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Abstract

Accurate inference of molecular and functional interactions among genes, especially in multicellular organisms such as
Drosophila, often requires statistical analysis of correlations not only between the magnitudes of gene expressions, but also
between their temporal-spatial patterns. The ISH (in-situ-hybridization)-based gene expression micro-imaging technology
offers an effective approach to perform large-scale spatial-temporal profiling of whole-body mRNA abundance. However,
analytical tools for discovering gene interactions from such data remain an open challenge due to various reasons, including
difficulties in extracting canonical representations of gene activities from images, and in inference of statistically meaningful
networks from such representations. In this paper, we present GINI, a machine learning system for inferring gene interaction
networks from Drosophila embryonic ISH images. GINI builds on a computer-vision-inspired vector-space representation of
the spatial pattern of gene expression in ISH images, enabled by our recently developed SPEX? system; and a new multi-
instance-kernel algorithm that learns a sparse Markov network model, in which, every gene (i.e, node) in the network is
represented by a vector-valued spatial pattern rather than a scalar-valued gene intensity as in conventional approaches
such as a Gaussian graphical model. By capturing the notion of spatial similarity of gene expression, and at the same time
properly taking into account the presence of multiple images per gene via multi-instance kernels, GINI is well-positioned to
infer statistically sound, and biologically meaningful gene interaction networks from image data. Using both synthetic data
and a small manually curated data set, we demonstrate the effectiveness of our approach in network building. Furthermore,
we report results on a large publicly available collection of Drosophila embryonic ISH images from the Berkeley Drosophila
Genome Project, where GINI makes novel and interesting predictions of gene interactions. Software for GINI is available at

http://sailing.cs.cmu.edu/Drosophila_ISH_images/
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Introduction

In multicellular organisms such as the metazoans, many
important biological processes such as development and differen-
tiation depend fundamentally on the spatial and temporal control
of gene expression [1,2]. To date, the molecular basis and
regulatory circuitry underlying metazoan gene regulation remains
largely unknown. Numerous statistical or algorithmic approaches
have been attempted to infer “networks” of regulatory elements
from high-throughput experimental data, based on various
computational techniques like Bayesian networks [3-5], undirect-
ed Gaussian graphical models [6,7], graph mining [8], ordinary
differential equations [9], partial correlations [10], and others.
Comparisons of different methods used for reverse engineering
gene networks have been performed [11,12], and predictions
made by automatically learned gene networks have been
experimentally validated [13,14], thus increasing the credibility
of such approaches.

This progress notwithstanding, a key deficiency of existing
approaches is that they rely almost exclusively on univariate
characteristics of gene states, such as a continuous-valued
abundance measurement from microarray, or a binary on/off
status derived from discretization of microarray data. However,
microarray profiling of mRNA abundance can often be ill-suited
for spatial-temporal analysis of gene expressions in multicellular

PLOS Computational Biology | www.ploscompbiol.org

organisms such as Drosophila, or in tissues/organs with natural or
pathological progressions, because it captures only the “average”
pattern of a sample. FFor any sample of interesting heterogeneous
cell populations, the averaging operation would cause severe
information loss and inaccuracy in downstream analysis (see
Figure 1 in [15] for an intuitive illustration of how two genes with
completely different spatial patterns over time yield near identical
“average” temporal patterns.)

Recent advancements in image-based genome-scale profiling
technology such as whole-body mRNA abundance micro-imaging
via i situ hybridization (ISH) have begun to reveal a more holistic
view of the activities and functions of genes in rich spatial-temporal
contexts. ISH has been used to characterize whole genome
expression patterns for different species such as Drosophila
embryos [16,17], C. elegans [18], and adult mouse brain [19],
and at smaller scales for Arabidopsis flowers [20], testicular germ
cell tumors [21], and others. The availability of this form of gene
expression data calls for development of next-generation image
analysis systems to facilitate not only efficient pattern mining such
as image clustering or retrieval, but also in-depth reasoning of
complex spatial-temporal relationships between gene expression
patterns, which will be essential for functional genomics and
regulatory network inference in higher organisms. In this paper,
we focus on a particularly interesting, but previously unaddressed
challenge along this direction: inferring a statistically sound gene
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Author Summary

As high-throughput technologies for molecular abun-
dance profiling are becoming more inexpensive and
accessible, computational inference of gene interaction
networks from such data based on well-founded statistical
principles is imperative to advance the understanding of
regulatory mechanisms in various biological systems.
Reverse engineering of gene networks has traditionally
relied on analysis of whole-genome microarray data; here
we present a new method, GINI, to infer gene networks
from ISH images, thereby enabling exploration of spatial
characteristics of gene expressions for network inference.
Our method generates a Markov network, which encap-
sulates globally meaningful statistical-dependencies from
vector-valued gene spatial patterns. In other words, we
advance the state-of-art in both the usage of richer forms
of expression data, and the employment of principled
statistical methodology for sound network inference on
such new form of data. Our results show that analyzing the
spatial distribution of gene expression enables us to
capture information not available from microarray data.
Such an analysis is especially important in analyzing genes
involved in embryonic development of Drosophila to
reveal specific spatial patterning that determines the
development of the 14 segments of the adult fly.

network from gene expression micro-imaging data, in the same
sense of inferring a gene network from microarray data as widely
studied in the literature. Analyzing ISH data allows us to infer a
network by computing similarities in the spatial distributions of
gene expressions in Drosophila embryo. Another important source
of information is the temporal changes of the spatial distributions
of genes, which could reveal how a gene regulation network
evolves over time during dynamic biological processes such as
embryogenesis [22]. We will defer the spatio-temporal network
building based on time series of ISH data for future work as it
requires the technique developed in this paper as a building block.

A major motivation of our work is the extensive imagery
documentation of all the genes expressed during Drosophila
embryogenesis via ISH imaging by the Berkeley Drosophila
Genome Project (BDGP) [16]. BDGP is an ongoing effort to
determine gene expression patterns during embryogenesis for
Drosophila genes. In February 2013, the data contained more
than 110,000 ISH images capturing the expression pattern of 7516
genes. Each image is annotated with time information, indicating
the development of the embryo in six development stage ranges.
Each image documents the gene expression pattern of a single
gene in an embryo. Most images have a single embryo, however
some images capture partial views of the embryo, others have
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overlapping or touching embryos. This is an extremely interesting
but difficult dataset that reveals unprecedented details of gene
activities during metazoan embryogenesis, but at the same time
posts large unanswered challenges on methodologies for systematic
and principled analysis. Specifically, we recognized the following
main challenges that are unique to micro-imaging data versus the
classical microarray data, which must be properly addressed
before a genome-scale gene network can be derived from such
data.

Representation and quantification of gene activities:
Unlike microarrays, which represent gene activity with a
univariate state or magnitude, images provide high-
dimensional information for every gene, and it remains
an open problem in computer vision research to extract
meaningful features from the ISH images that are
suitable for comparing activities of different genes and
other genome-wide analysis [15,23].

