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Introduction

Chromosome segregation requires that chromosomes attach 
to the spindle through kinetochores, complexes that assem-
ble on specialized centromeric chromatin. Multiple cellular 
mechanisms contribute to this process, and mounting evidence 
suggests that components of the spliceosome, the dynamic 
RNP complex that removes introns from RNA polymerase 
II (Pol II) transcripts (Wahl et al., 2009), are also involved.  
Genome-wide screens in cultured cells identified splicing fac-
tors as important for cell division (Goshima et al., 2007; Kittler 
et al., 2007; Somma et al., 2008; Neumann et al., 2010), and 
microtubule- and mitotic chromatin-interacting proteins bio-
chemically copurified with the catalytically active spliceosome 
isolated from HeLa cell nuclear extracts (Makarov et al., 2002). 
Recently, a role for the Prp19 splicing complex in Xenopus lae-
vis egg extract spindle assembly was demonstrated (Hofmann 
et al., 2013); however, its specific function is unclear. Over-
all, mitotic functions for the RNA processing machinery have 
been largely unexplored.

Work in a variety of systems including plants, fission 
yeast, and cultured mammalian cells showed that Pol II tran-
scription at the centromere during mitosis is important for ki-
netochore assembly (Chan and Wong, 2012; Gent and Dawe, 
2012). Because splicing factors are co-transcriptionally re-
cruited to Pol II transcripts (Listerman et al., 2006; David et 
al., 2011), involvement of the RNA processing machinery in 

centromeric noncoding RNA (ncRNA) biogenesis could ex-
plain its mitotic relevance. Support for this idea comes from 
the observation that the splicing factor Prp4 is kinetochore- 
localized during mitosis (Montembault et al., 2007) and that 
splicing factors interact with centromeric transcripts in mouse 
cells (Maison et al., 2011). Although little is known about the 
RNA biogenesis pathway at centromeres, centromeric transcrip-
tion is important for centromere protein A (CENP-A) loading 
across eukaryotic species (Saffery et al., 2003; Nakano et al., 
2008; Cardinale et al., 2009; Chueh et al., 2009; Bergmann et 
al., 2012; Quénet and Dalal, 2014; Chen et al., 2015). Further-
more, RNA binding by the inner kinetochore protein CENP-C 
promotes its association with centromeric DNA in plants and 
animals (Wong et al., 2007; Du et al., 2010; Rošić et al., 2014), 
which is a prerequisite for kinetochore assembly (Gascoigne 
et al., 2011; Rago et al., 2015). Studies in mouse cells and in 
X. laevis egg extracts have revealed that centromeric ncRNAs 
are also important for Aurora B kinase activation (Ferri et al., 
2009; Blower, 2016), and RNA binding may be a general mech-
anism for regulating Aurora B activity (Jambhekar et al., 2014). 
Among its many roles (Carmena et al., 2012), centromere- 
associated Aurora B regulates the localization and activity of 
MCAK, a microtubule depolymerase that controls kinetochore 
fiber attachment to chromosomes as well as overall microtubule 
distribution (Andrews et al., 2004; Lan et al., 2004; Sampath et 
al., 2004; Zhang et al., 2007; Tanenbaum and Medema, 2011; 
Ems-McClung et al., 2013).

Transcription at the centromere of chromosomes plays an important role in kinetochore assembly in many eukaryotes, 
and noncoding RNAs contribute to activation of the mitotic kinase Aurora B. However, little is known about how mitotic 
RNA processing contributes to spindle assembly. We found that inhibition of transcription initiation or RNA splicing, but 
not translation, leads to spindle defects in Xenopus egg extracts. Spliceosome inhibition resulted in the accumulation of 
high molecular weight centromeric transcripts, concomitant with decreased recruitment of the centromere and kineto-
chore proteins CENP-A, CENP-C, and NDC80 to mitotic chromosomes. In addition, blocking transcript synthesis or 
processing during mitosis caused accumulation of MCAK, a microtubule depolymerase, on the spindle, indicating mis-
regulation of Aurora B. These findings suggest that co-transcriptional recruitment of the RNA processing machinery to 
nascent mitotic transcripts is an important step in kinetochore and spindle assembly and challenge the idea that RNA 
processing is globally repressed during mitosis.
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To investigate the mitotic functions of the RNA processing 
machinery, we used metaphase-arrested Xenopus egg extracts, 
which do not require global transcription and translation for 
spindle assembly (Newport and Kirschner, 1982a,b; Maresca 
and Heald, 2006; Blower et al., 2007), to identify two mitotic 
roles for splicing factors. First, we found that recruitment of 
the RNA processing machinery to nascent centromere-derived 
ncRNAs during mitosis enhances localization of CENP-A, 
CENP-C, and NDC80 to chromosomes. Second, ncRNA elon-
gation and processing are required to properly regulate Aurora 
B kinase and maintain spindle integrity, at least in part by mod-
ulating MCAK localization. Our results indicate that multiple 
RNA biogenesis-dependent events contribute to kinetochore 
and spindle assembly, and that splicing is not globally inhibited 
during mitosis (Shin and Manley, 2002).

