirror aneurysms

Sheng-qi Hu†, Ru-dong Chen†, Wei-dong Xu, Hua Li and

Jia-sheng Yu*

Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of

Science and Technology, Wuhan, China

Objectives: To identify hemodynamic risk factors for intracranial aneurysm

rupture and establish a predictive model to aid evaluation.

Methods: We analyzed the hemodynamic parameters of 91 pairs of

ruptured mirror aneurysms. A conditional univariate analysis was used for the

continuous variables. A conditional multivariate logistic regression analysis

was performed to identify the independent risk factors. Di�erences where

p < 0.05 were statistically significant. A predictive model was established

based on independent risk factors. Odds ratios (ORs) were used to score

points. The validation cohort consisted of 189 aneurysms. Receiver operating

characteristic curves were generated to determine the cuto� values and area

under the curves (AUCs) of the predictive model and independent risk factors.

Results: The conditional multivariate logistic analysis showed that the low

shear area (LSA) (OR = 70.322, p = 0.044, CI = 1.112–4,445.256), mean

combined hemodynamic parameter (CHP) (>0.087) (OR = 3.171, p = 0.034,

CI = 1.089–9.236), and wall shear stress gradient (WSSG) ratio (>893.180)

(OR = 5.740, p = 0.003, CI = 1.950–16.898) were independent risk factors.

A prediction model was established: 23∗LSA + 1∗CHP mean (>0.087: yes =

1, no = 0) + 2 ∗ WSSG ratio (>893.180: yes = 1, no = 0). The AUC values

of the predictive model, LSA, mean CHP (>0.087), and WSSG ratio (>893.180)

were 0.748, 0.700, 0.654, and 0.703, respectively. The predictivemodel and LSA

cuto� values were 1.283 and 0.016, respectively. In the validation cohort, the

predictive model, LSA, CHP (>0.087), and WSSG ratio (>893.180) were 0.736,

0.702, 0.689, and 0.706, respectively.

Conclusions: LSA, CHP (>0.087), and WSSG ratio (>893.180) were

independent risk factors for aneurysm rupture. Our predictive model could aid

practical evaluation.
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Introduction

Intracranial aneurysms (IAs) are potentially fatal, and

rupture is associated with dismal outcomes (1). Appropriate

treatment is controversial because of treatment-related

complications (e.g., thromboembolic events and intraoperative

rupture) (2, 3). The indications for treatment can be controlled

only when the risk of aneurysm rupture is adequately identified.

Therefore, it is critical to identify aneurysms prone to rupture.

Computer fluid dynamics (CFD) simulations reflect the

hemodynamics in IAs and numerically quantify rupture risks

(4). It required accurate technical procedures, such as reliable

3D rotational angiography and boundary conditions (5, 6).

Han et al. reported the significance of the average wall shear

stress (WSS), oscillatory shear index (OSI), and Low Shear

area in the 900 aneurysms (4). Zhang et al. derived novel

flowrate-independent parameters that had better performance to

predict rupture than above conventional parameters (7). Several

rupture risk studies still yielded inconsistent results (8, 9).

Although studies carried out technically accurate procedures

(6), different patient-related factors, including gender, smoking,

hypertension, hyperlipemia, and others, may cause selection bias

and otherwise alter the results (3, 4, 10).

To prevent the influence of patient-related factors, we

analyzed hemodynamic variables of mirror aneurysms using

paired analysis. Previous studies only tested the accuracy

of hemodynamic risk factors within their limited model

cohorts (8, 9, 11). Thus, we aimed to comprehensively

explore the hemodynamic risk factors and establish a valid

predictive model.

Methods

Patient and data

The flow chart of patient selection is shown in Figure 1.

Our hospital’s institutional ethics committee approved this

study, and we collected data after obtaining the consent of

the patients or their close relatives. From March 2012 to

May 2022, 102 patients with mirror aneurysms underwent

digital subtraction angiography (DSA) at our institute. Exclusion

criteria were as follows: (1) unruptured mirror aneurysms (n

= 6); (2) poor quality of the angiography leading to a lack

of hemodynamic data (n = 2); (3) Pretreatment history of

any aneurysm (n = 3). These 91 pairs of mirror aneurysms

were divided into the ruptured group (n = 91) and the

unruptured group (n = 91). In the modeling cohort, patients

with SAH underwent emergent computed tomography and DSA

within 72 h after hemorrhage. All ruptured aneurysms were

treated by endovascular therapy or surgery promptly. Seventy-

six unruptured aneurysms subsequently underwent therapy,

and 10 insisted on annual follow-up. Five patients were lost

to follow-up.