Multi-variate measurement: Even after one can standardize
the imagery-records of the expression of a gene at a
particular time point by a d-dimensional vector, where d
are the number of features extracted from the image, a
proper metric must be defined to quantify distances
between them.

Condition alignment: Images for different genes are typically
taken under non-identical conditions (e.g., time, tem-
perature, etc.), whereas a microarray is a snapshot of
multiple genes under the same condition. This affects
how signals are normalized across genes before they can
be compared.

Sample imbalance: Different genes typically have different
number of image records, i.e., for gene i and j, their
corresponding measurements can be in the form of two
bags of different sizes. It is not clear how to define
distance or correlation between bags of images of
different sizes. One simple solution to this problem is
to randomly sample a single image from each gene.
However, throwing away images fails to capture the
natural variation observed in gene expression patterns
for some genes. Further, if noise in the expression
patterns has not been removed correctly in the feature
extraction step, leveraging the existence of multiple
images per gene can lead to reduced noise, and
improved performance.

Sparsity and statistical interpretability: The interaction
network proposed must be sparse and statistically
meaningful, since we expect that a small fraction of all
possible interactions are actually present in a single
organism, and such interactions must reveal globally

(a) microarray data

(b) image data

Figure 1. ISH analysis is more challenging than microarray analysis. (a) Univariate measurements taken simultaneously for all genes
simplifies gene network inference from microarray data. (b) GINI extends such analysis to inferring a network from bags of images per gene.

doi:10.1371/journal.pcbi.1003227.g001
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consistent conditional-independence relationships be-
tween genes, which is not possible in a simple
pairwise-correlation graph.

There has been some earlier work on automatic annotation of
ISH images with annotation terms [24,25], clustering of gene
expressions [17], determination of the development stage of
embryos [26], etc., some of which have been applied on the BDGP
dataset. In this paper, we propose a machine learning system to
infer gene interaction networks from spatial similarity of gene
expressions captured via ISH images. The system is called GINI,
for Gene Interaction Network from Images. With such a system,
we were able to address satisfactorily the challenges mentioned
above, and systematically performed a genome-scale network
learning and analysis on the BDGP dataset.

Overview of the GINI approach

GINI first extracts the gene expression pattern from each image
using a computer version driven image analysis pipeline SPEX?
[15]. These expression patterns are spatially aligned and
normalized to enable spatial comparison of gene expression across
multiple images. Next, the expression patterns are represented by
suitable standardized features through a process called “triangu-
lation”, followed by feature normalization and selection. Since
each gene may have a different number of images in the data, each
gene can now be represented by a “bag” or a set of feature vectors
- one feature vector per image. Thus, our task is to estimate the
gene network, given bags of images per gene (Figure 1). We cast
the problem of estimating a gene interaction network as the task of
estimating the graph structure G of a Markov random field (MRF)
over the genes. The underlying graph encodes conditional
independence assumptions between the genes, that is, two genes
are said to not interact in the network if their gene expressions are
conditionally independent of each other, conditioned on the
expression of all other genes in the network. We employ multi-
instance kernel technique using different order statistics to
compute similarity between bags of images. We then estimate a
sparse network of gene interactions by modeling the data as a
multi-variate multi-attribute Gaussian, and estimating the sparse
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mverse covariance matrix of the model. A schematic diagram of
the system pipeline can be seen in Figure 2.

Contributions

GINI is a bioimage informatics system based on a computer
vision pipeline for ISH micro-image processing and a statistical
learning algorithm for network inference. The main contributions
of this work are summarized below.

First, the image analytic pipeline used by GINI offers a rigorous
and universal approach to extract a standardized representation of
spatial patterns of gene expressions. Comparing to the popular
SIFT features [24], which is based on detecting interest points with
heavy assumptions on object shape, texture, and other physical
properties originally meant for natural objects, our approach is
more suitable for ISH staining in Drosophila embryos which do
not resemble natural objects and require preservation of overall
spatial shape and overall intensity information in a canonical way
for intra-gene normalization and inter-gene comparison.

Second, GINI infers a network that enjoys the Markov network
property: it gives globally consistent conditional-independency
interpretation for every edge, and therefore is biologically more
meaningful. It is known that marginal correlation (as often used in
estimating an ad hoc network), which is computed for every gene-
pair in isolation (i.e., ignoring all other genes in the system),
confounds direct and indirect dependencies, and could result in a
clique-like dense graph or subgraph among genes that are not
directly dependent, but have a long-distance interaction. Studying
conditional independencies in a network allows us to predict
interactions between a pair of genes in the context of other genes,
allowing a distinction to be made between direct and indirect
relationships between the genes, and reducing false positives.

Third, our formulation based on Gaussian Markov random
field and multi-instance kernel for the GINI network is convex,
hence the globally optimal estimator of the network is computed,
no approximations are involved. Furthermore, under suitable
conditions, our graphical model learning algorithm is sparsistent,
i.e. as the amount of available data increases, the algorithm is
statistically guaranteed to predict the correct interactions between
the genes. While Bach etal. [27] have previously proposed
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Figure 2. GINI schematic. The schematic shows an outline of the overall system to reverse engineer gene networks from ISH data. Sample output

of each step is shown on top of the box corresponding to that step.
doi:10.1371/journal.pcbi.1003227.9g002
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learning the structure of graphical models from data using Mercer
kernels, their approach is based on a non-convex local greedy
search to find edges in the graph. Our approach represents the first
work that uses Mercer kernels and Gaussian Graphical Models to
predict kernelized graphical models using a convex formulation.

Finally, with the GINI system, we were able to systematically
perform a genome-scale network learning and analysis of the genes
expressed during 2 time points of Drosophila embryogenesis
recorded by ISH imaging from BDGP [16]. In both time points,
we find that the GINI networks are modular and scale free, which
are properties predicted to hold true in gene interaction networks.
Further, different regions of the networks are enriched for spatial
annotations, thus GINI is able to cluster spatially similar genes.
The hubs of the networks, 1.e., the genes with the largest number
of predicted interactions are functionally enriched for important
cellular functions. We demonstrate that the networks predicted by
analyzing microarray data does not have either spatial or
functional enrichment, thus these results could not have been
obtained by analyzing microarray data.

To the best of our knowledge, GINI represents one of the first
efforts to reverse engineering gene networks from ISH image data.
In both extensive simulation studies and empirical biological
analysis, we demonstrate the effectiveness of GINI in predicting
networks, and show that the statistical assumptions behind GINI
are reasonable, and the biological analysis enabled by GINI merits
close examination and further exploration.

Methods

We begin by introducing the key algorithmic innovations
needed to compute the gene network from the ISH images,
assuming that each gene has a bag of images, with the images
processed to be represented by informative and canonical feature
vectors. This is followed by a discussion on the image processing
procedures needed to extract informative features from the
images.

Network inference from “one image per gene” ISH data

We first show how GINI estimates a gene network, when each
gene has only one image. The next subsection extends the GINI
algorithm to deal with multiple images per gene.

