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The essential events of B-cell development are the stochastic and sequential rearrange-
ment of immunoglobulin heavy (Igµ) and then light chain (Igκ followed by Igλ) loci. The
counterpoint to recombination is proliferation, which both maintains populations of pro-B
cells undergoing Igµ recombination and expands the pool of pre-B cells expressing the
Igµ protein available for subsequent Igκ recombination. Proliferation and recombination
must be segregated into distinct and mutually exclusive developmental stages. Failure to
do so risks aberrant gene translocation and leukemic transformation. Recent studies have
demonstrated that proliferation and recombination are each affected by different and antag-
onistic receptors.The IL-7 receptor drives proliferation while the pre-B-cell antigen receptor,
which contains Igµ and surrogate light chain, enhances Igκ accessibility and recombination.
Remarkably, the principal downstream proliferative effectors of the IL-7R, STAT5 and cyclin
D3, directly repress Igκ accessibility through very divergent yet complementary mecha-
nisms. Conversely, the pre-B-cell receptor represses cyclin D3 leading to cell cycle exit and
enhanced Igκ accessibility.These studies reveal how cell fate decisions can be directed and
reinforced at each developmental transition by single receptors. Furthermore, they identify
novel mechanisms of Igκ repression that have implications for gene regulation in general.
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INTRODUCTION
Development of a diverse repertoire of peripheral B cells is
dependent on the appropriate and ordered progression of B-
lymphopoiesis. This process occurs through discrete developmen-
tal stages driven by the sequential rearrangement and expression
of genes encoding the immunoglobulin heavy (Igµ) and then
light chains (Igκ or Igλ). Successful expression of a functional
Igµ capable of pairing with surrogate light chain (SLC) compo-
nents and Igα/Igβ to form the pre-B-cell receptor (pre-BCR) at
the cell surface is associated with a proliferative burst that expands
the pool of pre-B cells expressing Igµ prior to cell cycle exit
and the rearrangement of Igκ. Proliferation and recombination
must remain mutually exclusive to maintain genomic integrity
and prevent excessive cell death or oncogenesis through aberrant
translocations. Recent work has begun to uncover the molecular
mechanisms dictating these developmental stages. Of particular
interest, is the integration and opposition of the IL-7R and pre-
BCR signaling pathways along with the effect of downstream epi-
genetic modifications on Igκ loci rearrangement and early B-cell
proliferation.

B-CELL DEVELOPMENT
Interactions with bone marrow (BM) stromal cells induce the
differentiation of common lymphoid progenitor cells (CLPs),
capable of generating B and T cells, into multipotential precursor–
progenitor (pre–pro) B cells (1, 2). At this stage, initial Igµ
rearrangements occur at diversity (DH) and joining (JH) gene
segments (3). Pre–pro-B cells are not committed to the B-cell lin-
eage as some developing T cells bear Igµ DHJH rearrangements.

Within IL-7 rich niches of the BM, pre–pro-B cells commit to the
B-cell lineage through differentiation into progenitor (pro)-B cells
expressing CD19 (4–6). IL-7 provides critical proliferative and sur-
vival signals needed to maintain the pool of pro-B cells. The hall-
mark event of pro-B cells is the completion of Igµ rearrangement
with the addition of a variable (VH) region to the DHJH segment.
This process of recombination is mediated by the semi-random
induction of double-stranded DNA breaks by the recombinase
activating gene (Rag)-1 and Rag-2 proteins at recombination sig-
nal sequences (RSS) followed by non-homologous end joining
(NHEJ) (7). Rag-mediated recombination of the antigen receptor
loci is an essential and defining feature of B- and T-lymphopoiesis.
Genetic mutation of the Rag genes results in severe combined
immunodeficiency (SCID) in humans and mice (8–10).

