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Abstract: Previous studies have demonstrated that the suicidality in patients with major depressive
disorder (MDD) is related to abnormal brain functional connectivity (FC) patterns. However, little is
known about its relationship with dynamic functional connectivity (dFC) based on the assumption
that brain FCs fluctuate over time. Temporal stabilities of dFCs within the whole brain and nine key
networks were compared between 52 MDD patients and 21 age, sex-matched healthy controls (HCs)
using resting-state functional magnetic resonance imaging and temporal correlation coefficients. The
alterations in MDD were further correlated with the scores of suicidality item in the Hamilton Rating
Scale for Depression (HAMD). Compared with HCs, the MDD patients showed a decreased temporal
stability of dFC as indicated by a significantly decreased temporal correlation coefficient at the global
level, as well as within the default mode network (DMN) and subcortical network. In addition, temporal
correlation coefficients of the DMN were found to be significantly negatively correlated with the HAMD
suicidality item scores in MDD patients. These results suggest that MDD may be characterized by
excessive temporal fluctuations of dFCs within the DMN and subcortical network, and that decreased
stability of DMN connectivity may be particularly associated with the suicidality in MDD.

Keywords: major depressive disorder; suicide; neuroimaging; fMRI; dynamic functional connectivity;
dynamic brain network

1. Introduction

Major depressive disorder (MDD) is one of the leading causes of disability worldwide,
partly because of the high rates of suicide attempts in MDD patients [1,2]. Neuroimaging
studies using the resting-state functional magnetic resonance imaging (fMRI) have doc-
umented that the changes in functional connectivity (FC) between specific brain regions,
such as increased precuneus-motor connectivity [3], increased amygdala-precuneus con-
nectivity [4] and decreased fronto-limbic connectivity [5], are associated with increased
suicidality in MDD. These suicidality-related alterations in brain functions may have
important implications for understanding and preventing suicide among MDD patients.

The conventional fMRI studies assume that the patterns of brain FC are stationary.
Recently, the brain FC was found to fluctuate over time even during rest, implying that
describing it in a “static” manner might be too simplistic [6,7]. Therefore, the “dynamic
functional connectivity (dFC)” has become a new topic in recent years to capture the
fluctuations of brain connectivity [8–10]. With regard to MDD, some previous studies
have provided initial evidence that MDD is associated with a decreased temporal stability
(increased temporal variability) of dFC within multiple brain regions such as the medial
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prefrontal cortex [11,12] and posterior cingulate cortex [13] within the default mode net-
work (DMN), as well as the pallidum [14]. As for studies on the relationships between dFC
and suicidality in MDD, several recent studies have found that the overall topological prop-
erties of dynamic connectomic [15], the dynamic degree centrality [16], and the dynamic
amplitude of low-frequency fluctuation [17] could differentiate the MDD patients with
and without suicidal ideation, implying the possible association between the abnormal
fluctuations of brain dFC and suicidality in MDD. In a recent study, it was further found
that compared with MDD patients without suicidal ideation, those patients with suicidal
ideation showed increased dFC variability from the habenula to the superior temporal
gyrus and precuneus [18]. Despite the accumulating findings, however, most of the above-
mentioned studies are limited by that they only focused on dFC at the level of voxels or
within specific regions of interests (ROIs). Recent studies have proved that abnormal dFC
patterns in psychiatric disorders are not constrained in a circumscribed area but usually
associated with the entire large-scale brain systems [19,20]. Nevertheless, how the changes
in dFC within specific large-scale brain networks would be related to the suicidal ideation
or behavior in MDD remains largely unknown to our knowledge.

In this study, we aimed to explore the possible relationships between temporal stabili-
ties of large-scale brain dFCs and suicidality in MDD using the dynamic network model
and a validated metric, the temporal correlation coefficient [12,21–23]. We firstly investi-
gated the alterations in temporal correlation coefficients in MDD patients at the levels of
whole brain and nine well-established key networks including the sensorimotor, visual, au-
ditory, default-mode, frontoparietal, cingulo-opercular, salience, subcortical, and attention
networks [24,25], respectively. After that, we further investigated their relationships with
the level of suicidality in MDD patients. We hypothesized that (1) the previously reported
findings in MDD, such as a decreased temporal stability of dFC within the DMN [11,12],
would be replicated in the present sample; (2) the temporal stability of dFC within at least
one network would be related with the level of suicidality in MDD.