Results and discussion

The RNA processing machinery is required 
for spindle assembly
To investigate mitotic roles of the RNA processing machinery, 
we interfered with its function in both X.  laevis and Xenopus 
tropicalis egg extracts. Abnormal spindle morphology was ob-
served (Fig. 1 and Fig. S1), with defects including loss of spin-
dle microtubule density, measured as median rhodamine tubulin 
fluorescence intensity, as well as disorganized structures with 
microtubules that projected off of the spindle, which manifested 
as changes in spindle solidity (Fig. S1 A). Multiple inhibition 

approaches were used, including RNase H–based knockdown 
of the U2 snRNA (Pan and Prives, 1988; Figs. 1 A and S1 B), 
immunodepletion of core spliceosomal snRNPs (Fig. 1 B and 
Fig. S1, C–E), and treatment with the splicing inhibitor isogink-
getin (ISGN; O’Brien et al., 2008) during mitosis (Fig. 1 C) or 
throughout the entire cell cycle (Fig. S1, F and G). Blocking Pol 
II transcription initiation with triptolide (Titov et al., 2011) re-
sulted in similar spindle defects (Figs. 1 C and S1 H). These ef-
fects were not caused by aberrant expression of protein-coding 
RNAs, as blocking translation with cycloheximide did not re-
sult in detectable spindle defects (Fig. S1 I). These data suggest 
that the RNA processing machinery is involved in the mitotic 
regulation of one or more RNAs that are not acting in a protein 
coding capacity, hereafter referred to as ncRNAs, and that this 
regulation is important for spindle assembly.

Centromere-derived ncRNAs are targets of 
the RNA processing machinery
Given the growing number of studies showing a role for cen-
tromeric transcription (Chan and Wong, 2012; Gent and Dawe, 
2012; Scott, 2013), we examined whether the RNA processing 
machinery was also involved in centromeric ncRNA biogenesis. 
Replicated, interphase nuclei were incubated in RNA-depleted, 
metaphase-arrested extract. After spindle assembly, RNAs 
were isolated and analyzed by RT-PCR with primers specific 
to the 174-bp fcr1 repeat (Edwards and Murray, 2005), the only 
known centromere sequence in X.  laevis (Fig. 2 A). Whereas 
nuclei formed in mock-depleted extract produced amplification 
products that were 500 bp or less, nuclei formed in splicing  

Figure 1.  ncRNA biogenesis is important for 
mitotic spindle assembly. (A) Example images 
and quantification of spindle microtubule (MT) 
density and solidity after RNase H–based 
knockdown of the U2 snRNA (U2KD, n = 
3,018) or treatment with a scrambled oligo 
(n = 1,454) in X. laevis egg extracts. Median 
microtubule density decreased 18.0% in U2 
knockdown extract. (B) Example images and 
quantification of spindle microtubule density 
and solidity for X.  tropicalis spindles formed 
after splicing factor immunodepletion with an 
antibody against the trimethylguanosine cap 
of snRNAs (α-TMG, n = 581) compared with 
mock depletion (IgG, n = 325). Median micro-
tubule density decreased 24.5% in splicing fac-
tor-depleted extract. (C) Example images and 
quantification of spindle microtubule density 
and solidity in X.  laevis extracts treated with 
splicing inhibitor (ISGN, n = 518), transcrip-
tion inhibitor (TRIP, n = 417), or solvent con-
trol (DMSO, n = 483). Inhibitors were added 
immediately before spindle assembly. Median 
microtubule density decreased 14.9% in ISGN- 
treated extract and 24.1% in TRIP-treated ex-
tract. Bars, 10 µm. Box plot horizontal lines 
correspond to median values. Bottom and 
top of the boxes are first and third quartiles, 
respectively; whiskers show highest and low-
est values within 1.5 times the interquartile 
range and outliers are plotted as single points. 
*, P < 10−5; **, P < 10−10; ***, P < 10−15  
(Kolmogorov–Smirnov test). AU, arbitrary units.
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factor–depleted extract produced a laddered pattern matching 
that observed when genomic DNA was amplified (Fig.  2  B 
and Fig. S2 C), indicating that tandem repeat–containing cen-
tromeric fcr1 RNAs were produced as large transcripts up to 
six repeat units in length in the absence of processing. Similar 
products were obtained in reactions treated with the splicing 
inhibitor ISGN, and no amplification was observed in extracts 
treated with triptolide, demonstrating that the Pol II products 
were not derived from RNA already present in the reaction 
(Fig. 2 C and Fig. S2, A–C). These products were derived from 
RNA, as no amplification was observed when reverse transcrip-
tion was omitted (Fig. S2, A, D, and E), and products were syn-
thesized from the added nuclei because no amplification was 
observed in their absence (Fig. S2 F).

