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Summary

OBJECTIVES: The emergence of big cardio-thoracic surgery datasets that include not only short-term and long-term discrete outcomes
but also repeated measurements over time offers the opportunity to apply more advanced modelling of outcomes. This article presents a
detailed introduction to developing and interpreting linear mixed-effects models for repeated measurements in the setting of cardiothor-
acic surgery outcomes research.
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METHODS: A retrospective dataset containing serial echocardiographic measurements in patients undergoing surgical pulmonary valve
replacement from 1986 to 2017 in Erasmus MC was used to illustrate the steps of developing a linear mixed-effects model for clinician
researchers.

RESULTS: Essential aspects of constructing the model are illustrated with the dataset including theories of linear mixed-effects models,
missing values, collinearity, interaction, nonlinearity, model specification, results interpretation and assumptions evaluation. A comparison
between linear regression models and linear mixed-effects models is done to elaborate on the strengths of linear mixed-effects models. An
R script is provided for the implementation of the linear mixed-effects model.

CONCLUSIONS: Linear mixed-effects models can provide evolutional details of repeated measurements and give more valid estimates
compared to linear regression models in the setting of cardio-thoracic surgery outcomes research.

Keywords: Mixed-effects model • Pulmonary valve replacement • Homograft

ABBREVIATIONS

MNAR Missing not at random
PVR Pulmonary valve replacement
RVOT Right ventricular outflow tract

INTRODUCTION

Many patients with operated congenital heart disease (CHD) reach
adulthood nowadays and have a good life expectancy [1, 2].
Pulmonary valve replacement (PVR) is one of the common proce-
dures performed in patients with CHD. Because of the inevitable de-
generation or dysfunction of currently available biological valve
prostheses, patients undergoing PVR need to be followed up regularly
to monitor valve function. Echocardiography is a commonly used
tool in evaluating valve prostheses function [3]. Usually, multiple serial
echocardiographic measurements will be performed in a patient be-
fore valve function starts to deteriorate. Different from independent
measurements, repeated measurements in the same patient are de-
pendent. A linear regression model or logistic regression model is not
suitable in this case, due to the violation of the independence as-
sumption. With inappropriate statistics, the clinical relevancy of the
study might be undermined, even misdirecting the treatment deci-
sions, which could harm patients’ health. This is why extra caution
should be given to the selection of optimal methodology to assess
valve function over time. In the following part, one of the commonly
applied models tackling repeated measurements is illustrated.

Let us consider a 21-year-old female patient who underwent
surgical PVR with a pulmonary homograft for isolated severe pul-
monary valve stenosis. Serial echocardiography was employed to
monitor the function of the homograft. The patient had no prior
cardiac surgery, and no concomitant procedures were done at
the time of PVR. To date, she has been followed up for 7 years
and the echocardiographic assessment of her right ventricular
outflow tract (RVOT) peak gradient was measured repeatedly, in
total 6 times. Her clinician and the patient are eager to know
what will happen to her homograft 5–10 years from now, and
when she perhaps would require a reintervention.

Traditionally, time-to-event or survival analyses can be used to pre-
dict time to reintervention based on baseline patient characteristics.
However, survival analysis has obvious limitations in predicting valve
function [4]. Valve function is a dynamic process, and it is necessary
to account for all available measurements to draw the evolutional
curve, rather than one ‘snapshot’ of these measurements [4]. For this
purpose, a regression model can be used. Which regression model to
select depends on the characteristics of these measurements. Linear

regression models are suitable for continuous variables, for example,
RVOT peak gradient in mmHg, and logistical regression models can
be applied to categorical variables, e.g. pulmonary valve failure or
not. Therefore, a linear regression model might be a solution.
However, traditional linear regression models are not appropriate to
analyse repeated measurements because the independence assump-
tion is violated [5]. For example, the 6 echocardiographic measure-
ments in our 21-year-old female are not independent and each
measurement could influence the following one measured.