We collected the data of 189 patients diagnosed with single

aneurysms admitted to our institute betweenMay 2020 andMay

2022. We acquired the consent of each patient in the validation

cohort to undergo hemodynamic analysis. Their results were

induced to verify the value of the prediction model.

Hemodynamic variable calculation

CFD simulations are presented in Figures 2A,B. The open-

source CFD software package OpenFoam was used for grid

generation and CFD calculation. Then three-dimensional DSA

data were imported into the system. Mesh Generation: We

OpenFoam to generation volume mesh. We used a mesh size

of 0.1mm for the inlet, outlet, and sac parts and a mesh

size of 0.3mm for the parent artery and other parts. Three

layers of prism elements for the wall were used for the CFD

simulations. The number of finite-volume grid elements used

in this study was ∼1 million. After mesh generation, the

vascular model and blood flow state were generated using the

following assumptions: the vascular wall was rigid, and the blood

flow was isothermal and laminar (the blood was assumed to

be an incompressible Newtonian fluid) (12). The blood flow

was approximated using the unsteady Navier-Stokes equations.

Blood density was set to 1,060 kg/m3, and blood viscosity was

set to 0.004N s/m2. Because the individual-specific blood flow

conditions cannot be obtained in real-time, the standard data of

the normal population obtained from the literature were used

as the input boundary conditions (13), and the outlet was set

at zero pressure (14). Finally, the calculation duration was set to

last for three cardiac cycles. The results of the third cycle reached

a stable state. Each cycle was set with 100 time steps. The results

from the third simulated cardiac cycle were collected as output

for the final analyses.

The hemodynamic variables in our study were described

as follows: WSS was defined as the frictional force on the

arterial wall produced by the blood flow in a direction toward

a local tangent plane. WSS = 1
T

∫ T
0 |WSSi| dt; WSSi: an

instantaneous WSS vector; T: the cycle duration (15, 16).

Normalized wall shear stress (NWSS) was defined as the ratio

of aneurysm WSS to the parent vessel’s average WSS (17). Wall

shear stress gradient (WSSG) was defined as the amplitude

of variation along the wall shear force direction; WSSG =
√

(

∂τw,p

∂p

)2
+

(

∂τw,q

∂q

)2
; τω , the WSS vector; the p-direction

corresponds to the time-averaged direction the WSS, and the

q-direction is perpendicular to the p (18, 19). Oscillatory shear

index (OSI) was defined as the directional changes of WSS

during the cardiac cycle; OSI = 1
2
∗
(1 −

∣

∣

∣

∫ T
0 wssidt

∣

∣

∣

∫ T
0 |wssi|dt

) (16).

Relative residence time (RRT) was defined as the residence time
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FIGURE 1

The flow chart of patient selection.

FIGURE 2

The process of the computational fluid dynamics simulation. (A) Three-dimensional digital subtraction angiography DICOM data import and

vessel reconstruction; (B) set the relevant parameters, entrance and exit, and grids.

of particles near the wall; RRT = 1

(1−2∗OSI)∗ 1
T

∫ T
0 |WSSi|dt;

=

1
1
T

∣

∣

∣

∫ T
0 WSSidt

∣

∣

∣

(5). The combined hemodynamic parameter

(CHP) was defined as the weighted average of WSS and

OSI. CHP = ω
∗
1 (WSSnorm) + ω

∗
2 (OSInorm); ω1 + ω2 =

1; (WSSnorm − 1)4 + ( WSS−WSSmax
WSSmax−WSSmin

)
4

= 1; OSInorm =

2∗OSI (16). The low shear area (LSA) was defined as the areas

of the aneurysm wall exposed to a WSS below 10% of the mean

parent vesselWSS, then normalized by the dome area (20). Ratio

was defined as themaximum values divided byminimum values.

We calculated the minimum, maximum, mean, and ratio

of WSS, NWSS, WSSG, OSI, RRT, and CHP. The LSA was
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calculated separately. All results of continuous variables were

accurate to three decimal places.