Supporting association of centromeric transcripts with 
the spliceosome, we found that fcr1 transcripts coimmuno-
precipitated with the core splicing machinery (Fig. 2 D). Fcr1 
transcripts, including potentially processed transcripts, also co-
immunoprecipitated with the inner centromere protein CENP-C 
(Figs. 2 E and S2 G). Centromeric RNA amplicons varied in 
size, likely reflecting underlying repeat sequence heterogeneity 
(Miga et al., 2014) that could lead to variation in splice site 
selection. These results indicate that centromeric RNAs such as 
fcr1 are transcribed and processed during mitosis.

The RNA processing machinery promotes 
kinetochore assembly
CENP-A and CENP-C depend in part on centromeric tran-
scription for their localization (Chueh et al., 2009; Du et al., 

2010). We therefore examined them by immunofluorescence 
after perturbation of RNA biogenesis and observed a decrease 
in staining density between 22.4% and 59.6% after inhibition 
of splicing or transcription initiation (Fig. 3, A and B). NDC80 
staining intensity also decreased 10–19.9% under these con-
ditions (Fig. 3 C), suggesting that centromere and inner kine-
tochore defects were propagated to the microtubule-binding 
interface of the outer kinetochore.

In contrast to results obtained with triptolide, we did 
not observe a decrease in CENP-A or NDC80 staining when 
transcription elongation was blocked with α-amanitin, which 
does not interfere with splicing catalysis (Bird et al., 2004) 
and leaves the nascent transcript associated with its chromo-
somal locus (Rudd and Luse, 1996). Interestingly, centromeric 
CENP-C staining increased significantly in α-amanitin–treated 
extract (Fig. S3 A), suggesting that increasing the residence 
time of nascent centromeric RNAs leads to greater CENP-C ac-
cumulation. Thus, although CENP-C RNA binding reinforces 
its centromeric localization (Du et al., 2010), our results suggest 
that splicing factor recruitment, but not transcript elongation or 
persistence of an RNA, plays a role in kinetochore assembly. 
Because recent measurements suggest that CENP-A is distrib-
uted throughout the genome (Bodor et al., 2014), centromere 
RNA biogenesis during mitosis could provide a second signal 
that helps mark the site of kinetochore assembly.

Our results are in contrast to previous studies reporting 
that α-amanitin treatment decreased CENP-C centromere lo-
calization (Chan et al., 2012; Quénet and Dalal, 2014). How-
ever, the long time course required in cell culture could result 