To address this, a mixed-effects model is more suitable as this
model takes the individual echocardiographic trajectories into
account, with more valid estimates of RVOT peak gradient over
time. There are 2 main types of mixed-effects models: linear
mixed-effects models for continuous variables and generalized
mixed-effects models for categorical variables (binary, multi-
nomial or ordinal response) [6]. These 2 types of models have
similar procedures of construction. Only the linear mixed-effects
model will be introduced in this article since the repeated meas-
urements of the example dataset concern continuous outcome
data. Although the name linear mixed-effects models suggest
that these models only address linear associations, it should be
stressed that they can also account for nonlinearity between re-
sponse variables and covariates. That means that the applicability
of linear mixed-effects models depends on the form of response
variable. Nonlinearity can be explained in linear mixed-effects
models by introducing, e.g. transformation, splines or polyno-
mial. More details of the nonlinear relationship will be elaborated
on in the ‘Nonlinearity’ part of this article.

A detailed introduction to developing and interpreting linear
mixed-effects models in the setting of cardiothoracic surgery out-
comes research is presented with the use of a dataset concerning
patients whose RVOT peak gradients were followed echocardio-
graphically after homograft PVR.

MATERIALS AND METHODS AND RESULTS

Ethics statement

This study was approved by the Medical Ethics Review
Committee in Erasmus Medical Center (MEC 12-477). Individual
informed consents were waived because of anonymity.

Introduction of the dataset

All patients operated upon for elective homograft PVR at the
Erasmus University Medical Center from April 1986 to November
2017 were identified retrospectively. In total, 701 homografts
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were implanted in 603 patients. Only patients who survived until
discharge and had at least 1 postoperative echocardiographic
examination containing RVOT peak gradient were included in
the analyses. Thus, 623 homografts implanted in 537 patients
met the inclusion criteria and were analysed. These patients had
a total of 5111 measurements (median: 7; range: 1–26) and the
mean follow-up was 11.46 years. The RVOT peak gradient was
collected as a continuous variable (mmHg) and all measurements
within a patient were treated as repeated measurements and
analysed as outcomes. Baseline variables are presented in
Table 1.

Theory and application of linear mixed-effects
models

Unlike linear regression models, linear mixed-effects models ac-
count for ‘intra-correlations’ between within-subject repeated
measurements. Let us compare the example of the 21-year-old
female above to a 45-year-old male who underwent PVR for

regurgitation after tetralogy of Fallot correction. It can be
expected that the time-related pattern of echocardiographic
measurements in the 45-year-old male is different from the
21-year-old female, as we know that there is an association be-
tween younger patient age and degeneration rate [7]. Linear
mixed-effects models take these intra-correlations into account.

There are 2 parts in linear mixed-effects models: the random-
effects part and the fixed-effects part. The random-effects part
accounts for the intra-correlations of repeated measurements
within each patient. The fixed-effects part accounts for the im-
pact of various covariates on outcomes on an average level.
These 2 parts play different roles in linear mixed-effects models
and work together to give valid estimates.

In practice, it is very common to have sampling challenges,
censoring (truncation) by death, unequal number of repeated
measurements of the outcome per patient and variability in time
among repeated measurements (such as serial echocardiographic
assessment at different intervals after treatment). All of these
could generate unbalanced longitudinal data. Linear mixed-
effects models are very flexible in dealing with such unbalanced
continuous longitudinal data. Moreover, it can provide predic-
tions on not only a population level but also a patient-specific
level, which is a big advantage compared to other approaches,
e.g. analysis of variance approach and the generalized estimating
equation models [6, 8].

It is worth mentioning that many study designs, other than
longitudinal studies, could have continuous repeated measure-
ments and may benefit from the use of linear mixed-effects mod-
els. Examples of these study designs are shown in Supplementary
Material, Table S1.

Missing values and correlated variables

In preparation for constructing a linear mixed model, it is import-
ant to critically assess the dataset concerning missing values and
correlated variables.

Missing values. Missing values are quite common in research
about cardiothoracic surgery, especially for long-term studies.
Dealing with missing values should be done based on the missing
mechanisms. Generally, there are 3 mechanisms of missing data:
missing completely at random, missing at random and missing
not at random (MNAR) [9]. The methods of handling missingness
should be selected according to the corresponding mechanism
[9]. The proportions of missing values in covariates are presented
in Supplementary Material, Table S2. We assumed the missing
mechanism of covariates was missing at random and used mul-
tiple imputation to get 5 imputed complete datasets. The first
and the third of the 5 imputed datasets were used for variable se-
lection and evaluating the reliability of model estimation (sensi-
tivity analysis), respectively.