Progression to the pre-B-cell stage of development is marked
by the expression of a functional Igµ, due to in-frame rearrange-
ment at one locus, which can pair with SLC components, VpreB
and λ5, to form the pre-BCR at the cell surface (11). Early events
following the expression of the pre-BCR serve to expand in num-
ber B-cell populations that have successfully rearranged Igµ (12).
Not all Igµ chains effectively pair with SLC and therefore the
pre-BCR checkpoint shapes the repertoire of Igµ chains selected
into the small pre-B-cell pool (13). In mice deficient in SLC,
cells that escape by rearranging immunoglobulin light chain are
preferentially autoreactive (14). Furthermore, conferring defined
self-reactivity rescues SLC deficiency (15). However, it is not clear
if this means that the pre-BCR censors autoreactivity or if autore-
activity, and ligation by self-antigen, is required to complement
SLC deficiency.
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Following poly-clonal expansion, late (small) pre-B cells
migrate away from proliferation-inducing IL-7 rich niches of the
BM, exit cell cycle, and begin to rearrange Igκ genes (6). Final
pairing of translated Igµ and Igκ form the antigen-specific BCR
on immature B cells which are then subjected to the mech-
anisms of tolerance that diminish autoreactivity in the naïve
repertoire. Although the necessity of the IL-7R and pre-BCR for B-
lymphopoiesis has long been appreciated, recent work has begun
to detail the molecular mechanisms and downstream interplay of
these pathways that drive B-cell development.

IL-7R AND PRO-B CELLS FATE
Signaling through the IL-7R, which is a heterodimer of the IL-7Rα

chain and the common γ chain, is essential for proliferation and
survival of pro- and pre-B cells. In vitro culture assays demon-
strated that pro-B cells and not pre–pro-B cells proliferate in
response to IL-7 (4). Accordingly, IL-7Rα-deficient mice demon-
strate a significant impairment in B-lymphopoiesis beginning at
the pro-B-cell stage (16–18). However, IL-7-deficient mice display
a less severe defect in pro-B-cell development suggesting the IL-
7Rα chain may participate in an additional signaling complex that
compensates for loss of IL-7-induced signaling (17). Nonetheless,
although pairing of IL-7Rα with alternative complexes may pro-
vide some compensation to IL-7-induced signaling, it is clear that
the downstream components of the IL-7R pathway determine the
pro-B-cell fate.

Through pairing with Janus kinase (JAK) 3 and JAK1, the IL-
7R, upon activation, recruits and activates signal transducer and
activator of transcription (STAT) 5a and b (19). STAT5 is criti-
cal for the biological effects of the IL-7R. B-cell development in
mice deficient in both STAT5a and b is blocked at the pro-B stage,
similar to IL-7Rα-deficient mice (20). Accordingly, constitutive
activation (CA) of STAT5 in mice mostly restores B-lymphopoiesis
in the absence of IL-7R signaling, while in humans, CA-STAT5
gene mutations have been identified in patients with acute lym-
phoblastic leukemia (21–23). Activated STAT5 primarily drives
proliferation by inducing expression of the gene encoding cyclin
D3, Ccnd3 (23, 24). Pairing of cyclin D family members with
cyclin-dependent kinases 4 and 6 (CDK4/6) during G1 activates
retinoblastoma protein (Rb) family members and E2f transcrip-
tion factors to induce upregulation of cell cycle genes and suppress
cell cycle inhibitors p27Kip1 and p21Cip1 (25). Although both cyclin
D2 and D3 are expressed during B-cell development, only cyclin
D3 can be found in complexes with CDK4/6 in pro-B cells (26).
Moreover, a defect in early B-cell development is found only in
Ccnd3−/− mice, while Ccnd2−/− mice display a later defect in
peripheral B-cell proliferation (24, 27, 28). In addition to pro-
liferative signals, STAT5 maintains survival of developing B cells
through induction of several pro-survival genes including Mcl1,
Bcl2, and Pim1 (22, 29, 30). Therefore, IL-7R-mediated activation
of STAT5 represents a critical event in the expansion and stability
of early B cells populations.

Pro-B cells are both proliferating and rearranging Igµ genes (4).
Recent studies have provided some insights into how these incom-
patible processes are segregated to distinct populations within the
pro-B-cell pool (31, 32). For example, it has been demonstrated
that the core machineries of recombination and proliferation are