Figure 2.  The RNA processing machinery contributes 
to centromeric ncRNA biogenesis during mitosis. (A) 
Schematic of the centromere RNA biogenesis assay 
in X. laevis egg extract. Nuclei containing replicated 
sperm chromosomes were added to RNA-depleted 
extract, and nascent centromeric ncRNAs were as-
sessed by RT-PCR. (B) Centromeric RNAs appeared in 
a laddered pattern after splicing factor depletion with 
an antibody specific to the trimethylguanosine cap of 
core spliceosomal RNAs (ID), whereas mock deple-
tion (IgG) resulted in one or a few centromeric RNA 
products. The fcr1 repeat is 174 bp. Primers used to 
amplify this sequence were 106 bp apart. (C) Cen-
tromeric RNAs appeared in a laddered pattern after 
splicing inhibition with ISGN and were not detected 
after transcription inhibition with triptolide. (D) RT-PCR 
analysis of centromeric fcr1 ncRNAs in immunoprecip-
itates using nonspecific IgG antibodies (IgG Beads) 
or antibodies specific to the trimethylguanosine cap 
of core spliceosomal RNAs (TMG Beads), compared 
with extract supernatants (Sup.). (E) RT-PCR analysis of 
centromeric fcr1 ncRNAs in CENP-C immunoprecipi-
tates (Beads) or extract supernatants (Sup.). An ampli-
fication product from a potentially processed transcript 
appears at ∼150 bp. Note that PCR-amplified centro-
meric RNAs varied in size, likely because predicted 
splice sites present in the degenerate fcr1 RNA se-
quence could lead to a variety of splice products be-
cause of heterogeneity of centromeric sequences.
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in α-amanitin dependent degradation of the Pol II large subunit 
(Nguyen et al., 1996), which would prevent splicing factor re-
cruitment. In addition, our data are at odds with experiments 
in which RNAi depletion of centromeric transcripts led to cen-
tromere and kinetochore defects (Chueh et al., 2009; Quénet and 
Dalal, 2014). However, the RNAi machinery has been shown 
to trigger transcriptional gene silencing in vertebrates through 
siRNA-guided H3K9 di- and trimethylation, leading to the re-
cruitment of HP1 proteins (Alló et al., 2009; Ameyar-Zazoua 
et al., 2012), which abolished the function of a human artifi-
cial chromosome centromere (Nakano et al., 2003). Thus, using 
RNAi to interrogate centromere RNA function could induce 
epigenetic centromere inactivation.

ncRNA processing contributes to spindle 
integrity by regulating Aurora B and 
MCAK localization
Because spindle defects observed upon inhibition of tran-
scription or RNA processing were significant, we investigated 
whether ncRNA-dependent pathways in addition to kineto-
chore assembly contributed to spindle integrity. Aurora B ki-
nase activity is stimulated by RNA binding (Ferri et al., 2009; 
Jambhekar et al., 2014), and centromere-localized Aurora B 
produces a phosphorylation gradient (Wang et al., 2011) that 
regulates the activity, localization, and microtubule binding of 
the microtubule depolymerase MCAK (Andrews et al., 2004; 

Lan et al., 2004; Zhang et al., 2007; Tanenbaum and Medema, 
2011; Ems-McClung et al., 2013). RNase A treatment of egg 
extract reduced Aurora B activity and caused spindle assem-
bly defects that could be partially rescued by inhibiting MCAK 
(Jambhekar et al., 2014). Furthermore, a reduction in Aurora B 
staining at the inner centromere upon inhibition of transcrip-
tion was recently observed (Blower, 2016). We therefore tested 
whether interfering with ncRNA biogenesis affected MCAK, 
and we observed increased staining density within the spindle 
upon inhibition of transcription initiation or RNA processing 
(Figs. 4 A and S3 C). Although we have not assayed Aurora 
B activity directly, these results indicate that RNA biogenesis- 
dependent regulation of Aurora B and MCAK promotes spindle 
microtubule stability.

To determine whether the ncRNA-dependent Aurora B 
and centromere/kinetochore regulation we observed were sep-
arable processes, and together sufficient to explain the RNA 
biogenesis spindle phenotype, we developed an approach to 
inhibit them individually and in combination. We found that 
blocking transcription elongation with α-amanitin resulted in 
accumulation of MCAK on the spindle (Fig. 4 B), consistent 
with misregulation of Aurora B (Tanenbaum and Medema, 
2011; Ems-McClung et al., 2013), but that centromere or ki-
netochore assembly was unaffected (Fig. S3 A). We combined 
this treatment with direct inhibition of kinetochore fiber for-
mation with an inhibitory NDC80 antibody (McCleland et al., 