It is worth noting that missing data is a complicated but highly
important part in the construction of linear mixed-effects models,
especially when the actual missing mechanism is MNAR.
Consulting professional statisticians regarding missing values
whenever doubts occur is strongly recommended for clinician
researchers. Moreover, researchers should be transparent with
their assumptions behind their statistical analyses since plausible
assumptions might be necessary for valid estimates.

Table 1: Baseline characteristics of patients with homograft
implantation in right ventricular outflow tract

Parameters, median (IQR) or n (%) Information (n = 623)

Age (years) 18.96 (8.05, 30.86)
Sex

Female, n (%) 251 (40.29)
Male, n (%) 372 (59.71)

Height (cm) 163.00 (124.00, 175.00)
Weight (kg) 55.00 (23.00, 70.00)
Homograft type

Aortic, n (%) 64 (10.56)
Pulmonary, n (%) 542 (89.44)

Diameter 23.00 (22.00, 25.00)
CPB time (min) 144.00 (96.00, 190.00)
Original diagnoses

TOF 217 (34.83)
Aortic valve disease 175 (28.09)
PA with/without VSD 88 (14.13)
Others 143 (22.95)

Concomitant procedures
With 459 (76.25)
Without 143 (23.75)

Proximal graft connectiona

With 102 (16.83)
Without 504 (83.17)

Distal graft connectiona

With 20 (3.29)
Without 587 (96.71)

No. previous heart operation
0 117 (20.71)
1 246 (43.54)
2 137 (24.25)
>_3 65 (11.50)

No. implanted homograft
First 530 (85.07)
Second 85 (13.64)
Third 6 (0.97)
Fourth 2 (0.32)

aWhether homograft has extra graft at its proximal or distal end to connect
it with right ventricle or pulmonary artery.
CPB: cardiopulmonary bypass; IQR: interquartile range; PA: pulmonary
atresia; TOF: tetralogy of Fallot; VSD: ventricular septal defect.
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Correlated variables. Many variables play important roles in
influencing the outcomes of patients undergoing cardiovascular
surgeries, like sex, age, smoking status, etc. Some variables are
correlated with each other. In our example dataset, the diameter
of homograft is strongly correlated with patients’ age, which is
quite understandable because children have a smaller RVOT size
than adults. Researchers should avoid including variables that
show a strong linear correlation in the same model because it
could lead to a phenomenon called ‘multicollinearity’.
Multicollinearity will cause extremely high or low estimates or
standard errors in the estimation and influence the 95% confi-
dence interval and P-values [10]. Therefore, it is advisable to in-
vestigate all the correlations between the covariates by
calculating Pearson’s or Spearman’s correlation coefficients, and
one of the highly correlated covariates should be removed. If 2
highly correlated categorical variables are equally clinically
meaningful, recoding them into 1 variable could be a solution.
Otherwise, clinicians have to weigh their importance or construct
models with different options of covariates.

In our example database, 13 variables are available as covari-
ates. Since it is possible that some of them are moderately or
highly correlated, their correlation coefficients were calculated.
The results are presented in Supplementary Material, Table S3.
We set the cutoff value for moderate-to-high correlation to 0.3.
In order to avoid multicollinearity, variables with a correlation
coefficient higher than 0.3 would be given extra consideration to
decide which one to keep. This step of ‘variables dropouts’ was
done by consulting clinicians to ensure the clinically relevant var-
iables would be kept.

Recoding was also done between 2 moderately correlated
covariates, ‘Number of previous cardiac surgery’ and ‘first homo-
graft implantation’, combining the 2 into a new categorical vari-
able (Supplementary Material, Table S4) to retain both parts of
the information. Considering both age and diagnosis being im-
portant covariates, 2 options for a group of covariates were cre-
ated (Supplementary Material, Table S5). The procedures of
constructing ‘model 1’ and ‘model 2’ are almost the same and we
only constructed ‘model 1’ as an example in this article.