Let G denote the set of 7 genes being studied, so that g; is the i
gene, where ie{l,---,n}, and d is the number of features
extracted per image. Each feature represents the gene expression
in a spatial location of the embryo.

Note that algorithms that analyze microarray data typically
treat samples drawn from different time points as independent
samples [28], even though expressions of the same gene across
time is expected to be auto correlated. We similarly assume that
the different spatial features are independent of each other. The
spatial independence assumption has also been implicitly made by
[29,30] while modeling transcription networks in Drosophila
embryos. In the results section, we use simulated data to
demonstrate that this assumption does not affect the accuracy of
the algorithm significantly.

By modeling the gene interactions as invariant across the spatial
locations in the embryo, we can assume that each feature is
independently and identically drawn (i.id.) from the same
distribution. Inferring gene interactions is then equivalent to
modeling the dependence between the expression values of
different genes at the same spatial location. Expression of the n
genes in each spatial location is assumed to be drawn from some
(multi-variate) distribution, independent of all other spatial
locations. Each spatial feature X® (ke{1, - - - ,d}) may be modeled
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as a vector of length n, with X®(j) capturing the expression value
of the i gene in this location k. This gives us d independent
samples with which the parameters of the underlying distribution
may be learned. Formally, let each spatial location be drawn
independently from a multi-variate Gaussian N (4,2, ), where p
is the mean vector, and X,y, is the positive semi-definite
covariance matrix between the genes.

In a multivariate Gaussian distribution, the (i, j)’h entry of the
inverse covariance matrix 7! is zero if and only if the
corresponding genes are conditionally independent given the rest
of the graph. Thus, the non-zero entries of the inverse covariance
matrix correspond to edges in the corresponding Gaussian Markov
random field, giving rise to the gene interaction network. The
Gaussian Markov random field is also known as a Gaussian
graphical model (GGM) [31]. Since we expect a small number of
interactions per gene, the estimated graph must be sparse, i.e. the
number of non-zero entries of the inverse covariance matrix must
be small.

Thus, the gene interaction network may be estimated by
learning a Gaussian distribution from the observed images, such
that the inverse covariance matrix is sparse. The mean u of the
Gaussian is estimated by the observed sample mean,

1 d
p=-y x® (1)
di—

Then, the inverse covariance matrix £~! can be estimated by
minimizing the negative log-likelihood of the data, over all possible
positive semi-definite matrices. To enforce sparsity, the Lo norm of
2_1, which counts the number of non-zero elements, is added to
the negative log likelihood. Since optimizing the Ly norm is non-
convex and NP hard, the L; norm is used as a convex relaxation
to the Ly norm. The L; norm of a matrix is the sum of the
absolute values of the elements of the matrix, and also enforces
sparsity in the solution. Adding the L; norm regularization also
ensures that the minimizer of the objective function exists, and is
well defined. Thus, our objective function is

2~'= arg min{rrace(SO) —logdet ®+ 1|0, }  (2)
0=0

where S is the second moment matrix about the mean

d
S= 13 (0 p(r " ()
k=1

A is a tuning parameter, by which we determine the strength of the
penalty. As we increase the value of A, we increase the penalty on
the absolute values of ®, and hence, the graph induced by 2!
becomes more sparse. The edges in the graphical model are then
estimated as

E={Gp| 7)) #0; i#j} 4)

Optimization. The objective function defined in Equation 2
is convex, hence it can be solved by any convex optimization
algorithm. Banerjee et. al. [32] formulated an O(n*) block
coordinate descent method to solve it, where n is the number of
dimensions. Friedman et. al. [33] formulated each step of the block
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coordinate descent as a Lasso regression, and solved it in O(n®) -
they named their technique glasso. The glasso algorithm uses a
series of L penalized regressions, called Lasso regressions [34];
and we use the glasso algorithm for efficient optimization of our
objective function.

Note that Equation 2 is a function of data X only through the
sample covariance matrix S, hence, we can replace the sample
covariance matrix with a suitable similarity or kernel function.
This is the key idea behind GINT’s algorithm to deal with multiple
images per gene, which we discuss in the next section.

Network inference from “multiple images per gene”
ISH data

Multiple images of the same gene at the same time point should
have the same gene expression pattern. However, in practice, the
expression patterns in different images may differ considerably, for
three main reasons.

Firstly, there is a wide interval of time considered as a single
time point while collecting such data. For instance, the BDGP data
divides embryonic development into 6 time stages. The last stage
13-16 corresponds to development of the embryo 9.3 to 15 hours
after fertilization, which represents more than a third of the time
taken for embryonic development. Hence, the true gene expres-
sion pattern may be dynamic within the time period of a single
development stage, and the gene expressions captured for the
same gene at the same time may not look similar to each other.
Secondly, we might expect that for any organism for which ISH
data is collected, there will necessarily be some ambiguity in how
the development stage of the organism is labeled by human
annotators. Finally, noise in the expression patterns due to
excessive staining, lighting conditions and similar other reasons
will also be observed. For all of the above reasons, any network-
learning algorithm should leverage the existence of multiple
images per gene per time point in improving its estimates of gene
similarity.

The problem of multiple images per gene is reminiscent of
multi-instance learning [35,36]. Multi-instance learning is a form
of supervised learning, where instead of labeling each instance, a
bag of instances is labeled. A popular solution to the multi-instance
problem is to define a multi-instance kernel, that can compute the
similarity between bags of instances. Let s(A) be a collection of
order statistics of the set .4, for example, mean, median, minimum,
maximum etc. In d dimensions, s(A) is computed on each
dimension independently, to form a vector of order statistics. If we
use m order statistics, then the length of s(A) will be dm. The
similarity between gene g; with a set of images B; and gene g; with
images B; can then be computed as

K(B:.B)) = k(s(B:).5(B;)) ()

where k(a,b) is an appropriate kernel function between vectors @
and b. Such a kernel is called the statistic kernel.

The choice of the order statistics used in the kernel depends on
the data collection procedure of the ISH. One concern in ISH
data is that images may be overstained. In such a scenario, the
median may be an appropriate choice of order statistic. If over-
staining is not a concern, the maximum statistic may be more
appropriate to ensure that information about presence of gene
expression is not lost.

For the BDGP data, we use the covariance kernel
k(a,b)= Cov(a,b), and the mean statistic s(B)= ﬁZbeB b. The
choice of using a single statistic to represent information from
multiple images was due to the presence of noisy images in the
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data set. Thus,

(]

1 1
K(Bi.B)=Cov| > a0 b
‘B’| aeB; | jl bij
11
=—— Cov(a,b)
BI1B] 25 22

Thus, our choice of kernel is equivalent to computing the mean
similarity of all pairs of images in bags B; and B;. This specific
kernel is also known as the normalized set kernel, and has been
shown to perform very well in multi-instance classification [37].