Figure 3.  Perturbation of RNA biogenesis 
leads to centromere and kinetochore defects. 
(A) Example images of CENP-A staining and 
quantification of median fluorescence intensity 
within antibody marked foci after inhibition 
of splicing (ISGN, n = 9,544) or transcrip-
tion (TRIP, n = 9,613) compared with DMSO 
controls (n = 5,203). Median CENP-A stain-
ing density decreased 25.4% in ISGN-treated 
extract and 37.8% in TRIP-treated extract. 
(B) Example images of CENP-C staining and 
quantification of median fluorescence intensity 
within antibody marked foci after inhibition 
of splicing (ISGN, n = 1,214) or transcrip-
tion (TRIP, n = 1,160) compared with DMSO 
controls (n = 2,411). Median CENP-C stain-
ing density decreased 22.4% in ISGN-treated 
extract and 59.6% in TRIP-treated extract. 
(C) Example images of NDC80 staining and 
quantification of median fluorescence intensity 
within antibody marked foci after inhibition 
of spicing (ISGN, n = 1,499) or transcription 
(TRIP, n = 1,623) compared with DMSO con-
trols (n = 1,515). Median NDC80 staining 
density decreased 10.0% in ISGN-treated ex-
tract and 19.9% in TRIP-treated extract. Bars, 
10 µm. **, P < 10−10 (Kolmogorov–Smirnov 
test). In the merged image, microtubules are 
red, centromere proteins are green, and DNA 
is cyan. AU, arbitrary units.
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2003) and found that inhibition of both processes simultane-
ously caused spindle defects similar to those produced by in-
terfering with RNA biogenesis, whereas individual inhibitions 
did not (Fig. 4, B–E). Directly blocking Aurora B activity with 
the small molecule ZM447439 (Gadea and Ruderman, 2005) 
resulted in MCAK localization defects similar to α-amanitin 
treatment and gave additive effects with NDC80 inhibition, but 
it did not increase the severity of ISGN-induced spindle defects 
(Fig. S3, B and D). Thus, the mitotic function of the RNA pro-
cessing machinery is largely accounted for by its involvement 
in Aurora B kinase activation and assembly of the centromere 
and kinetochore. However, there is likely cross talk between 
these two pathways in egg extracts because Aurora B inhibi-
tion interferes with outer kinetochore assembly (Emanuele et 
al., 2008), and centromeric transcription is required for Aurora 
B enrichment at centromeres and normal bipolar attachment of 
kinetochores (Blower, 2016).

To begin to investigate the downstream function of RNA 
biogenesis in spindle assembly, we examined TPX2, a spindle 
assembly factor involved in kinetochore fiber formation (Ma et 
al., 2011) and microtubule branching nucleation (Petry et al., 
2013), which has been shown to interact with the spliceosome 
in human cells (Makarov et al., 2002). We observed decreased 
levels of TPX2 on spindle microtubules upon treatment with 
transcription initiation or splicing inhibitors (Fig. 5, A and B) 
and found that addition of excess TPX2, but not the micro-
tubule-stabilizing agent DMSO, rescued the spindle defects 
(Fig.  5, C and D; and Fig. S3 E). These results suggest that 
specific pathways affecting microtubule dynamics and organi-
zation are downstream of mitotic ncRNA biogenesis and act 
to stabilize the spindle. Given the known functions of TPX2, 
we propose that inhibition of RNA processing reduces ampli-
fication of spindle microtubules by interfering with nucleation 
from kinetochore fibers. However, it is also possible that excess 

Figure 4.  ncRNA-dependent MCAK regu-
lation contributes to spindle integrity. (A) Ex-
ample images and quantification of MCAK 
staining density after inhibition of splicing 
(ISGN, n = 100) or transcription (TRIP,  
n = 127) compared with the control (DMSO,  
n = 89). In the merged image, microtubules 
are red, MCAK is green, and DNA is blue. 
Median MCAK staining density increased 
41.9% in ISGN-treated extract and 39.7% 
in TRIP-treated extract. (B) Quantification of 
MCAK staining density after treatment with 
buffer control (n = 466), αNDC80 antibodies 
(n = 477), α-amanitin (n = 350), or αNDC80 
antibodies + α-amanitin (n = 262). Median 
MCAK staining density increased 9.8% in 
αNDC80-treated extract, 39.6% in α-aman-
itin–treated extract, and 43.8% in αNDC80 
+ α-amanitin–treated extract. (C) Example 
images of spindles formed under each of the 
conditions in B. Bar, 10 µm. (D) Quantification 
of spindle solidity under each of the conditions 
in C. (E) Quantification of spindle microtubule 
(MT) density under each of the conditions in 
C.  Median microtubule density decreased 
22.5% in αNDC80-treated extract, 33.4% 
in α-amanitin–treated extract, and 38.2% 
in αNDC80 + α-amanitin–treated extract. 
Bars, 10 µm. **, P < 10−10; ***, P < 10−15  
(Kolmogorov–Smirnov test). AU, arbitrary units.
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TPX2 rescues spindle defects at least in part through the direct 
activation of Aurora B (Iyer and Tsai, 2012).