Model specification

When specifying a model, it is essential to take the purpose
of constructing a model as a starting point. In this article, the
purpose of the model is to clarify the association between time-
related RVOT peak gradient patterns and patient characteristics,
with the ultimate aim of optimizing clinicians’ and patients’
decision-making. Clinical experiences and previous evidence
should be the basis for selecting potentially associated covariates.
A flowchart is presented in Fig. 1 to summarize the general steps
of specifying a linear mixed-effects model. To make the abstract
concepts more concrete, we applied the example dataset to illus-
trate these steps.

Statistical methods in variable selection. When construct-
ing a model, determining what covariates to include is critical
and can be challenging. In certain situations, all available varia-
bles can be included as covariates as long as the sample size is
big enough (rule of thumb: >10 subjects per covariate in a regres-
sion model; more covariates can be included in the longitudinal

setting if repeated measurements are strongly correlated [6]).
More proper methods of sample size calculation are also avail-
able by using simulations but they are challenging to be widely
applied in the clinical research setting [11].

In many practical settings, thorough considerations should be
given to select the suitable variables without overfitting. The
main idea of doing the variable selection is to evaluate whether a
model’s performance gets better by adding more variables as
covariates. The likelihood ratio test, the Akaike information criter-
ion and the Bayesian information criterion are 3 commonly used
methods in evaluating models’ performances. The summary of
these 3 methods is presented in Table 2. The likelihood ratio test
assesses the goodness of fit of 2 nested models based on the
ratio of their likelihoods. The best-fit model according to Akaike
information criterion/Bayesian information criterion explains the
greatest amount of variation using the fewest possible variables
[12, 13].

Interaction. Interaction describes a condition under which
the effect size of 1 specific variable on outcomes is affected by
the state of a second variable [14]. Interaction can be present in
epidemiology studies, especially when many predictors are con-
sidered. Possible interactions should therefore be accounted for
when constructing a model. However, it may be difficult or
sometimes even impossible to explore all possible interactions,
especially in the case of many predictors. Under this circum-
stance, it is advisable to consider potential interactions from a
clinical standpoint.

In longitudinal studies, especially those with a long-term fol-
low-up time, interaction with time is rather important since dif-
ferent groups could have different evolutional patterns of
repeated measurements. For instance, supposing females tend to
have slower evolution of RVOT peak gradient than males indi-
cates the interaction between sex and time, and progressive lines
of the 2 groups are no longer parallel over time in this scenario
(Supplementary Material, Fig. S1). Sex is an important factor in
most clinical settings. Many studies have proven the male-female
differences in the field of cardiac surgery [15–17], and therefore,
it is interesting to study whether there are male-female differen-
ces in the evolution of RVOT peak gradient. The interaction be-
tween sex and time was accounted for in our application of the
dataset. Other possible interactions were considered after con-
sulting clinicians. All interactions of interest are presented in
Supplementary Material, Table S6.

Nonlinearity. Assuming a linear relationship between out-
come and covariates is not always appropriate in the setting of
longitudinal data. We randomly selected 36 patients and plotted
their evaluations of repeated measurements, as presented in
Supplementary Material, Fig. S2, and obvious nonlinearity be-
tween time and repeated measurements was found. In such sit-
uations, nonlinearity must be accounted for; otherwise, the
model is invalid. Usually, multiple measurements are required for
nonlinearity consideration, and at least 3 measurements on aver-
age are needed to account for nonlinearity between covariates
and outcome.

There are several ways of addressing nonlinear relations: trans-
formation (like logarithmic transformation), splines and polyno-
mials (regular or fractional) [18, 19]. Transformations change all
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the relationships between covariates and response variables.
However, nonlinearity might only exist between a part of covari-
ates and response variables. Hence, transformation is not flexible
in dealing with the ‘partial’ nonlinearities compared to splines
and polynomials. Splines partition the curve into several small
parts by placing internal knots and are more flexible than poly-
nomials in accounting for nonlinearity [20, 21]. Among different
types of splines, natural (cubic) splines are less erratic at the
boundaries of the data and are preferable in capturing

nonlinearity in the mixed-effects models [20]. The number and
position of the internal knots should be selected when applying
natural cubic splines. However, it is uneasy to choose the optimal
internal knots that can capture the nonlinearity sufficiently with-
out overfitting. It is recommended to determine knot selection
with a biostatistician. Natural cubic splines with 2 internal knots
were used in our application and procedures of our knots selec-
tion are presented in Supplementary Material, Table S7 and
Supplementary Material, Figs S3–S7.