Any kernel function may be written as the dot product in some
higher dimensional feature space, ie. K(a,b)=¢(a)T ¢p(b) [38].
Hence, if we assume that the data is drawn from a distribution
such that ¢(a) is a zero-mean Gaussian, we can learn the gene
interaction network by treating K as the sample covariance matrix.
Since estimating the inverse covariance matrix by solving equation
2 requires only the sample covariance matrix S and not the data
itself, we can kernelize it by using the kernel matrix K defined in
equation 6 as the required sample covariance matrix. Thus, the
objective function is

2= arg min{trace(K®) —logdet®+1[O©|;},  (7)
6>0

which can be solved as discussed in the previous section.

Consistency of the estimate. Given samples X' M x@ ...
X™ drawn from a Gaussian distribution, it can be shown that the
objective function in Equation 2 leads to a consistent solution, with
a suitable choice of A [32]. That is, the estimator bt converges in
probability to the true inverse covariance matrix X.

GINI however does not work with samples from a Gaussian
distribution, but directly with a multi-instance kernel K. By
definition, any kernel K can be represented as an inner product in
some feature space ¢, ie. K(a,b)=¢(a)T $(b). For the multi-
instance statistic kernel, ¢=s(B8), that is, the feature space is
defined by the order statistics computed over bag B. Since the
order statistics for image data is bounded between 0 and 255, s(3)
is a bounded random variable. Hence the distribution of s() is
sub-Gaussian. For sub-Gaussian distributions, Ravikumar et. al.
[39] show that the penalized maximum likelihood estimator
defined in Equation 7 is sparsistent, i.e. as the amount of data
increases, the probability of identifying incorrect edges goes to
zero. Thus, the kernelized estimator defined by GINI is
sparsistent.

Thus, the GINI algorithm predicts the gene interaction network
in two steps: in the first step, the similarity between different genes
is computed using a multi-instance kernel. In the next step, a
sparse interaction network is learned from the similarity matrix
by solving Equation 7, and predicting edges corresponding to the
non-zeros of the non-diagonal entries of the estimated 3! The
next subsections describe the feature extraction, representation,
and normalization process used to obtain suitable features from
images that can be input into GINI.

Image processing

We convert the ISH images into canonical feature vectors
suitable for analysis by our algorithm described above in a three-
step manner. First, the precise expression pattern found in each
image is extracted and aligned spatially to make all images
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PN

Input images

Triangulated images

Figure 3. Triangulation. Examples of how ISH images are converted into low-dimensional triangulated representations, for efficient feature

representation.
doi:10.1371/journal.pcbi.1003227.g003

spatially comparable. Next, each image is represented by a feature
vector using Delaunay triangulation. Finally, features are normal-
ized and feature selection is performed to extract meaningful
features, that can be then used to compute the multi-set kernels to
obtain gene similarity and learn the gene network.

Feature extraction via SPEX?. ISH images are taken under
diverse lighting conditions, and may suffer from poor quality
staining/washing. A good feature extraction system must remove
these effects, controlling for position, orientation etc. of the
embryo and extract a precise gene expression pattern from the
ISH images. In previous work [15], we developed SPEX?, an
automatic system for embryonic ISH image feature extraction.
SPEX? registers each Drosophila ISH image by first extracting the
embryo (foreground) from the image, using edge filters and image
analysis techniques. Next, the alignment, size, shape and
orientation of the embryo is determined, and normalized to a
standardized cllipse. SPEX? also does automatic error detection
and correction, rejecting images where the gene expression
extraction process may have introduced errors, and also rejecting
partial embryos, multiple embryos physically touching each other,
and excessively dried or otherwise mishandled embryos. Next, the
expression stain is extracted from the standardized embryo using a
novel algorithm that maximizes the contrast between the stained
and unstained regions of the embryo. Finally, an image
segmentation algorithm using Markov random fields is defined
to extract only the regions that have gene expression. Thus, a
concise and high-fidelity gene expression pattern is extracted from
the ISH image.

Feature representation via Delaunay triangulation. While
SPEX? makes the images of different genes alignable spatially, and
therefore directly comparable, the expression patterns must still be
converted into an appropriate feature representation. One com-
monly used method for feature representation is to use the SIFT
feature descriptor [40] in either a grid of points spaced uniformly
through the image, with principal component analysis (PCA) used
for dimensionality reduction [15], or via interest point detection and
codebook generation [24]. Such techniques work well for supervised
tasks like image annotation where a weight can be learned for each
direction computed by PCA or for each codeword in the generated
codebook. However, for unsupervised tasks, where weights cannot
be learned, we wish to extract features that explicitly take into
account the spatial distribution of the gene expression. A pixel level
feature representation on the other hand, allows us to capture spatial
information, but has high redundancy due to the correlation
between neighboring pixels.

To reduce redundancy while capturing spatial gene expression
information, we choose to overlay a fixed triangular mesh on top
of the standardized embryo. The gene expression pattern for each
image may then be represented as the median gene expression
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present in each triangle in this mesh. A mesh of 311 equilateral
triangles was produced by using the Delaunay triangulation
algorithm [41], and aligning the mesh to the standardized embryo,
as described in [23]. Each image can then be represented as a
feature vector of length 311, with each feature representing the
median gene expression expressed in a specific location on the
embryo, which is fixed across all images. For example, triangle 1
may correspond to the head in all images, and so on. Modeling the
spatial locations in a lower dimensional space via triangulation
helps in approximating the independence assumption made in the
GINI algorithm, analogous to using coarse time definitions while
making microarray measurements.

Figure 3 shows examples of ISH images converted into the
triangulated gene expression patterns. As can be seen, triangulat-
ing the SPEX? output captures the key features of the gene
expression location and strengths. Thus, triangulation enables
reducing the dimensionality of the feature space, while retaining
explicit spatial information about the gene expression, which other
dimensionality reduction techniques would not be able to capture.

Feature processing. The feature vectors extracted by
triangulating the expression patterns are not normalized, hence,
we need to adjust the signal obtained from different images to a
common scale. The set of triangulated features may also contain
uninformative features that may add a bias if used directly to
compute the multi-set kernel. Further, the gene network analysis
should only consider genes with informative expression patterns
that have non-trivial spatial expression in the data. Hence, we
need to further process the features to select informative features
and genes, and normalize the features in an appropriate manner.

Feature normalization. Unlike in microarray data, the
currently available ISH data does not measure the signal related
to nonspecific binding of the probe for each image, hence the
background correction of intensities cannot be image specific.
Each gene expression pattern is normalized to have its expression
values(?) lie between 0 and 255 (the minimum and maximum color
value). The feature value is then computed as the logarithm of the
expression value : log(1+1).

Feature & gene selection. A large percentage of the ISH
images have no stain, or ubiquitous staining. In the BDGP data,
55% of the genes have at least one image, in at least one time
point, with no stain. Since no information may be inferred from
such data, these images must be removed from analysis. This can
be achieved by removing expression patterns having variance
below a threshold (¢, usually 0.1).

Additionally, features that have low variance in the data set are
capturing no information about the gene expression variation
across multiple genes. Hence, they must be removed from the
analysis as well. Since removing images from the analysis affects
the feature variance and vice-versa, we alternate removing features
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Algorithm 1. Algorithm Outlining Feature
Normalization and Processing.