Statistical analysis

Statistical analysis was performed using SPSS 20.0 (IBM Inc.,

Chicago, IL). Continuous variables were expressed as median

± interquartile range. Categorical variables were expressed

as frequencies (percentages). The Kolmogorov-Smirnov test

was performed to determine whether the parameter dataset

was normally distributed. A conditional univariate logistic

analysis was used for the continuous variables. A conditional

multivariate logistic regression was performed using the

stepwise forward method to identify the independent risk

factors. A predictive model was established based on the

independent risk factors. Odds ratios (ORs) were used to allocate

the predictive scores. Receiver operating characteristic (ROC)

curves corresponding to the independent risk factors and the

predictive model were generated to derive their respective

areas under the curves (AUCs) and cutoff values. ROC curves

were generated to validate the performance of the predictive

model. The Delong test was performed to compare the AUCs.

Differences where p < 0.05 were statistically significant.

Results

Patient demographics

We included 91 patients withmirror aneurysms in themodel

cohort and 189 patients with single aneurysms in the validation

cohorts. In the model cohorts, 91 patients included 52 females

and 39 males with a mean age of 58.10 years (41–83 years).

In the validation cohorts, 189 patients included 104 females

and 85 males with a mean age of 52.40 years (34–78 years).

Demographics are displayed in Table 1.

Hemodynamic analysis

The results of the calculation and univariate analysis are

presented in Table 2. The distribution of the significant variables

is shown in Figure 3. The univariate logistic regression showed

that compared to the unruptured group, ruptured aneurysms

had significantly greater WSS ratio (p = 0.010), NWSS ratio (p

= 0.011), WSSG ratio (p = 0.004), maximum OSI (p = 0.001),

mean OSI (p= 0.004), OSI ratio (p= 0.003), maximum CHP (p

= 0.005), mean CHP (p < 0.001), maximum RRT (p = 0.047),

mean RRT (p = 0.005), RRT ratio (p = 0.042), and LSA (p =

0.001). The minimumWSS (p= 0.003), mean WSS (p= 0.048),

minimum NWSS (p = 0.001), mean NWSS (p < 0.001), and

minimum WSSG (p = 0.005) were significantly smaller in the

TABLE 1 Demographic data in the model cohorts and validation

cohorts.

Demographic data Model cohorts Validation cohorts

value value

Total 91 189

Age 58.10 (41–83) 52.40 (34–78)

Gender

Male 39 (42.86%) 85 (44.97%)

Female 52 (57.14%) 104 (55.03%)

Location

MCA 44 (48.35%) 87 (46.03%)

PcoA 40 (43.96%) 64 (33.86%)

ACA 1 (1.10%) 3 (1.59%)

ICA bifurcation 1 (1.10%) 2 (1.06%)

Ophthalmic segment 2 (2.20%) 10 (5.29%)

AchA 1 (1.10%) 3 (1.59%)

VA 1 (1.10%) 5 (2.65%)

PICA 1 (1.10%) 1 (0.53%)

BA 0 6 (3.17%)

AcoA 0 8 (4.23%)

Rupture site

Right 48 (52.75%) 107 (56.61%)

Left 43 (47.25%) 82 (43.39%)

Hunt-Hess grades

I 10 (10.99%) 30 (15.87%)

II 55 (60.44%) 64 (33.86%)

III 14 (15.38%) 81 (42.86%)

IV 12 (13.19%) 12 (6.35%)

V 0 2 (1.06%)

Hypertension 58 (63.74%) 98 (51.85%)

Hyperlipidemia 32 (35.16%) 52 (27.51%)

Smoking 29 (31.87%) 47 (24.87%)

Drinking 20 (21.98%) 32 (16.93%)

Heart disease 15 (16.48%) 22 (11.64%)

MCA, middle cerebral artery; PcoA, posterior communicating artery; ACA, anterior

cerebral artery; ICA, internal carotid artery; AcoA, anterior communicating artery; BA,

basilar artery; AchA, anterior choroidal artery; VA, vertebral artery; PICA, posterior

inferior cerebellar artery.

ruptured group. The thresholds to discriminate the higher risk of

an aneurysmwith cutoff values of the hemodynamic factors with

the highest sensitivity and specificity are displayed in Table 2.