2. Materials and Methods
2.1. Participants and Measures of Suicidality

The analyzed sample consisted of a total of 52 patients with MDD and 21 age-, sex-
matched healthy controls (HCs), who were recruited from the Second Xiangya Hospital of
Central South University, Changsha, China. All participants included were right-handed,
Han Chinese adults with at least 6 years of education. All patients met the Diagnostic
and Statistical Manual of Mental Disorders-IV (DSM-IV) criteria for MDD and had a
17-item Hamilton Rating Scale for Depression (HAMD) score > 7. All participants had no
history of any substance abuse, any other neurological disorder, any contraindication to
fMRI scanning or any history of electroconvulsive therapy. The HCs additionally met the
following inclusion criteria: had no personal or family (in first-degree relatives) history of
any mental illness as evaluated by the Structured Clinical Interview for DSM-IV (SCID).
Note that the initial sample consisted of 58 MDD patients and 22 HCs; 6 patients and
1 healthy subject were excluded because of excessive head motion (see later in Section 2.2).
The study was approved by the Ethics Committee of the Second Xiangya Hospital of
Central South University, and written informed consent was obtained from all participants.

For all MDD patients, the level of current suicidality was assessed using the score
of the HAMD item 3 (suicidality item), which ranges from 0 to 4. Using a single suicide
item from depression scales to assess suicidality in psychiatric disorders has been proved
to be valid [26–28].

2.2. Data Acquisition and Preprocessing

Resting-state fMRI and T1-weighted structural images were acquired on a 3.0 T MRI scanner
(Philips Achieva XT). The fMRI images were obtained by gradient echo-planar imaging sequence
(repetition time/echo time = 2000/30 ms; slice number = 36; thickness/gap = 4.0/0 mm; field of
view = 240× 240 mm2; acquisition matrix = 64× 64; flip angle = 90◦; number of time points = 250),
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and the T1-weighted images were obtained by three-dimensional fast spoiled gradient recalled se-
quence (repetition time/echo time = 7.5/3.7 ms; slice number = 180; thickness/gap = 1.0/0 mm;
field of view = 240 × 240 mm2; acquisition matrix 256 × 200; flip angle = 8◦).

Data preprocessing was performed using the standard pipeline provided by the
DPARSF software [29,30]. Briefly, it included removing the first 10 volumes, slice-timing,
head motion realignment, brain tissue segmentation, spatial normalization, temporal
filtering (0.01–0.10 Hz), and regressing out the signals from white matter, cerebrospinal
fluid, and whole brain as well as the Friston-24 head motion parameters [31,32]. All images
have been manually checked by trained researchers to ensure good quality. Moreover,
6 patients and 1 healthy subject with excessive head motion were excluded from the
analysis, as determined by a mean framewise-displacement (FD) [33] > 0.2 mm.

2.3. Dynamic Brain Network Model

The fluctuation of brain dFC patterns was estimated based on the commonly used mul-
tilayer dynamic network model [8–10]. The nodes in brain network were defined by the
Automated Anatomical Labeling (AAL) atlas [34], which was validated in previous fMRI
studies [35–37]. The names of each of the 90 nodes were listed in the Appendix A (Table A1).

The dynamic networks were constructed as summarized in Figure 1. First, the mean
time series were extracted from each node by averaging the signals of all voxels within
that node. The widely used sliding-window approach was then applied with a window
length of 100 s and an incremental step of 6 s as recommended [12,38,39], dividing the
time series into 64 time windows. Within each window, the whole-brain connectivity
matrices were calculated using pairwise Pearson correlations. The connectivity matrices
were then thresholded with a wide range of densities ranging from 0.01 to 0.50 with an
increment interval of 0.01 [40]. For each density, only the connections that survived the
given threshold were reserved and assigned a value of 1, and those that did not survive
were assigned a value of 0. As a result, a dynamic network G = (Gt)t = 1, 2, 3, . . . , 64, where Gt
is the binary subgraph representing brain dFC within the tth time window, was acquired at
each density for each subject. The temporal correlation coefficient was then computed at
each density separately.
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2.4. Temporal Correlation Coefficient