antagonistic. The Rag proteins are expressed in G0/G1 and are
degraded in dividing cells at the transition from G1 to S phase (33).
Cyclin A/CDK2 complexes induce cell cycle entry and inhibit the
accumulation of Rag-2, while several CDK inhibitors, including
p21Cip1, p27Kip1, and p57Kip2 induce Rag-2 expression (34). This
is because the cyclin A/CDK2 complex phosphorylates threonine
490 of Rag-2 targeting it for degradation by Skp2 (35). Muta-
tion of threonine 490 results in persistence of Ig recombination
in proliferating cells and increases the prevalence of chromosomal
translocations and lymphoid malignancies (36). Impaired NHEJ
accompanied with defective DNA-damage-induced apoptosis also
increases the occurrence of leukemogenesis. Mice with combined
deficiencies of the pro-apoptotic protein p53 with either XRCC4
or Ku80, both members of the NHEJ machinery, develop IgH–Myc
translocations that promote pro-B leukemia (37, 38). Therefore,
separation of proliferation and recombination is crucial to the
avoidance of excessive B cells’ death or development of B-cell
leukemia.

It is also now clear that the pro-B-cell compartment is not
homogeneous but contains subpopulations of cells that express
relatively high or low levels of the IL-7R. Furthermore, in these
populations, IL-7R expression levels correlate with intracellular-
activated STAT5 (39). These findings suggest a dynamic model
where pro-B cells shift from proliferation to recombination
through the oscillation of IL-7R expression (Figure 1). In con-
trast to oscillating between IL-7R high and low states, it is also
possible that pro-B cells sequentially progress through IL-7R high
and low stages. The mechanism driving IL-7R downregulation in
pro-B cells, however, is still unknown. One possibility is through
asymmetric cell division, where the accumulation of IL-7R toward
IL-7-producing stromal cells results in distal daughter cells inher-
iting less IL-7R on their surface, therein, providing a transient
decrease in STAT5 activation and the initiation of VH–DHJH

rearrangement.

PRE-BCR, PROLIFERATION, AND Igκ REARRANGEMENT OF
PRE-B CELLS
LARGE PRE-B CELLS
Cells transition to the pre-B-cell stage when Igµ pairs with SLC
components, VpreB and λ5, along with the signaling module
Igα/Igβ to form the pre-BCR at the cell surface. Initial expres-
sion of the pre-BCR is associated with a proliferative burst of
early pre-B cells, also known as large pre-B cells, to expand the
population of cells expressing a functional Igµ. Proper expres-
sion of the pre-BCR is critical to development as deficiencies of
Igα, Igβ, or surface Igµ completely arrest B-lymphopoiesis while
rearrangement and expression of Igκ inefficiently rescues SLC
deficiency (40–43). Activation of the pre-BCR requires the non-
immunoglobulin domain of λ5, which mediates aggregation of
the receptor (44–46). Although receptor aggregation is required,
it is not clear if receptor aggregation is an intrinsic property of
λ5 or if the SLC enables recognition of one or more selecting lig-
ands within the BM (44, 47). Putative selecting ligands identified
within the BM including heparin sulfate and galectin-1 have been
suggested as natural ligands (48–50).

Concurrent to pre-BCR expression, large pre-B cells maintain
IL-7R expression. It is within large pre-B cells that an additional
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FIGURE 1 | Proliferative and recombinatorial states of pro-B cells. (A) Elevated levels of IL-7R expression and signaling activate STAT5 and PI3K/Akt signaling
modules, which enforce the proliferative program of pro-B cells while suppressing Igµ recombination. (B) Down modulation of the IL-7R is associated with a
loss of proliferative signaling through STAT5 and PI3K/Akt and release of FoxO1, Rag-1, and Rag-2 suppression allowing progression of Igµ recombination.
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downstream target of IL-7R signaling important for B-cell devel-
opment, the phosphoinositide 3-kinase (PI3K) pathway, plays a
role (51, 52). The absence of PI3K has a definitive effect on periph-
eral B-cell proliferation, and selective deletion of the regulatory
subunit p85α or the combined catalytic subunits p110α and p110δ

result in impairment of B-lymphopoiesis (53–55). However, the
effects of PI3K on early B-cell proliferation appear to be within the
initial proliferative events of pre-B cells, not pro-B cells. Deficien-
cies in p85α or PTEN, a negative regulator of PI3K does not affect
the number of pro-B cells in cycle, and the defect in development
in p110α- and p110δ-deficient mice begins at the pre-B-cell stage
(26, 52). Compared to cycling pro-B cells, large pre-B cells are
indeed larger in size and display a heightened rate of proliferation
(4). PI3K may be required in large pre-B cells to support increased
protein synthesis and rapid cell division through increased glu-
cose uptake and glycolytic activity by activated Akt, downstream
of PI3K (56–58). Coincidently,Akt is capable of enhancing survival
by inhibiting pro-apoptotic pathways through direct repression of
BAD and also indirectly by suppressing FoxO transcription factors,
which induce Bim (59–62).