In summary, our results show that splicing factors are 
required for proper spindle assembly in Xenopus egg extracts 
in the absence of global gene expression caused by at least 
two RNA-dependent processes. The first is the involvement 
of RNA biogenesis at the centromere in kinetochore assem-
bly, and the second is RNA-dependent activation of Aurora 
B kinase. Given the conservation of centromeric transcription 
across organisms (Chan and Wong, 2012), a role for the splicing 
machinery is likely to be conserved and could explain mitotic 
phenotypes observed upon splicing factor knockdown in cul-
tured cells (Goshima et al., 2007; Kittler et al., 2007; Somma 
et al., 2008; Neumann et al., 2010). Although our analysis 
focused on a known centromeric transcript, other transcripts 
may be produced and function in mitosis. Importantly, our re-
sults show that RNA processing is not completely repressed 
during mitosis as previously thought (Shin and Manley, 2002). 
Further characterization of the RNAs and their downstream 
impact on cell division promises to be an interesting ave-
nue for future research.

Materials and methods

Xenopus egg extracts, spindle assembly reactions, and drug treatments
X.  laevis and X.  tropicalis egg extracts were prepared and spindle 
assembly reactions performed according to established protocols 
(Maresca and Heald, 2006; Brown et al., 2007). In brief, meta-
phase-arrested extract was induced to enter interphase by the addition 

of 0.5 mM CaCl2, and subsequently induced to enter mitosis by the 
addition of one volume of metaphase-arrested extract after nuclei 
had completed DNA replication. Interphase nuclei for mitotic in-
hibition experiments were flash frozen in 25 µl aliquots of extract 
containing 8% (vol/vol) glycerol and stored at −80°C.  Nuclei 
were thawed by the addition of 1  ml egg lysis buffer (250  mM 
sucrose, 50 mM KCl, 2.5 mM MgCl2, and 10 mM Hepes, pH 7.8) 
and pelleted at 1,600 g for 5 min at room temperature, then resus-
pended in fresh metaphase-arrested extract as described (Helmke 
and Heald, 2014). For mitotic inhibition experiments, fresh ex-
tract containing resuspended, cycled nuclei was split into sepa-
rate reactions to which a final concentration of 100 µM ISGN (gift 
from D.  Stanek, Institute of Molecular Genetics, Prague, Czech 
Republic; EMD Millipore) or 25  µM triptolide (TRIP; Sigma- 
Aldrich) was added. α-Amanitin (Sigma Aldrich) was used at a 
concentration of 50 µg/ml, ZM447439 at 5 µM, and cycloheximide  
(Sigma-Aldrich) at 100 and 1,000 µg/ml. Inhibitors were added 
and resuspended rapidly in mitotic extract, as lag times >60 s led 
to a significant decrease in phenotype severity and penetrance. 
Additionally, all egg lysis buffer was aspirated from pelleted 
nuclei as residual sucrose from the buffer masked the observed 
phenotypes. Great care was also taken during fixation of spindle 
reactions, as physical manipulation affected the recovery of frag-
ile spindles resulting from inhibitor treatment. Centromere and 
kinetochore immunostaining experiments were performed in ex-
tracts treated throughout the entire cell cycle.

RNA-depleted extracts for centromere biogenesis assays were 
generated by treating cytostatic factor-arrested extract with 20 ng/µl 
RNase A for 30 min, then 1.5 U/µl RNasin (Promega) for 15 min before 
addition of nuclei and inhibitor.