Temporal correlation coefficient measures the stability of a dynamic network by the
average overlap of all the connections between any two successive time windows as
follows: firstly, let aij (t) = 1 if node i and node j are connected within the tth time window,
and aij (t) = 0 if they are not. The nodal temporal correlation coefficient of the node i (Ci) is
then defined as

Ci =
1

T − 1 ∑T−1
t=1

∑j aij(t)aij(t + 1)√[
∑j aij(t)

][
∑j aij(t + 1)

] (1)

where T is the number of time windows and N is the number of nodes in the net-
work [12,21,22,41]. The Ci ranges from 0 to 1, and a higher value indicates a higher
stability (lower variability) of node i. The Ci was computed and averaged across all
densities (0.01 to 0.50) to ensure that the results would not be biased by a single thresh-
old [12]. The temporal correlation coefficient of the whole brain is computed by av-
eraging the Ci of all 90 nodes. To further investigate which brain systems were par-
ticularly affected, we assigned all nodes to the nine key networks as defined in pre-
vious studies [24,25,42] (see details in the Appendix A). The temporal correlation co-
efficient of each network was computed by averaging the Ci across all nodes of that
network [22]. All computations were performed using two publicly available MAT-
LAB toolboxes (https://sites.google.com/site/bctnet and https://github.com/asizemore/
Dynamic-Graph-Metrics, accessed on 1 June 2022) [21,43]. The results were partly visual-
ized using the BrainNet Viewer software [44].

2.5. Statistics

The demographic characteristics and mean FD were compared between the groups
using the two-sample t-test or Chi-square test. Temporal correlation coefficients of the
whole brain and each of the nine networks were compared between the groups of MDD
patients and HCs using analysis of covariance (ANCOVA) covarying for age, sex, and
education. The temporal correlation coefficient of whole brain or any network which
showed significant between-group differences were further correlated with the total scores
of HAMD and the scores of HAMD item 3 using Spearman’s rank correlation coefficient,
respectively. For multiple network-level comparisons and multiple correlation tests, the
results were corrected by false discovery rate (FDR) and considered significant when the
corrected p < 0.05.

2.6. Post-Hoc Analyses on Clinical Variables

Several post-hoc analyses were performed to explore the potential influence of disease
chronicity and medications. First, the temporal correlation coefficients of whole brain or
any network with significant between-group differences were correlated with the MDD
patients’ illness duration. Second, the temporal correlation coefficients with significant
between-group differences were compared between the drug-naïve and medicated MDD
patients using the ANCOVA covarying for age, sex, and education. Third, the temporal
correlation coefficients with significant between-group differences were correlated with
the MDD patients’ daily doses of antidepressant as assessed by fluoxetine equivalents [45].
Significance was set at p < 0.05.

2.7. Validation Analyses

A number of supplementary analyses were further performed to validate the results.
First, all correlation analyses on the temporal correlation coefficients were repeated with
patients’ daily doses of antidepressant (fluoxetine equivalents) as an additional covariate
(using the partial Spearman’s correlations). Second, the relationships between temporal
correlation coefficients and HAMD item 3 scores were investigated using an ordinal logistic
regression model [46], to see whether the observed significant relationships would change
in different statistical models.

https://sites.google.com/site/bctnet
https://github.com/asizemore/Dynamic-Graph-Metrics
https://github.com/asizemore/Dynamic-Graph-Metrics
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3. Results
3.1. Demographic Characteristics and Head Motion

As shown in Table 1, there were no significant between-group differences in age and
sex (all p > 0.05). However, the groups of MDD showed a significantly lower education
level (t = −3.571, p = 0.001). There was no significant between-group difference in head
motion as measured by mean FD (t = 1.288, p = 0.202).