The pre-BCR is expressed on large pre-B cells and therefore
has been thought to enhance proliferation in response to IL-7R
signaling. Among, the signaling pathways common to the BCR
and the IL-7R in the periphery, PI3K was an attractive candi-
date for any synergy that might occur between the two receptors.
However, the pre-BCR does not efficiently couple to PI3K. Trans-
fection of Rag-2−/− pro-B cells in the presence of IL-7 with a
prearranged, functional Igµ resulting in pre-BCR expression does
not increase phospho-Akt activation and phospho-Akt levels are
similar in pro and large pre-B cells (52). Furthermore, deletions of
the genes encoding several pre-BCR downstream signaling com-
ponents, including BLNK (SLP-65), Btk, and phospholipase Cγ2
(PLCγ2), result in a developmental block at the cycling pre-B-
cell stage (63–65). Finally, re-expression of BLNK in deficient cells
induces cell cycle arrest and Igκ rearrangement (66). These obser-
vations indicate that the pre-BCR signals cell cycle exit rather than
proliferation.

Therefore, the mechanisms driving the pre-B-cell proliferative
burst remain unclear. It is possible that in pre-B cells, the pre-
BCR has two signaling states, one pro-proliferative and one anti-
proliferative (52, 67). However, the downstream effectors of such
a pre-BCR-dependent proliferative pathway have yet to be identi-
fied. Alternatively, signaling mechanisms occurring independently
of the pre-BCR could enhance IL-7R-mediated proliferation.

In addition to driving proliferation, signals through the IL-
7R, and the downstream activation of STAT5, potently repress Igκ
recombination (68). Activated STAT5 binds as a tetramer to a criti-
cal E-box-containing enhancer region of Igκ, the intronic enhancer
(Eκi), and tetrameric binding enables recruitment of the poly-
comb repressive complex (PRC2), which represses accessibility of
the Igκ region (69). Additionally, PI3K–Akt activation by the IL-7R
represses recombination through indirect downregulation of Rag
proteins (52). FoxO transcription factors induce Rag-1 and Rag-2
expression, however, repression of FoxO by the PI3K–Akt mod-
ule inhibits Rag protein expression and inhibits recombination
(70, 71). Therefore, beyond the intrinsic regulation of Rag pro-
teins by the cell cycle machinery as described above, in large pre-B

cells, IL-7R signaling through STAT5, and the PI3K–Akt module,
further enforce proliferation while suppressing pre-BCR-induced
recombination.

SMALL PRE-B CELLS
The transition from highly proliferative large pre-B cells to small
resting pre-B cells undergoing Igκ recombination is a pivotal
point in normal B-lymphopoiesis. This transition is controlled
by the signaling cascades downstream of the IL-7R and pre-
BCR (Figure 2). As described below, the pre-BCR orchestrates
Igκ recombination, but cannot do so while the IL-7R is trans-
mitting signals (23, 52, 68). First cells must escape IL-7 signal-
ing, presumably through migration toward IL-7 low niches of
the BM (6). Interestingly, upregulation of the interferon reg-
ulatory factor (IRF)-4 by the pre-BCR induces the expression
of the chemokine receptor CXCR4 (68). The potential pres-
ence of the CXCR4 ligand, CXCL12, outside of IL-7 niches, may
provide a mechanism by which early events of the pre-BCR
enables movement into relatively IL-7-deficient niches and transi-
tion from proliferation-inducing signals (IL-7R) to those driving
recombination (pre-BCR).

The opening of the Igκ locus by the pre-BCR is predominately
accomplished through activation of the Ras/Erk pathway (23, 72).
Activated Erk induces E2A and inhibits the E2A repressor Id3
leading to an accumulation of free E2A within the nucleus (23,
73) that then binds the Eκi and the Igκ 3′ enhancer (Eκ3) (23).
Escape from IL-7 signaling relieves tetrameric STAT5 occupancy
of Eκi, allowing E2A to bind, which promotes accessibility of the
Igκ loci for transcription and recombination (69). Genetic target-
ing of the E-boxes within Eκi has demonstrated the importance of
E2A recruitment in Igκ recombination (74).