Figure 5.  Addition of TPX2 partially rescues 
spindle defects caused by perturbing ncRNA 
biogenesis. (A) Example images of TPX2 stain-
ing in control and inhibitor-treated reactions. In 
the merged image, microtubules are red, TPX2 
is green, and DNA is cyan. Bar, 10 µm. (B) 
Plot showing the ratio of TPX2/tubulin inten-
sity in spindles in control (n = 242) and in-
hibitor-treated reactions (ISGN n = 234, TRIP 
n = 120). The TPX2/tubulin ratio decreased 
13.9% in ISGN-treated extract and 45.9% 
in TRIP-treated extract. (C) Example images 
of spindles assembled in extract after treat-
ment with DMSO + 200 nM MBP (n = 193), 
ISGN + 200 nM MBP (n = 235), TRIP + 200 
nM MBP (n = 199), ISGN + 200 nM TPX2  
(n = 265), or TRIP + 200 nM TPX2 (n = 
126). Bar, 10 µm. (D) Quantification of spin-
dle microtubule density and spindle solidity 
under each of the conditions in C.  Median 
microtubule density decreased 50.6% in 
MBP + ISGN–treated extract, 51.0% in MBP 
+ TRIP–treated extract, 24.0% in TPX2 + 
ISGN–treated extract, and increased 26.9% 
in TPX2 + TRIP–treated extract. +, P < 0.05; 
*, P < 10−5; **, P < 10−10; ***, P < 10−15 
(Kolmogorov–Smirnov test).
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Immunofluorescence, microscopy, and image analysis
All experiments were performed in at least biological triplicate. Im-
munofluorescence was performed as described (Maresca and Heald, 
2006), except that all primary antibodies were used at 1:1000 dilution 
and allowed to reach equilibrium for at least 12 h at 4°C. Secondary 
antibody staining (Alexa Fluor 488–labeled anti-rabbit; Invitrogen) 
was performed concomitant with Hoechst staining at final concentra-
tions of 1 µg/ml and 2 µg/ml, respectively, for 60 min at 21°C. Xen-
opus CENP-A and CENP-C antibodies were a gift from the Straight 
Lab (Stanford University, Palo Alto, CA), Xenopus NDC80 antibody 
was a gift from the Stukenberg Lab (University of Virginia, Charlottes-
ville, VA), and Xenopus MCAK antibody was a gift from C. Walczak 
(Indiana University, Bloomington, IN). Images were obtained on an 
epifluorescence microscope (BX51; Olympus) under 40× magnifica-
tion (0.75 NA; UPlanFl N; Olympus) with TRI​TC, DAPI, and FITC 
filters (Chroma Technology Corp.) by an Orca-ER cooled CCD cam-
era (Hamamatsu Photonics).

Images were analyzed using a custom CellProfiler pipeline 
(Grenfell et al., 2016), which scales image intensities between 0 and 1 
based on image bit depth. Spindle phenotypes were evaluated using mi-
crotubule density (median rhodamine tubulin fluorescence value within 
the segmented spindle structure) and solidity (area of spindle/area of 
the convex hull of the spindle; Fig. S1), and kinetochore phenotypes 
quantified by measuring the median FITC fluorescence intensity per 
antibody labeled focus. Analysis of centromeric (CENP-A, CENP-C, 
and NDC80) foci was performed on maximum intensity z-projected 
images assembled using FIJI from seven successive focal planes at 
2-µm spacing. The fractional change in fluorescence intensity was cal-
culated by subtracting the treatment median from the control median 
and dividing by the control median.

snRNA knockdown and immunodepletion
For U2 snRNA knockdown experiments, U2b DNA or scrambled con-
trol DNA oligonucleotides (Integrated DNA Technology; Black et al., 
1985; Pan and Prives, 1988, 1989; Pan et al., 1989) were heated at 
80°C for 8 min, cooled on ice, and added to metaphase-arrested extract 
to a final concentration of 2 mM and incubated at 19°C for 30 min to 
allow for antisense oligo–targeted degradation by endogenous RNase 
H. After incubation, 10 µl of extract was reserved for RNA isolation 
and the remaining extract was split and half was driven through in-
terphase by the addition of 0.5 mM CaCl2 (final concentration) after 
addition of sperm nuclei. The other half was reserved on ice to drive the 
extract back into mitosis after DNA replication was complete.