The conditional multivariate logistic regression analysis is

shown in Table 3. The LSA (OR= 70.322, p= 0.044, CI= 1.112–

4,445.256), mean CHP (>0.087) (OR = 3.171, p = 0.034, CI =

1.089–0.236), and WSSG ratio (>893.180) (OR = 5.740, p =

0.003, CI = 1.950–16.898) were independent risk factors. The

differences in the independent risk factors are shown in Figure 4.

We generated a predictive model based on the independent

risk factors. OR values were allocated to the predictive scores.
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TABLE 2 Measurement and analysis of the hemodynamics.

Variables Ruptured (n = 91) Unruptured (n = 91) p-value Cutoff value

WSS

Min 0.113± 0.208 0.266± 0.520 0.003 0.259

Max 34.143± 28.774 32.827± 171.407 0.454

Mean 5.950± 6.544 6.964± 8.073 0.048 6.417

Ratio 330.839± 632.763 133.596± 232.752 0.010 247.783

NWSS

Min 0.012± 0.023 0.030± 0.047 0.001 0.013

Max 3.787± 1.871 4.043± 1.837 0.972

Mean 0.669± 0.435 0.900± 0.665 <0.001 0.926

Ratio 330.840± 632.751 133.596± 238.152 0.011 177.219

WSSG

Min 3.404± 9.597 14.478± 31.665 0.005 3.708

Max 6,554.117± 8,247.413 5,976.740± 9,065.646 0.826

Mean 673.116± 850.285 828.386± 1,086.759 0.065

Ratio 1,971.549± 5,849.403 512.353± 832.010 0.004 893.180

OSI

Min 0.0002± 0.0003 0.0003± 0.0003 0.909

Max 0.419± 0.093 0.369± 0.135 0.001 0.378

Mean 0.020± 0.017 0.016± 0.012 0.004 0.013

Ratio 1,426.591± 1834.415 1,098.070± 1,330.190 0.003 1,956.640

CHP

Min 0.001± 0.001 0.001± 0.001 0.559

Max 0.900± 0.119 0.855± 0.192 0.005 0.895

Mean 0.138± 0.079 0.101± 0.071 <0.001 0.087

Ratio 637.680± 602.570 577.055± 677.818 0.636

RRT

Min 0.003± 0.003 0.003± 0.003 0.677

Max 4.428± 19.238 1.233± 4.542 0.047 1.120

Mean 0.054± 0.119 0.031± 0.055 0.005 0.023

Ratio 1,833.052± 6,263.718 483.643± 1,559.518 0.042 535.906

LSA 0.063± 0.168 0.013± 0.050 0.001 0.016

WSS, wall shear stress; NWSS, normalized wall shear stress;WSSG, wall shear stress gradient; OSI, oscillatory shear index; CHP, combined hemodynamic parameter; RRT, relative residence

time; LSA, low shear area.

We assigned the LSA, mean CHP (>0.087), and WSSG ratio

(>893.180) as 23, 1, and two points, respectively, as shown in

Table 3. The predictive model was as follows: 23∗LSA+ 1∗ mean

CHP (>0.087: yes = 1, no = 0) + 2 ∗ WSSG ratio (>893.180:

yes = 1, no = 0). The AUC values of the predictive model,

LSA, mean CHP (>0.087), and WSSG ratio (>893.180) were

0.748, 0.700, 0.654, and 0.703, respectively. The ROC analysis

is presented in Figure 5A. The predictive model and LSA cutoff

values were 1.283 and 0.016, respectively. The AUC of the

predictive model was significantly greater than the LSA (Delong

test, p= 0.006, Cl= 0.014–0.081), mean CHP (>0.087) (Delong

test, p = 0.001, CI = 0.037–0.151), and WSSG ratio (>893.180)

(Delong test, p= 0.034, CI= 0.003–0.085).

We also calculated the ROCs in the validation cohorts of 189

IAs to verify the value of the predictive model and independent

risk factors. The AUC values of the predictive model, LSA, mean

CHP (>0.087), and WSSG ratio (>893.180) were 0.736, 0.702,

0.689, and 0.706, respectively (Figure 5B).

Discussion

Hemodynamic studies of aneurysm rupture require

attention. CFD simulation is based on reliable 3D rotational

angiography, which reconstructs the shape of the parent vessel

and IA (6). Previous studies included the morphologic and
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FIGURE 3

(A–D) Nested box plots showing the significant variables between the ruptured and unruptured roups. +: mean value; WSS, wall shear stress;

NWSS, normalized wall shear stress; WSSG, wall shear stress gradient; OSI, oscillatory shear index; CHP, combined hemodynamic parameters;

RRT, relative residence time; LSA, low shear area.