In addition to de-repressing Igκ, loss of IL-7R signaling
enhances specific pre-BCR-dependent and -independent mech-
anisms important for Igκ recombination. Loss of IL-7R-induced
PI3K–Akt activation results in increased FoxO expression. FoxO1
directly binds the Rag-1 and -2 genes and induces their expres-
sion (70). FoxO also binds and induces expression of the Syk and
BLNK genes (52). The Syk/BLNK module induces the transcrip-
tion factors IRF4 and 8, which bind the 3′ Igκ enhancer (Eκ3) and
enhance Igκ accessibility (68, 75, 76). Furthermore, downstream
of BLNK, activation of p38 MAP kinase further enhances FoxO
activation thereby setting up a feed-forward loop that reinforces
commitment to Igκ recombination (52).

Pre-B-cell receptor signals additionally repress the proliferative
program. FoxO1 represses surface expression of IL-7R in pre-B
cells, while BLNK inhibits PI3K/Akt activation (52, 71). Pre-BCR
signals also induce the expression of the transcription factors
Aiolos and Ikaros (77, 78). These factors impede cell cycle by
repression of Myc and cyclin D3 gene expression (23, 78). Accord-
ingly, conditional deletion of Ikaros at the pro-B-cell stage of
development results in a severe block in B-lymphopoiesis with an
accumulation of cycling large pre-B cells (79). Ikaros might have a
direct role in Igκ recombination although the mechanisms remain
to be defined (79). Collectively, downstream of the IL-7R and pre-
BCR, these networks of feed-forward and feed-back mechanisms
mediate the transition from proliferation to recombination and
ensure sharp demarcation between each developmental state (80).
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Hamel et al. Balancing proliferation and Igκ recombination

FIGURE 2 | IL-7R and pre-BCR mediated transition of large pre-B to
small pre-B cells. (A) Localization of large pre-B cells near IL-7-producing
stromal cells maintains IL-7R-induced proliferation through STAT5 and
PI3K/Akt signaling modules. Additionally, tetrameric STAT5 reinforces
inhibition of Igκ recombination through direct binding to Eκi. (B) Migration
away from IL-7-rich niches limits IL-7R signaling allowing pre-BCR-induced

Ras/ERK and BLNK signaling modules to promote E2A and IRF4/IRF8
induction. Binding of these transcription factors to Igκ enhancer elements
enables recombination in small pre-B cells. Additionally, the BLNK module,
along with Aiolos and Ikaros, downstream of the pre-BCR inhibit
proliferation by repressing IL-7R expression, PI3K/Akt activation, and
Ccnd3 transcription.

EPIGENETIC REGULATION OF Igκ ACCESSIBILITY AND
RECOMBINATION
IL-7R AND PRE-BCR IMPOSED REGULATION OF Igκ ACCESSIBILITY
Chromatin structure and accessibility are fundamental to B-cell
development. Recent evidence indicates that, at least in part,

accessibility of Ig genes is determined by post-translational epi-
genetic modifications of regional histone cores. Accessibility to
recombination correlates with transcription (81) and indeed the
primary effectors of epigenetic remodeling are transcription fac-
tors. It has become apparent that both STAT5 and E2A regulate
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FIGURE 3 | Epigenetic regulation of the Igκ loci. (A) In large pre-B cells,
downstream of the IL-7R, tetrameric STAT5 directly binds at Eκi as a
tetrameric complex. This both inhibits E2A binding and recruits the
methyltransferase EZH2 and polycomb repressive complex 2 (PRC2) which
decorates Jκ and Cκ with H3K27me3. Additionally, through an unknown
mechanism, Cyclin D3 (Ccnd3) restricts Vκ segments’ accessibility. (B) Loss
of IL-7R signaling in small pre-B cells leads to a loss of tetrameric STAT5 at
Eκi which allows E2A binding and the recruitment of histone
methyltransferases (HMT) and histone acetyltransferases (HAT). The
resulting H3K4me3 and H4Ac marks open Jκ and Cκ to transcription and
recombination.