Input: triangulated features for n images :
ie{l,..n};
variance threshold ¢
Output: normalized and processed features in matrix X
for imagei=1---n do
| X(i.0)=log(1+255 +
end
while (min(var(X))<e || min(var(X’))<e¢) do
keepImages = find(var(X") > ¢);
X =X(keepImages,e);
keepFeatures = find(var(X) > ¢);
X =X(e,keepFeatures);
end

t;, where

t; —min(t;) )
max(;) —min(z;) 7’

var(A) for matrix A returns a vector containing the
variance of each column of A; find(y) returns the indices
of the non-zero elements of vector y, and A’ is the
transpose of matrix A.

and images with low variance, until both feature variance and
image variance is greater than the threshold. This is described
formally in Algorithm 1.

Summary of the GINI system

Putting everything together, we conclude the method section
with a summary of the GINI system for network inference from
ISH images. Each ISH image is converted into a standardized
expression pattern using SPEX?, and then triangulated to extract
a low-dimensional spatial feature vector. Next, feature values are
normalized, uninformative features are removed, and genes with
insufficient information available are rejected. Finally, the mult-
set kernel is used to compute the similarity between the bags of
image vectors available for each gene, and the gene network is
estimated using Equation 7. The algorithm is summarized in
Algorithm 2.

Computational complexity. We assume that the number of
images per gene is small and bounded by a constant, and hence
the total number of images is O(n), where n is the number of
genes. Then, given the triangulated features of all images, feature
and gene selection takes time O(nd?) and O(n*d) to compute
the correlation matrix in feature and gene space respectively.
Computing the kernel requires O(n’d) time, and finally, the
computational complexity of minimizing the log-det divergence
is known to be O(n?). The overall computational complexity is
then O(n® +nd* 4+ n*d). Assuming d < <n, the complexity may be
assumed to be O(n®). The implementation is efficient, and
computes a gene network for ~2000 genes in a few minutes on
an Intel Core-2 CPU with 2 GB memory.

Results

We first demonstrate that the independence and Gaussian
assumptions are reasonable for ISH data, and that GINI explains
the ISH data well, with small fitting errors, and no bias in the
residues. Next, we show the performance on a small subset of 12
images for 6 genes to verify that the network predicted by GINI
is reasonable. We then run GINI on two datasets of ISH images
from 2 time points in the BDGP data, and study the networks.
We find the networks are modular and scale free as expected.
Furthermore, different regions of the networks are enriched for
spatial annotations, and the hubs of the networks are functionally
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Algorithm 2. The Final GINI Algorithm to
Obtain the Gene Network from ISH Images.

Input: Embryonic ISH images for n genes;

A - tuning parameter to control sparsity

Output: Predicted gene network for the n genes
for genei=1---n do

// feature extraction

Bi={};

for each image j of gene g; do

Extract expression patterns from image j using
SPEX?;

t;=triangulate expression pattern of image j;
// feature normalization

t;=log(1+255 *m’m“‘fm)
b; =feature_selection(t));
B =B,U{b;};
end
// B; is now the set of all normalized features of the
images of gene g;
end
// Define the multi-instance kernel
for genei=1---n do
for gene j=1---n do

| K(iy)= Cov (ﬁ ZaeBi @ ﬁ ZbeB, b)
end
end
// Run glasso using kernel K
>~ = glasso(K \);
Predicted edges in the network: £=non-zeros in the non-
diagonal elements of =~ !;

enriched for important cellular functions. Finally, we demonstrate
that these results could not have been obtained by analyzing
microarray data.

Validation of the GINI assumptions: Independent
spatial data

GINI assumes that the gene expression in each triangle can be
assumed to be independently drawn from a multi-variate
Gaussian. However, the true gene expression in adjacent spatial
locations is correlated and not independent. To verify that this
dependence of adjacent samples does not affect the accuracy of the
estimated network, we simulate synthetic data where the
underlying network is known, but the data points are not
independent of each other, and test whether GINI can recover
the correct network in such a scenario. The data samples depend
on each other via a parameter ¢ that captures degree of
dependence between data samples. When ¢=0, all data samples
are drawn 1.1.d. from the known distribution. As ¢ increases, data
samples are drawn from the same distribution, but they depend on
the adjacent samples.

Data generation. For p=50 dimensions, the true inverse
covariance matrix was constructed by using the AR(1) model from
[42]. That is, 2;1 =1, and Z,_filr] =0.5, with all other elements
being zero. Dependent samples are generated from a zero mean
Gaussian having the above known inverse covariance matrix, as
explained below.

Let c€[0,1) be the fractional overlap between adjacent samples.
The first sample is sampled independently from the above
specified Gaussian. The (i+ 1™ sample is generated from the i
sample as follows. Pick ¢ * p random features f', and copy the value
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Number of data points is fixed

Number of data points increases to compensate
for the dependence between them

0.2r 0.2+ =
O - Precision O - Precision
—+— Recall —+— Recall
00 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
¢ (dependence of data points) ¢ (dependence of data points)
(a) (b)

Figure 4. GINI assumptions are reasonable. Even if the data are not independent draws from the Gaussian, the network can still be learned with
high precision and recall. (a) For a fixed number of data points, as ¢ increases beyond 0.5, the precision and recall reduces. (b) If we allow the number
of data points n to increase as c¢ increases, the precision and accuracy of the method is not affected. The standard deviation at each point in both

results is approximately 0.09.
doi:10.1371/journal.pcbi.1003227.9g004

of the previous sample for these features : X(i+1, /)= X(i, f)=a.
Now, Xj11 can be partitioned into the “known” f features and the
remaining ¢ features which still need to be sampled, conditioned
on X(i+1, f)=a. If we partition X as

( YT Y )
Ty Zgg
then X, conditioned on Xy =a can be shown to be Gaussian with

mean Ji and covariance Z, which can be computed as below, and
X(i+1,q) can be sampled from it.

B=24%;'a (8)
fl:qu—quZj}lqu )

We ran two experiments. In the first, a fixed number of
samples(n = 100) were used to learn the network. In the second, as
¢ increases, more samples (n=100/p * c+1) are available for
learning the network. In both experiments, for each ¢ value, we
randomly sample data points X using the method outlined above,
estimate the £~ matrix, and compare it to the known X!
matrix, to compute precision and recall. Results are averaged over
50 runs of the experiment.

Figure 4(a) shows that as ¢ increases, the precision (fraction of
correct interactions among all inferred ones) and recall (fraction of
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correct interaction among all true interactions) stay constant for
small values for ¢. Only when the amount of dependence increases
beyond half, do we see a small reduction in accuracy. Thus, we
can conclude that even if there is a large spatial dependence in
gene expression, the result is equivalent to a slight reduction in
performance. Futher, in Figure 4(b), we see that if we can increase
the number of data points as we increase ¢, the performance
remains the same as using 1.1.d. data.