TABLE 3 The result of conditional multivariable logistic regression.

Variables β-value p-value Odds ratio Confidence interval Predictive score

LSA 4.253 0.044 70.322 1.112–4,445.256 23

Mean CHP (>0.087) 1.154 0.034 3.171 1.089–9.236 1

WSSG ratio (>893.180) 1.747 0.002 5.740 1.950–16.898 2

LSA, low shear area; CHP, combined hemodynamic parameter; WSSG ratio: wall shear stress gradient ratio.

hemodynamic variables, and we found the former outweighed

the latter; hemodynamics was even insignificant (11, 21).

Schisterman et al. found that strategies ignoring causal

structures lead to biased effect estimations (22). Qiu et al.

demonstrated that morphology affects the distribution and

magnitude of WSS (20). The correlation may decrease the

significance of hemodynamics. Furthermore, hemodynamic

studies in IA rupture yielded inconsistent results (8–10, 18).

One reason may be attributable to differences in patient-

related factors. The study of mirror aneurysms can avoid

the influence of modifiable inter-individual variations and

reflect actual risk factors associated with rupture (3). However,

previous studies of mirror aneurysms are limited because

of small sample sizes, and they do not have the appropriate

hemodynamic models to evaluate the risk (8, 9, 11, 23).

In the present study, the LSA, mean CHP (>0.087), and

WSSG ratio (>893.180) were independent risk factors.

Furthermore, a predictive model was established based on

three independent risk factors that showed good predictive

performance (AUC = 0.748). Our multivariate results and

predictive model demonstrated the role of hemodynamics

in prediction.
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FIGURE 4

Independent risk factors; (A–C) the ruptured aneurysm’s wall shear stress gradient (WSSG), combined hemodynamic parameter (CHP), and low

shear area (LSA); (D–F) the unruptured aneurysm’s WSSG, CHP, and LSA.

Mean CHP

CHP combines the WSS and the OSI. Previous studies

focused on the role ofWSS andOSI on the growth or the rupture

and returned inconsistent results (4, 9, 10, 15). Xiang et al. found

that lowWSS and high OSI were related to the rupture in a study

of 119 IAs (24). However, that study was limited by the small

sample size and individual differences (24). CHP combined the

WSS with the OSI and supported their findings. The study of

Miura et al. stressed the significance of lower WSS and higher

OSI, and the mean values were close to ours (WSS, 7.19 vs.

7.52; OSI, 0.016 vs. 0.018) in univariate analysis; however, the

OSI was not independent (25). Our study classified the mean

CHP exceeding the optimal cutoff value of 0.870 as a higher

risk. Mean CHP (>0.087) was as an independent risk factor,

highlighted by its risk of rupture (OR = 3.171, p = 0.034, CI =

1.089–9.236). This finding demonstrates that the risk of rupture

increases 3.171-fold, as the mean CHP exceeded 0.087.

Cho et al. stressed that the CHP reflected the thin-walled

area, which was the primary location of the rupture (16).

The thin-walled area parallels the high CHP. Jiang et al.

demonstrated that the thinner wall has a lower WSS and higher

pressure (17). Mean CHP represents the average level in the

aneurysm, and a highermean CHP suggests a higher risk. Recent

studies did not offer the normal reference values for CHP. Our

findings suggest that a mean CHP of more than 0.087 helps

identify the threshold for aneurysm rupture.

WSSG ratio

WSSG is a spatial concept that indicates whether the

increasing WSS occurred in an accelerating or decelerating

flow. The consensus states that WSSG positively correlates with

rupture (19, 26). Positive WSSG is associated with endothelial

migration, apoptosis, and aneurysmal extracellular remodeling
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FIGURE 5

Receiver operating characteristics curve analysis in the model cohort (A) and validation cohort (B); The predictive model based on the LSA,

mean CHP (>0.087), and WSSG ratio (>893.180). mean CHP*: mean CHP (>0.087), WSSG ratio*: WSSG ratio (>893.180); CHP, combined

hemodynamic parameter; WSSG, wall shear stress gradient; LSA, low shear area.