Igκ accessibility by determining the epigenetic landscape of the
locus in pre-B cells (Figure 3). Initially, tetrameric STAT5, down-
stream of the IL-7R, recruits the histone methyltransferase Ezh2,
which decorates the Igκ locus with repressive histone 3 lysine 27
trimethylation (H3K27me3) marks (69). Following release from
STAT5-mediated repression of Igκ, E2A can access Eκi, and marks
the flanking Jκ and Cκ segments with activating H3K4 trimethyla-
tion (H3K4me3) and H4 acetylation (H4Ac) to promote an open
chromatin structure (69, 82).

Interestingly, the above mechanisms of epigenetic regulation
apply only to Jκ and Cκ and do not extend to the extensive Vκ

regions (69). In fact, the Vκ regions are relatively devoid of any
measured post-translational histone modifications identified for
Cκ and Jκ [unpublished data and (83)]. Surprisingly,Vκ transcrip-
tion is repressed by cyclin D3, through mechanisms that do not
involve direct DNA binding (26). Instead, it appears that nuclear
matrix-associated cyclin D3, and not that fraction associated

with CDK4/6, represses Vκ. The mechanisms by which cyclin D3
regulates Vκ transcription are not known, but might include con-
trolling access to RNA polymerase II or nuclear positioning (84,
85). Regardless of mechanism, repression of Vκ accessibility by
cyclin D3 provides a direct link between cell cycle transit and
repression of Igκ recombination.

RAG-MEDIATED RECOMBINATION DEPENDS UPON EPIGENETIC
MODIFICATIONS
Recombination events at Igκ are also dependent on an open chro-
matin structure for accessibility of Rag proteins to RSS sites.
RAG-mediated cleavage at RSS sites is restricted by a closed nucle-
osome structure (86–88). Histone modifications associated with
open chromatin structures, including H3K4me3, histone 3 lysine
36 trimethylation (H3K36me3), H3Ac, and H4Ac correlate with
recombination (89–91). Additionally, the recruitment of Rag-2 is
dependent on the Rag-2 PHD domain binding to H3K4me3 (92,
93). The epigenetic regulation of JκCκ, and the recruitment of
RAG-2 to the marks of open chromatin, is consistent with current
concepts that the JκCκ region serves as the site of recombination
(94). Furthermore, the JκCκ region is anchored to the nuclear
matrix and anchoring is necessary for efficient Igκ recombination
(95). This suggests that the recombination platform is relatively
fixed and Vκ segments are recruited to it.

Although histone modifications at Jκ and Cκ have been asso-
ciated with recombination and Rag-2 recruitment in vivo, there
is no direct evidence that these modifications alone are capable
of inducing RSS accessibility. In fact, in vitro experiments have
demonstrated that hyperacetylation of histones is unable to over-
come nucleosome-induced restriction of RSS sites and allow Rag-
mediated recombination (87, 96). However, these extracellular
in vitro experiments may lack additional lineage or stage-specific
factors needed to translate epigenetic modifications into open
chromatin. One such factor might be the SWI/SNF complex which
can read specific epigenetic marks and open immunoglobulin gene
loci for recombination (83, 97).

CONCLUDING REMARKS
Recent observations have revealed that the IL-7R and the pre-
BCR regulate complex networks of signaling and transcription
cascades that direct and reinforce either pre-B-cell proliferation
or Igκ recombination. Central to understanding these networks is
the clear demonstration that the IL-7R induces proliferation and
represses Igκ recombination and these biological activities are dia-
metrically opposed by the pre-BCR. However, several questions
still remain. For instance, if IL-7R signaling is constant in pro-
and pre-B cells, and the pre-BCR does not provide a prolifera-
tive signal, what then is driving the large pre-B-cell proliferative
burst? Additionally, although much effort has begun to describe
how fate-determining transcription factors and epigenetic mod-
ifiers prime the required epigenetic landscape, little is known
about the “readers” of these marks that impose and specify B-
cell developmental events. The precise relationships between Igκ
transcription and recombination are unclear. Moreover, in the
absence of epigenetic modifications, how is Vκ accessibility regu-
lated? Further research into the molecular mechanisms that target
and regulate the recombinatorial machinery to specific sites of the
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Ig loci will be critical for understanding normal and pathogenic
B-lymphopoiesis.
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