For immunodepletion, 72.5 µl Protein G beads (Invitrogen) was 
used to couple 16 µg anti-TMG (trimethylguonosine; EMD Chemicals; 
Krämer et al., 1984) or nonimmune IgG (Sigma-Aldrich) antibodies 
in a PBS solution containing 0.2 µg/µl yeast tRNA (Sigma-Aldrich), 
0.05% normal goat serum (Jackson ImmunoResearch), and 0.4 U/µl 
RNasin (Promega). Coupling was performed at room temperature for 
1 h. 40 µl of extract was subjected to two rounds of immunodepletion 
(2 × 45 min on ice for X. laevis and 2 × 20 min at room temperature 
for X.  tropicalis). After each round, 2  µl of extract was set aside to 
evaluate depletion efficiency by quantitative PCR (qPCR). After im-
munodepletion, extract was driven through interphase and analyzed for 
spindle assembly.  RNPs associated with bead-coupled antibodies were 
analyzed as described previously (Stanĕk and Neugebauer, 2004), with 
minor modifications. In brief, beads containing antibody-bound RNP 
complexes were washed six times with NET-2 buffer (50 mM Tris-Cl, 
pH 7.5, 150 mM NaCl, and 0.05% Nonidet P-40) and kept on ice. After 
washing, beads were resuspended in NET-2 buffer containing 0.5% 
SDS and mixed in 1:1 (vol/vol) ratio with 5:1 acidic phenol chloroform 
(Sigma-Aldrich). After 1 h incubation at 37°C, they were centrifuged  

at 10,000  g and RNA was precipitated from the aqueous phase by 
acidic ethanol precipitation (300 mM sodium acetate, pH 5.5, and 70% 
ethanol). Isolated RNA was resolved on a 10% polyacrylamide urea 
gel and detected by silver staining or analyzed by RT-PCR (described 
in the next section). CENP-C immunoprecipitations were performed 
using the same protocol.

RNA isolation, RT-PCR, and qPCR analysis
RNA was isolated using TRIzol Reagent (Thermo Fisher Scientific) 
and 5:1 acidic phenol chloroform (Sigma-Aldrich) using the manufac-
turer’s protocol with minor modification. In brief, sample was homog-
enized in TRIzol and the protocol was followed through isopropanol 
precipitation. After precipitation, RNA was resuspended in Diethyl- 
pyrocarbonate-treated water and treated with RNase-free DNase I 
(Roche) for 30 min at 37°C or DNA Removal kit (Ambion) then ex-
tracted twice with acidic phenol chloroform before reverse transcrip-
tion with Superscript III (Thermo Fisher Scientific) according to the 
manufacturer’s protocols using random nonamers (qPCR), oligo dT18 
(qPCR), or fcr1 gene-specific primers (centromeric ncRNA analysis). 
RNA integrity was assessed by running 1 µg of extracted RNA on an 
agarose gel and staining with ethidium bromide.

qPCR was performed on cDNA generated with random nona-
mers (U2 snRNA knockdown experiments) or oligo-dT18 (immuno-
depletion experiments) and SuperScript III (Invitrogen), using SYBR 
Green qPCR SuperMix on an ABI Thermalcycler. Analysis was per-
formed using the ΔΔCT method with H3, 5S, or 18S as the reference 
transcripts (Table S1).

RT-PCR analysis of centromeric ncRNAs was performed with 
Phusion High Fidelity DNA Polymerase (New England Biolabs, Inc.) 
on cDNA generated using gene specific primers. Primers (Integrated 
DNA Technologies) were used at 0.5 µM final concentration and cDNA 
at 2 ng/µl in standard reaction buffer. Touchdown PCR (Don et al., 
1991) was performed using 10 touchdown cycles with annealing tem-
peratures starting at 69°C and ending at 59°C followed by 30 cycles 
with an annealing temperature of 59°C. Extension times were constant 
throughout at 120 s. Negative controls were processed in parallel using 
the same protocol  except that reverse transcription was omitted.

Online supplemental material
Fig. S1 shows the validation of our knockdown and immunodepletion 
experiments as well as phenotypes associated with splicing and 
transcription inhibition in Xenopus egg extract. Fig. S2 shows 
replicates of the experiments shown in Fig. 2 as well as isolated RNA 
used for our PCR assay. Fig. S3 shows centromere and kinetochore 
staining after transcription elongation inhibition; spindle phenotypes 
associated with Aurora B, NDC80, and Aurora B plus splicing 
inhibition; MCAK linescan after transcription or splicing inhibition; 
and partial rescue of the splicing spindle phenotype after microtubule 
stabilization. Table S1 contains primer sequences used in this study. 
Online supplemental material is available at http​://www​.jcb​.org​/cgi​/
content​/full​/jcb​.201604029​/DC1.
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