(27). Degradation of the elastic constituents is driven by

deviations of the WSSG from normotensive values (28). Wei

et al. reported an average WSSG value close to ours (730.568 vs.

673.116); nevertheless, that study lacked extreme data to analyze

the extent of deviations (18). Zhai et al. reported that the mean

value of ruptured aneurysms’ maximum and minimum WSSG

were 7,295.350 and 5.029, respectively. The ratio (1,483.787)

exceeded our threshold (893.180) and was accompanied by a

high risk of rupture (29). The WSSG ratio combines extreme

values to demonstrate the amplitude of variation. The WSSG

ratio, as a ratio between the maximum and minimum, has not

been noted in previous studies. Specific values are needed to

discriminate risks. Our study found that the risk of rupture

would increase 5.740-fold as the WSSG ratio exceeded 893.180.

WSSG ratio (>893.180) is a two-category variable that applies a

risk threshold and practical predictive means.

LSA

The LSA reflects the area of the low WSS in aneurysms.

In our study, the LSA was an independent risk factor (OR =

70.322, p = 0.044, CI = 1.112–4,445.256) with a cutoff value of

0.016.We included the LSA in the predictivemodel to determine

the positive correlation between the LSA with the rupture. Our

results were in favor of the low WSS theory. Low and stagnant

flows cause flow-induced inflammation and degradation of the

aneurysm wall (30). Qiu et al. of the study treating 72 IAs

demonstrated that ruptured aneurysms’ median values were

higher than unruptured IAs (0.09 vs. 0.02) (20). A nationwide

matched case-control study demonstrated this significant risk

whosemean value is close to ours (0.153 vs. 0.131) (31); however,

it did not provide an OR value or cutoff values to discriminate

the risk of rupture. In the present study, 0.016 was the rupture

threshold, which aids valuable prediction. In addition, because

the LSA ranges from 0 to 1, a large OR does not mask the role

of other independent risk factors. These findings suggest that

combinations of parameters are needed, as demonstrated by our

prediction model.

Predictive model

We established a predictive model based on the independent

risk factors. Our combination model out-performed any single

variable (0.748 vs. 0.700, 0.654, and 0.703, respectively).

Although the OR values generated accurate predictions,

clinical application is hampered by inconvenience. We used

approximated and simplified values. The LSA, mean CHP

(>0.087), and WSSG ratio (>893.180) were scored as 23, 1, and

two points, respectively. These three factors can be summarized

directly to identify aneurysms with the highest risk of rupture.
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A predictive study by Detmer et al. identified population-

specific differences that determine the association between

hemodynamics and rupture risk (32). Our model using mirror

aneurysms avoided the influence of patient-related factors.

CFD was based on the simulation of the flow in aneurysms,

parent vessels, and morphology that significantly impact the

hemodynamics (11). Several studies involving morphology

underestimated some hemodynamic parameters (20, 33). By

contrast, our predictive is clinically applicable. The cutoff

value of our predictive score was 1.283, which could aid

practical evaluations.

Limitations

This study has some limitations. First, retrospective studies

cannot determine causality between features and outcomes.

Second, because of the rarity of mirror aneurysms at a

single institution, the limited sample size might have reduced

the robustness of our findings. Third, the Newtonian fluid

assumption could influence the low WSS role on rupture (34).

This study used generalized boundary conditions and properties

of blood similar to the study of Ford et al. (13). It might not

reflect the patient-specific conditions. Some studies revealed

that different inlet and outlet boundary conditions lead to

differences in the results (5) so that the inflow and outflow

conditions were adjusted for each aneurysm (7). Therefore, it

is crucial to define the boundary conditions carefully for each

case. Future work will include the collection of patient-specific

flow rates and the usage of the splitting method to determine the

outflow rates. Finally, although our results are generalizable to

aneurysms in most locations, mirror middle cerebral artery and

posterior communicating artery aneurysms account for a large

proportion. In future studies, more cases should be gathered

at several centers to identify other independent factors and

increase the predictive model’s accuracy.

Conclusions

In this retrospective study, we analyzed mirror aneurysms

to avoid the influence of inter-individual differences and

aneurysm locations. We found that hemodynamic analysis helps

predict aneurysm rupture risks. The LSA, mean CHP (>0.087),

and WSSG ratio (>893.180) were independent risk factors

for aneurysm rupture. Our predictive model based on three

independent risk factors aids practical evaluation.
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