Table 1. Demographic, clinical, and head motion characteristics of the groups. SD, standard devi-
ation; MDD, major depressive disorder; HCs, healthy controls; HAMD, Hamilton Rating Scale for
Depression; FD, framewise-displacement.

MDD (n = 52)
(Mean ± SD)

HCs (n = 21)
(Mean ± SD) Group Comparisons

Age (years) 30.615 ± 9.306 27.000 ± 5.908 t = 1.982, p = 0.052
Sex (male/female) 28/24 10/11 χ2 = 0.232, p = 0.796
Education (years) 12.115 ± 3.191 14.952 ± 2.747 t = −3.571, p = 0.001

17-item HAMD scores 20.789 ± 6.366 / /
HAMD item 3 scores 1.769 ± 1.246 / /

Illness duration (months) 42.919 ± 62.291 / /
Drug-naïve/medicated 9/43 / /

Fluoxetine equivalents (mg/d) 25.360 ± 20.024
Mean FD 0.086 ± 0.038 0.074 ± 0.030 t = 1.288, p = 0.202

3.2. MDD-Related Alterations

As shown in Figure 2, the MDD patients showed a significantly decreased temporal
correlation coefficient of the whole brain than HCs (F = 8.014, p = 0.006); moreover, the MDD
patients showed a significantly decreased temporal correlation coefficient of the DMN
(F = 7.526, FDR-corrected p = 0.035) and subcortical network (F = 9.885, FDR-corrected
p = 0.022). The components of the DMN and subcortical network, which showed significant
between-group differences, were also presented in Figure 3. No significant between-group
differences were found in other networks (all p > 0.05).
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Figure 2. The mean temporal correlation coefficients of the whole brain and each network in the
groups of major depressive disorder (MDD) and healthy controls (HCs), after adjusting for age, sex,
and education. WB, whole brain; SM, sensorimotor network; VIS, visual network; AUD, auditory net-
work; DMN, default mode network; FPN, frontoparietal network; CON, cingulo-opercular network;
SAL, salience network; SUB, subcortical network; ATT, attention network; * significant difference
with corrected p < 0.05.
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Figure 3. The components of the default mode network and subcortical network, of which the temporal
correlation coefficients were significantly decreased in the patients with major depressive disorder.
ACG, anterior cingulate cortex; ANG, angular gyrus; CAU, caudate; L, left hemisphere; MTG, mid-
dle temporal gyrus; ORBsupmed, medial orbitofrontal cortex; PAL, pallidum; PCUN, precuneus;
PHG, parahippocampal gyrus; PUT, putamen; R, right hemisphere; SFGmed, medial superior frontal
cortex; SPG, superior parietal gyrus; THA, thalamus; TPOmid, middle temporal pole.

3.3. Correlations

In MDD patients, the scores of HAMD item 3 were found to significantly negatively
correlated with the temporal correlation coefficient of the DMN (Spearman’s rho = −0.371,
FDR-corrected p = 0.021, Figure 4) but not with the temporal correlation coefficient of whole
brain or any other network (all p > 0.05). No significant correlations were found between
the total scores of HAMD and the temporal correlation coefficient of whole brain or any
network, either (all p > 0.05).
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3.4. Post-Hoc Analyses on Clinical Variables

No significant correlations were found between the MDD patients’ illness duration
and temporal correlation coefficients of the whole brain or any network (all p > 0.05). No
significant differences were found in temporal correlation coefficients between the drug-
naïve and medicated MDD patients (all p > 0.05). Additionally, no significant correlations
were found between the temporal correlation coefficients and MDD patients’ daily doses of
antidepressant assessed by fluoxetine equivalents (all p > 0.05).

3.5. Validation Analyses

The negative correlation between the temporal correlation coefficient of DMN and
scores of HAMD item 3 in MDD patients remained significant when including the pa-
tients’ daily doses of antidepressant as an additional covariate (Spearman’s rho = −0.370,
p = 0.008). Therefore, such a relationship is unlikely to be mainly driven by effects of
medication treatment. Furthermore, when using an ordinal logistic regression model, it
was still found that the temporal correlation coefficient of DMN is significantly negatively
associated with the scores of HAMD item 3 (z = −2.494, p = 0.013).