GINI explains the ISH data well

For a high-dimensional distribution, it is not feasible to test if the
data is truly Gaussian. However, a consequence of Gaussianity is
that for each gene, the gene expression can be expressed as a
weighted linear sum of the expression values of a few other genes,
which form the edges of the network. To test if this assumption
holds true in ISH data, for each gene, we fit a linear regression
between the gene and its neighbors found by GINI and look at the
absolute value of the error ie. the mean absolute difference
between the predicted and the known gene expression. When the
maximum expression value is 1, for more than 90% of the genes
we looked at, the absolute error was less than 0.02; 99.5% of all
genes had absolute error less than 0.05, confirming that the GINI
generative model explains the ISH data.

We also confirm that the prediction error is not systematic with
respect to the spatial location. For each gene, we compute the
prediction error (residue) when the gene is predicted by regressing
it on its neighbors. For each spatial location, we plot the mean
residue at that location for all genes. As can be seen in Figure 5,
there is no systematic bias in the spatial positions that are hardest
to predict for any gene.

stage 9-10

stage 13-16

Figure 5. GINI error analysis. Locations where gene expression cannot be predicted easily. Red color indicates that the true gene expression was
higher than predicted by the regression, while blue indicates that the true gene expression was lower than predicted by the regression. Note that
since the difference in the true and predicted gene expressions is very small, the mean residue values were multiplied by 10 to improve the contrast
of the image for visualization purposes. Thus, there is no systematic bias in the spatial locations where expression is hard to predict.
doi:10.1371/journal.pcbi.1003227.g005
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Network on limited data

Before running our algorithm on a large sized dataset, we
construct an artificial small data set to verify the results. We input
12 images, shown in Figure 6(a) from 6 genes to the GINI
algorithm (each gene has 1-3 images in the data set). With
A=0.46, 4 edges are predicted in the network, shown in
Figure 6(b). As can be seen, the three genes hunchback(hb), four-
jointed(f)), and Blimp-1, which are expressed in the dorsal, ventral
and procephalic ectoderm, are connected in a single cluster.
Similarly, the genes organic anion transporting polypeptide
74D(Oatp74D) and bicoid(bed) are connected by an edge, since
both show expression in the foregut and the anterior endoderm.
Finally, the expression of sloppy paired-1(slp/) was considered to
be sufficiently different from the other genes, hence it is not
connected to any other gene in the network.

Thus, the gene interaction network found by GINI can be
verified to be reasonable for the above small data set.

Network on the whole BDGP data

We now turn our attention to the ISH images from the Berkeley
Drosophila Genome Project data set. We have obtained around
67400 ISH images of 3509 protein-coding genes from the BDGP
data released in September 2009, captured at key development
stages of embryonic development. Each image captures embryonic
gene expression of a single gene using RNA in-situ hybridization.
Each image was labeled manually with the age of the embryo,
categorized into six distinct embryonic stages : 1-3, 4-6, 7-8, 9—
10, 11-12, and 13-16. Genes are also annotated with ontology
terms from a controlled vocabulary of around 295 terms,
describing the unique embryonic structures in which gene
expression is observed during the various stages of embryonic
development. SPEX? analyzes these image automatically, reject-
ing unsuitable images, to produce 51593 expression patterns of
3347 genes.

As proof of concept, we focus on images viewed from a lateral
perspective from two development stage ranges of this data : 9-10
and 13-16. For the stage 9-10, we have 2869 expression patterns
of 2609 genes, and for stage 13-16, we have 6350 expression
patterns of 3258 genes. We extracted features as described in the
methods section. For each development stage, we ran a separate
analysis.

Using a A value of 0.775 for stage 9-10, we ran GINI and
obtained a network having 258 genes, and 516 interactions (edges)
between them. For the development stage 13-16, we used
A=0.875, and obtained a network with 1202 genes and 3666
interactions between them. The A value was selected for each

, A, |
% 495
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network by running GINI for 21 A values between 0.5 and 1, and
picking a value such that the mean-degree for the network is
reasonable (approximately 2-3) - see Supplementary Figure S1 for
a plot that shows how the number of edges in the network
decreases as A increases.

Some of the interactions predicted by GINI have already been
reported in the literature. For example, in the network for stage
9-10, GINI predicts that DCP-1 (CG5370), an effector caspase
which is involved in apoptosis, will interact with the thread gene
(CG12284), a known inhibitor of apoptosis protein [43]. GINI
also predicts that Sufd- related 1(CG1064) interacts with echinoid
(CG12676), both of which are known to be involved in epidermis
development, muscle organ development, as well as imaginal disc-
derived wing vein morphogenesis. In the 13-16 development
network, GINI predicts that the capping protein beta gene (CG17158)
interacts with the Glycogen phosphorylase gene (CG7254), and Tpcl
(CG6608) interacts with CG2812, which has been previously
reported in [44].

The next five subsections do a detailed analysis of the 2
networks.

Scale free network

A network is said to be scale free if its degree distribution
asymptotically follows a power law. That is, the fraction of genes
P(k) that have at least k interactions with other genes is

P(k)=ck ™" (10)

where v is the scale free parameter, and ¢ is the normalization
constant. It has been hypothesized that gene regulatory networks
are scale free [10]. We looked at the characteristic of our
interaction networks by plotting the number of interactions per
gene (Figure 7), and found that the networks found by GINI are
scale free. The y parameter obtained is 2.3 and 2.5 for the 9-10
and 13-16 networks respectively, which corresponds well to the
values observed for a large variety of power law graphs. The scale
free nature of the network was found to be independent of the A
tuning parameter of the algorithm.

Unlike the gene regulatory network obtained for Human-B cells
[10], we found that the scale-free nature of the gene network we
obtain has a good fit, without observing a deviation from the
expected at low connectivity values. However, this could be a side-
effect of the larger number of genes they analyzed.
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Figure 6. Example network on small data. (a) 12 images input to the GINI system, and (b) network of genes learnt by it, with each gene

represented by one image.
doi:10.1371/journal.pcbi.1003227.9006
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Figure 7. Scale-free network. Connectivity properties of the reconstructed network for time stage 9-10, and 13-16. The scale free nature of the
plot can be observed for both networks. The plot for stage 9-10 has fewer points since the network constructed has fewer nodes and edges.

doi:10.1371/journal.pcbi.1003227.g007

The BDGP networks are modular

Using spectral clustering, we construct 12 regions or clusters
within each network, and visualize the five biggest clusters of each
of the networks in Figure 8. All 12 clusters in both networks are
very well separated. The ratio of within-cluster edges to total
number of edges is 70% and 87% for the 9-10 and 13-16
development stage networks respectively, indicating that the
estimated networks are highly modular. From a biological
perspective, different parts of gene networks may be responsible
for different pathways or biological functional components of the
cell, thus modularity is a good prediction for real interaction
networks.