Figure 1: Flowchart of linear mixed-effects models construction.

Table 2: Explanations of different methods in evaluating models

Mechanism Indications Notes

AIC/BIC Penalized-likelihood criteria: rewarding
the goodness of fit (likelihood
function) and penalizing the increased
number of parameters (overfitting);
model with lower AIC/BIC is superior
to the one with higher values;
compared to AIC, BIC penalizes more
for overfitting [12, 13]

Non-nested/nested models No certain cutoff value of AIC/BIC difference
for selecting the superior model, better to
check both

Not the first choice if the models are
nested

If the 2 contradicts with each other, AIC tends
to select more elaborate models than BIC
since the latter penalizes more heavily for
complexity of the model

LRT Assessing the goodness of fit of 2 nested
models based on the ratio of
their likelihoods

Nested models The LRT performs less efficiently in testing
optimal random-effects part because of
being on a boundary condition

Not applicable to non-nested
models

AIC: Akaike information criterion; BIC: Bayesian information criterion; LRT: likelihood ratio test.
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Procedures in model construction. The model specification
should start from the random-effects part, then move to the fixed-
effects part. At the time of specification of the random-effects part,
all possible predictors should be put in the fixed-effects part,
including interactions and nonlinearity. The components of the
random-effects part and fixed-effects part should be tested in the
order of ‘from complex to simple’. Plotting individual evolutions
over time could help clinicians visualize ‘time-nonlinearity’ and se-
lect the optimal number of internal knots. The scale of outcomes in
our application is the square root of RVOT peak gradient because
the original scale violates the ‘variance constant’ assumption, which
means the residuals have constant variance at every level of pre-
dicted outcomes. Further explanations of this violation will be given
in ‘model assumptions’ part.

Random-effects part Intra-correlations between repeated meas-
urements of the same patient are very important for the model-
ling of evolution patterns. One important element to illustrate
the intra-correlations is the variance-covariance matrix. In linear
mixed-effects models, this matrix is incorporated into the
random-effects part. More explanations of this matrix have been
presented in Supplementary Material, Text S1.

To incorporate the appropriate structure of the variance-
covariance matrix in random-effects part, careful considerations
of components that should be included in the random-effects
part are essential. Some publications have introduced more
details about the variance–covariance matrix [22, 23]. In general,
it is advisable not to have the very complex structure of random-
effects and correlation matrix.

Several available components, including random intercepts
and linear/nonlinear slopes, should be considered in the random
effects. These components are visualized in Fig. 2. In Fig. 2A, dif-
ferent patients had different baseline values (random intercept);
in Fig. 2B, patients did not only have different baseline values but
also showed different evolutions (random intercept and random
slope); in Fig. 2C, nonlinear slopes were observed in each partici-
pant (random intercept and nonlinear slope).

Sixteen patients in the example dataset were selected to display
their individual evolutions (Fig. 3). Different baseline values and
nonlinear slopes were observed among these patients. Hence, an
elaborate random-effect structure including random intercepts and

non-linear random slopes was chosen. The most complex structure
was fitted firstly and compared with parsimonious structures. The
results are shown in Supplementary Material, Table S7. In the case of
many data points, statistical tests may favour more complex struc-
tures of random effects but are modelling the noise (i.e. overfitting) in
fact. Therefore, splines with various internal knots are visualized in
Supplementary Material, Figs S3–S5. Nonlinearity was not sufficiently
captured in Supplementary Material, Fig. S3 while no big differences
were observed between Supplementary Material, Figs S4 and S5.
Thus, splines with 2 internal knots (Supplementary Material, Fig. S4)
were sufficient to capture nonlinearity in the random-effects part.