4. Discussion

The present study, to the best of our knowledge, investigated the alterations in tempo-
ral stability of brain dFC and their associations with suicidality in MDD using the dynamic
network model and temporal correlation coefficient for the first time. Our major find-
ings were: (1) compared with HCs, the MDD patients exhibited a significantly decreased
temporal correlation coefficient of the whole brain, and significantly decreased temporal
correlation coefficients of the DMN and subcortical network; (2) the temporal correlation
coefficient of the DMN was significantly negatively related with the suicidality in MDD
patients. Our findings may expand our understanding of the neurophysiologic mechanisms
of the suicidality in MDD.

The decreased temporal correlation coefficient indicates a lower tendency for the
brain dFC patterns to be maintained over time or in other words, a decreased temporal
stability (increased temporal variability) of dFC [12,21]. Compared with HCs, the MDD
patients showed a significantly decreased temporal correlation coefficient of the whole
brain, suggesting an excessive fluctuation of FC at the global level. Furthermore, significant
local alterations were found in the DMN and subcortical network, which may indicate the
prominent excessive fluctuations of these two brain systems (Figure 2). The results were
compatible with the prior work which reported an increased variability of FC within the
DMN [12,13] and subcortical structures [14] in MDD.

We found that the temporal correlation coefficient of the DMN were significantly
negatively related to the scores of the HAMD suicidality item in MDD patients (Figure 4).
The result suggests that the excessive fluctuations of dFC within the DMN may underly
the psychopathology of suicidality in MDD. The DMN is a brain network which are more
active during rest but suppressed during cognitive activities including several distributed
nodes such as the precuneus, anterior cingulate cortex, posterior cingulate cortex, and
medial prefrontal cortex (Figure 3) [47–49]. In MDD patients, static FC patterns within the
DMN are often found to be changed [31,49,50] and such changes have been reported to
be related to their suicidal thoughts or attempts [3,51,52] in traditional static fMRI studies.
The associations between the changes in dFC within the DMN and suicidality in MDD,
however, are relatively limited. The DMN were suggested to mediate one’s self-referential
and internally directed processing [49,53]. In healthy subjects, the increased variability
of dFC within the DMN has been proved to be associated with increased frequencies of
spontaneous, internally oriented thoughts such as mind-wandering during the resting
state [54,55]. In MDD patients, the increased variability of dFC within the DMN has been
also reported to be related with their frequencies of rumination [11,13], a characteristic
form of spontaneous, negative, and internally oriented thought defined as “repetitively
and passively focusing on symptoms of distress” [56,57]. Therefore, we assume that the



Brain Sci. 2022, 12, 1263 8 of 12

excessive variability of the DMN connections may be an indicative of repetitive abnormal
activations of the DMN, which lead to excessive negative, internally focused thoughts
such as rumination in MDD patients. Such alterations may make the MDD patients more
focused on their negative life events and more vulnerable to thinking about suicide, which
lead to higher suicidality [58,59]. Our findings, therefore, may extend the finding of the
association between abnormal DMN connectivity and suicidality in MDD [3,51,52] into the
domain of dynamic brain FC.

In the MDD patients, the decreased temporal stability (increased variability) of dFC as
indicated by a significantly decreased temporal correlation coefficient was also observed
within the subcortical network including the thalamus, putamen, pallidum and caudate
(Figure 4). This result is in line with a recent study which reported an increased variability
of dFC in the pallidum in MDD and suggested that it may imply the impaired reward
processing [14]. The temporal correlation coefficient of the subcortical network, however,
was not significantly correlated with the suicidality in MDD patients. No significant
correlation was found between the temporal correlation coefficient of the whole brain and
suicidality in MDD, either. Therefore, the excessive variability of dFC within the DMN may
be a unique biomarker of the suicidality in MDD.