Hub analysis

Given the scale-free nature of the network, a small number of
the genes have a large number of interactions. We analyze the
Gene Ontology functions of the genes having the largest number
of interactions, 1.e. the hubs of the network. The question we wish
to address is: if we pick the top 5% of the genes having the
maximum connectivity with other genes, what kind of functional
enrichment do these genes have? Our background population is
of the 2609 and 3258 genes for which we have at least one ISH
image describing its expression for the 9-10 and 13-16 stages
respectively. We use the hypergeometric test, with Bonferroni
correction used to correct for multiple hypothesis tests [45]. As
can be seen in Table 1, we observe enrichment of a wide variety of

procephalic ectoderm primordium
222 o

trunk mesoderm primordium
head mesoderm primordium

ventral nerve cord 3
primordium

. ead mesoderm primordium
posterior endoderr
primordium

stage 9-10

embryonic saIiva? A
gland body

embryonic dorsal epiderrﬁis N
embryonic hypopharynx o,

functions that are essential to cell growth and functioning,
including metabolic processes, cellular respiration, transport of
electrons and ions, protein modification, ribosome biogenesis etc.

Next, we examine a few high-degree hubs in the two networks
in detail, along with their neighborhood genes in the networks.
Figure 9 shows the hub neighborhood for two genes in the 9-10
development stage network. CG3969 is a Activated Cdc42 kinase-
like gene known to be involved in protein phosphorylation [46]
and cell death [47], and CG9984 (TH1) is known to be involved in
regulation of biosynthetic process [48] and nervous system
development [49]. Both genes interact with many genes having
functions related to the primary metabolic process, and single-
organism cellular process. In stage 13-16, we examine the hub
neighborhood of CG5904 and CG6501. The mitochondrial
ribosomal protein CG5904 has been previously predicted to be
a structural constituent of ribosome [50], and we find that it
interacts with many genes involved in the ribosome biogenesis.
Gene CG6501 (Ns52) has been previously predicted to be involved
in phagocytosis, engulfment [51], and ribosome biogenesis [46];
CG6501°s neighborhood has multiple genes that are also involved
in ribosome biogenesis and single-organism cellular process.

Enrichment of annotation terms

Each gene in the BDGP data has been labeled manually by
annotations describing the spatial gene expression, using 295
annotation terms. We expect that since the gene interaction

embryonic brain
ventral nerve cord-o++ e,

embryonic/larval fat body
yolk nuclei

mbryonic midgut

stage 13-16

Figure 8. Modular network. A global view of the networks constructed by our algorithm for development stage 9-10, and 13-16, visualized for 5
of the 12 clusters in the network. The nodes of each cluster in the network are represented by different colors. Red edges are edges between nodes in
the same cluster, while green edges are edges between nodes in different clusters. Each cluster is represented by one or two spatial annotation terms

enriched in the cluster.
doi:10.1371/journal.pcbi.1003227.g008
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Table 1. GO functional analysis for the gene hubs of the GINI network.

Stage Gene Ontology term Hub frequency Genome frequency P-value

9-10 cellular macromolecule metabolic process 57 of 119 genes, 47.9% 652 of 2575 genes, 25.3% 1.79e-05
macromolecule metabolic process 62 of 119 genes, 52.1% 772 of 2575 genes, 30.0% 8.16e-05
cell cycle 24 of 119 genes, 20.2% 174 of 2575 genes, 6.8% 0.00029
primary metabolic process 67 of 119 genes, 56.3% 962 of 2575 genes, 37.4% 0.00559
cell cycle phase 18 of 119 genes, 15.1% 127 of 2575 genes, 4.9% 0.00667
cellular metabolic process 64 of 119 genes, 53.8% 910 of 2575 genes, 35.3% 0.00827
mitotic cell cycle 18 of 119 genes, 15.1% 131 of 2575 genes, 5.1% 0.01039
cell cycle process 19 of 119 genes, 16.0% 146 of 2575 genes, 5.7% 0.01313
cellular process 90 of 119 genes, 75.6% 1508 of 2575 genes, 58.6% 0.01798
macromolecule modification 20 of 119 genes, 16.8% 163 of 2575 genes, 6.3% 0.01888
protein modification process 19 of 119 genes, 16.0% 155 of 2575 genes, 6.0% 0.03111
nucleobase-containing compound metabolic process 39 of 119 genes, 32.8% 476 of 2575 genes, 18.5% 0.04665

13-16 energy derivation by oxidation of organic compounds 13 of 159 genes, 8.2% 47 of 3217 genes, 1.5% 0.00011
cellular respiration 12 of 159 genes, 7.5% 43 of 3217 genes, 1.3% 0.00031
generation of precursor metabolites and energy 14 of 159 genes, 8.8% 60 of 3217 genes, 1.9% 0.00039
electron transport chain 10 of 159 genes, 6.3% 32 of 3217 genes, 1.0% 0.00093
mitochondrial ATP synthesis coupled electron transport 9 of 159 genes, 5.7% 26 of 3217 genes, 0.8% 0.00121
ATP synthesis coupled electron transport 9 of 159 genes, 5.7% 27 of 3217 genes, 0.8% 0.00174
cellular process 116 of 159 genes, 73.0% 1808 of 3217 genes, 56.2% 0.00211
respiratory electron transport chain 9 of 159 genes, 5.7% 28 of 3217 genes, 0.9% 0.00246
oxidative phosphorylation 9 of 159 genes, 5.7% 29 of 3217 genes, 0.9% 0.00342
ribosome biogenesis 7 of 159 genes, 4.4% 20 of 3217 genes, 0.6% 0.01640
cellular metabolic process 78 of 159 genes, 49.1% 1091 of 3217 genes, 33.9%  0.01708
mitochondrial electron transport, NADH to ubiquinone 6 of 159 genes, 3.8% 15 of 3217 genes, 0.5% 0.02661

GO functional analysis for the gene hubs of the networks learned for the two development stages by GINI. Both networks have hubs that are enriched for multiple

important cellular functions.

doi:10.1371/journal.pcbi.1003227.t001

each cluster for annotation terms using the hypergeometric test,
with Bonferroni correction used to correct for multiple hypothesis
tests. In the gene network for the 9-10 stage, 11 of the 12 clusters
are enriched for 63 total annotation terms (Figure 10). The only
cluster not showing any enrichment in the 9-10 stage network is

network is constructed via spatial similarity, genes that are
connected to each other in the network will have similar spatial
annotation terms.

To test this, we cluster the gene network using spectral
clustering [52] into 12 clusters, and analyze the enrichment of
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Figure 9. Hubs of the GINI network. A look into the neighborhoods of a few hubs from the GINI networks for stage 9-10 and 13-16. A few
enriched GO groups are highlighted in the subnetworks as shown.
doi:10.1371/journal.pcbi.1003227.g009

PLOS Computational Biology | www.ploscompbiol.org 1 October 2013 | Volume 9 | Issue 10 | e1003227



yolk nuclei

visual primordium |

ventral nerve cord primordium P3
ventral ectoderm primordium
trunk mesoderm primordium
strong ubiquitous |

salivary gland duct specific anlage |
procephalic ectoderm primordium
posterior endoderm primordium
inclusive hindgut primordium
head mesoderm primordium P2
foregut primordium

dorsal epidermis anlage

dorsal ectoderm primordium [
crystal cell specific anlage

central brain primordium P3
anterior endoderm primordium
amnioserosa primordium

Figure 10. Spatial annotations. Enrichment analysis for clusters in the gene interaction networks found by GINI. A green dot indicates enrichment

with a P-value <0.05.
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Figure 11. Enrichment analysis on networks learned from SIFT dictionary features instead of triangulation features. The network for
development stage 9-10 has only 7 enriched clusters of the 12 clusters in the network. For the stage 13-16 network, only 3 of the 12 clusters are

enriched for spatial annotations.
doi:10.1371/journal.pcbi.1003227.g011

also the smallest cluster, having only 4 genes. For example, in
cluster 8, 92% of the genes have expression in the ventral nerve
cord primordium P3 , while only 8% of the genes in the data have
expression in this region. Similarly, 73% of the genes in cluster 11
have expression in the trunk mesoderm primordium, while only
16% of the genes in the data have expression in this region. For
the 13-16 stage network, all 12 clusters are enriched for a total
of 81 enrichments, a part of which is visualized in Figure 10.
Tables SI and S2 in the supplementary material report the
complete enrichment analysis.

Triangulation improves quality of result.
on image processing for ISH images has focused on using

Previous work

SIFT features, and constructing a codebook that contain all the
embryonic structures that the system is expected to annotate [24].
In this section, we show that triangulation produces more
interesting networks over such a SIFT feature representation.
We use the SPEX? gene expression patterns, and represent them
by constructing SIFT features of the expression pattern over a
grid. These grid SIFT features are then represented with a
codebook of 2000 dictionary features, as described in [24].
We then use these dictionary features instead of the triangulated
features to learn the GINI network. Figure 11 shows that the
resulting networks are not as richly enriched as the ones derived
from the triangulation features in Figure 10. The total number
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Figure 12. SIFT codebook features do not perform as well as triangulated features on ISH data. Percentage of clusters enriched for
spatial annotations in networks predicted by GINI as a function of number of clusters for data from development stage 9-10 and 13-16. As can be
seen, using triangulated features produces networks with more enriched clusters than using SIFT-codeword features, independent of the number of
clusters selected for the analysis. Further, the enrichment of the GINI network clusters does not significantly vary as the number of clusters are varied.

doi:10.1371/journal.pcbi.1003227.9012
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doi:10.1371/journal.pcbi.1003227.g013

of enrichments in the SIFT codebook network is 42 and 21 for the
9-10 and 13-16 development stage networks respectively. In
contrast, the triangulated GINI networks had 63 and 81
enrichments for the 9-10 and 13-16 stage networks. Figure 12
shows that this result is independent of the number of clusters
selected for the analysis, for both triangulated networks as well as
SIFT codebook networks.

Sensitivity to the tuning parameter L. Supplementary
Figure S1 shows how the number of edges in the network
decreases as the tuning parameter(d) of the GINI algorithm
increases. To confirm that the enrichment results are not sensitive
to the choice of A, we obtained 21 predicted networks by varying
the A value uniformly from 0.5 to 1. For each network, we
repeated the clustering and enrichment analysis, and found that
the enrichment for term annotations is not highly sensitive to
choice of A ( Figure 13). The enrichment results are also not
dependent on the number of clusters - we get high enrichment,
independent of the number of clusters chosen while running the
clustering algorithm (Figure 12).

Comparison with microarray network

We learn a network from microarray data collected by the BDGP
project over 12 time points in embryonic development [16], over
the same genes that are being studied in the 9-10 and 13-16
networks, using covariance between the microarray expression as
the kernel. We find that the overlap in edges between the 2 networks
is very small, only 1% of the edges are common to both networks. If
we assume that spatial expression annotations are a proxy for
functional enrichment, then we can check if the microarray network
is enriched for the spatial annotation terms. Figure 14 shows that the
percentage of enriched clusters in the microarray network is small,
independent of the number of clusters analyzed.

We can also test functional GO enrichment of the hubs of the
network. Table 2 shows that the hubs of the microarray network
for stage 13-16 are enriched for only a single function, where 4 of
the 145 hub genes are involved in the “aromatic compound
catabolic process”, while the microarray data network for stage 9—
10 has no enrichments.

Thus, we find that the network learned from ISH images is
clearly different from a network learned from microarray data.
The ISH image network is enriched for spatial annotation terms,
as well as functional enrichment of the hubs of the network, which
does not hold true for the microarray network. This suggests that
analyzing ISH images could support different scientific conclu-
sions, which should be studied in greater detail.

Discussion

GINI predicts gene interaction networks by analyzing Drosophila
embryo ISH images. While the experiments above have been
reported on the ISH data from BDGP, the GINI algorithm can be
applied to all image data, by suitably modifying only the image
processing SPEX? pipeline. Using synthetic and image data, we
establish that GINI fits the ISH data well, with low error residues,
and that it can learn the true network correctly even if the data is not
completely 1.i.d. The analysis of the BDGP data shows that the hubs
of the predicted gene interaction network are enriched for essential
cellular functions, and that different regions of the interaction
network are enriched for different combinations of annotation
terms describing the gene expression. Thus, the predicted gene
interaction network is capturing essential spatial and functional
information about the expression pattern of the genes. We found
that the gene interaction network learned from ISH images differs
significantly from a network learned from microarray data.
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doi:10.1371/journal.pcbi.1003227.g014
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Table 2. GO functional analysis for the gene hubs of the microarray network.

Stage Gene Ontology term

Hub frequency

Genome frequency P-value

13-16 aromatic compound catabolic process

4 of 145 genes, 2.8%

6 of 3213 genes, 0.2% 0.01841

the microarray network constructed on genes from the 9-10 stage.
doi:10.1371/journal.pcbi.1003227.t002

The current work focuses on extracting gene networks from
spatial data. The next step is combining information from multiple
time stages to improve predictions, thus learning spatial-temporal
gene networks. The problem of time-varying networks has
been studied extensively for microarray data, by using different
statistical penalties to estimate the network. For example, Ahmed
et. al. [22] construct time varying networks by using a temporally
smoothed Lj-regularized logistic regression formulation, while
Danabher et. al. [53] propose a fused lasso and group lasso based
approach to combine information across time. Extensions of such
algorithms for image data require stronger assumptions on data
quality, such as having the same number of genes and image
quality across time. Further, certain development stages may be
less informative than others; for example, very few genes are active
at development stage 1-3, and expression data from this stage
is not as informative as expression data from development stage
13-16, when the embryo is much more mature. Developing
algorithms that can account for such variations in data quality,
while combining information across time, remains an interesting
future direction to explore.

Supporting Information

Dataset S1 Networks predicted by GINI for the 9-10
and 13-16 development stages. For the data at each stage,
multiple networks were predicted by varying the tuning parameter
A, between 0.5 and 1, as described in the paper. The network for
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