Our study has several limitations. First, the education level was not matched between
the groups of MDD and HCs. To solve this problem, we used the education level as
a covariant in the group comparisons to exclude its effect as a potential confounding
factor. Second, the suicidality was measured by only the item 3 of HAMD. In the future, a
more detailed scale for suicide such as the Columbia Suicide Severity Rating Scale [26] is
necessary for more detailed analysis, for example, to distinguish the possible differences
be-tween the patients with active and passive suicidal ideation [60]. Third, the sample
size in the present study is relatively small and larger samples are needed to confirm our
findings. Fourth, the HAMD was not assessed in HCs, and we are unable to confirm
whether similar effects would exist in HCs. Fifth, because of the nature of a cross-sectional
design, we are unable to establish the causality relationship between the suicidality and
brain network stability in MDD patients. Lastly, while a decreased temporal stability of
DMN dFC pattern was found in MDD in the present study, it should be noted that reports
of an increased stability of DMN dFC in MDD patients also exist [61,62]. It is possible
that subtypes of MDD with distinct DMN dFC profiles (hypo- and hyper-stability) could
exist [63], which can be investigated in future studies.

5. Conclusions

To conclude, using a dynamic brain network model and temporal correlation coefficient,
the present study identified a significantly decreased temporal stability (increased variability)
of brain dFC at the global level, as well as within the DMN and subcortical network in MDD
patients. Moreover, we found that decreased temporal stability of dFC within the DMN was
significantly related to higher suicidality in the MDD patients. These findings may have
important implications for better understanding and preventing suicide in MDD.
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Appendix A

Table A1. List of the 90 regions of interest used in the present study and their network affiliations
based on prior research. Odd and even numbers represent left and right hemispheres, respectively.

Index Corresponding Brain Region Network Affiliation

(1,2) Precentral gyrus Sensorimotor
(3,4) Superior frontal gyrus, dorsolateral Frontoparietal
(5,6) Superior frontal gyrus, orbital part Frontoparietal
(7,8) Middle frontal gyrus Salience/frontoparietal/attention
(9,10) Middle frontal gyrus, orbital part Frontoparietal
(11,12) Inferior frontal gyrus, opercular part Cingulo-opercular
(13,14) Inferior frontal gyrus, triangular part Salience/frontoparietal/attention
(15,16) Inferior frontal gyrus, orbital part None
(17,18) Rolandic operculum Auditory/cingulo-opercular
(19,20) Supplementary motor area Sensorimotor
(21,22) Olfactory cortex None
(23,24) Superior frontal gyrus, medial Default-mode
(25,26) Superior frontal gyrus, medial orbital Default-mode
(27,28) Gyrus rectus None
(29,30) Insula Salience/cingulo-opercular
(31,32) Anterior cingulate and paracingulate gyri Default-mode/salience
(33,34) Median cingulate and paracingulate gyri Salience/cingulo-opercular
(35,36) Posterior cingulate gyrus Default-mode
(37,38) Hippocampus None
(39,40) Parahippocampal gyrus Default-mode
(41,42) Amygdala None
(43,44) Calcarine fissure and surrounding cortex Visual
(45,46) Cuneus Visual
(47,48) Lingual gyrus Visual
(49,50) Superior occipital gyrus Visual
(51,52) Middle occipital gyrus Visual
(53,54) Inferior occipital gyrus Visual
(55,56) Fusiform gyrus Visual
(57,58) Postcentral gyrus Sensorimotor
(59,60) Superior parietal gyrus Salience/attention
(61,62) Inferior parietal, but supramarginal and angular gyri Frontoparietal/attention
(63,64) Supramarginal gyrus Auditory/cingulo-opercular
(65,66) Angular gyrus Default-mode
(67,68) Precuneus Default-mode
(69,70) Paracentral lobule Sensorimotor
(71,72) Caudate nucleus Subcortical
(73,74) Lenticular nucleus, putamen Subcortical
(75,76) Lenticular nucleus, pallidum Subcortical
(77,78) Thalamus Thalamus
(79,80) Heschl gyrus Auditory
(81,82) Superior temporal gyrus Auditory/attention
(83,84) Temporal pole: superior temporal gyrus Cingulo-opercular
(85,86) Middle temporal gyrus Default-mode
(87,88) Temporal pole: middle temporal gyrus Default-mode
(89,90) Inferior temporal gyrus None
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