Fixed-effects part After finishing specifying the random-effects
structure, the next step is simplifying the elaborate fixed-effects
part. In this case, one should also balance the statistical import-
ance versus the clinical importance. Several statistically non-
significant variables could be kept if they are of high clinical rele-
vance. It is worth noting that eliminating a non-significant but
clinically relevant variable (i.e. sex or age) might lead to biased
estimates of other variables [24]. Some stepwise variable-
selection methods are only applicable to the dataset with a very
large sample size [24]. Therefore, only eliminations of interactions
and nonlinearities were tested statistically to simplify the fixed-
effects part of the model. The results are shown in
Supplementary Material, Tables S7 and S8. Selecting internal
knots of natural cubic splines in the fixed-effects part was done
and 2 internal knots were applied finally. The procedures of knot
selection are displayed in Supplementary Material, Table S7 and
Supplementary Material, Figs S6 and S7.

Results’ interpretations The estimated coefficients of the final
model are shown in Supplementary Material, Table S9. The esti-
mated coefficient for age was -0.015, which implies a 1-year in-
crease in age at operation causes a 0.015-mmHg decrease of the
square root of RVOT peak gradient on average, given all other cova-
riates are fixed. The coefficient for male sex was 0.582. This indicates
male patients tend to have a 0.582-mmHg higher square root of
RVOT peak gradient than female patients with equal values of other
covariates.

Effect plots are useful to give a clear illustration of the results,
especially when nonlinearities and interactions exist. These plots

Figure 2: Explanations of random intercepts, random slopes and random nonlinear slopes.
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are figures depicting the predicted values of the outcome for
specific combinations of covariates’ values and are helpful in vis-
ualizing the predicted results at a population level. To create ef-
fect plots, values of covariates need to be specified, e.g. female,
21-year-old. The effect plots of the 21-year-old male and female
are presented in Fig. 4. The evolutions of the square root of
RVOT peak gradient of the 2 groups of patients indicate males
and females have different progressive courses concerning the
square root of RVOT peak gradient.

Besides effect plots that reflect average evolution, subject-
specific plots show curves of individual predicted values over
time. Providing prediction on an individual level is one of the
strengths of linear mixed-effects models. The marginal predic-
tions (illustrating predictions on average level) and subject pre-
dictions for 16 selected patients are displayed in Supplementary
Material, Fig. S8. The obvious superiority of subject predictions
over marginal predictions was observed. It highlights the advan-
tages of linear mixed-effects models in predictions on the indi-
vidual level. To illustrate the individualized predicted values, we

used patients that were included in the model. Individualized dy-
namic predictions could also be obtained for new patients by
using linear mixed-effects models. However, this is out of the
scope of this manuscript and only brief introduction will be given
in the discussion of ‘extensions of mixed-effects models to ac-
commodate survival data: joint models and dynamic prediction’.

Model assumptions

There are several assumptions of the linear mixed-effects model.
The linearity assumption is one of them. It assumes linearity of
the relationship between predictors and response variables.
Specific patterns in the plot of residuals versus predicted re-
sponse variable indicate potential violation of this assumption, as
presented in Supplementary Material, Fig. S9 (in this model, non-
linearity between time and square root of peak RVOT gradient
was not accounted). To address this violation, nonlinear relations
could be incorporated, as discussed previously. Besides, the
model requires homoscedasticity (constant variance) and normal

Figure 3: Sixteen patients’ evolutions of square root of right ventricular outflow tract peak gradient showed nonlinearity.
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residual assumptions. The residual is the difference between the
observed value and the predicted value derived from the fitted
model. If the model specification is valid, its residuals assume
homoscedasticity and follow the normal distribution with a
mean of zero [25]. All the residuals should be randomly scattered
without any obvious tendency. Otherwise, these assumptions are
violated.

Residual plots, including Q–Q plots and fitted values versus
residuals plots, are usually illustrated to check the distribution of
residuals. Ideally, residuals should be located completely along
the diagonal in the Q–Q plot and distributed evenly, without any
patterns in fitted values versus residuals plots. Besides, the aver-
age line of residuals should be almost or entirely equal to zero. It
is extremely difficult to get perfect residual plots, because specify-
ing a model without any bias is almost impossible. Thus, a slight
discrepancy from normality is acceptable. If an obvious discrep-
ancy appears, we can address it by transforming the scale of the
outcome (in case of a continuous outcome, e.g. square root
scale) or adding weights to the model [8].

In our application, the original scale of serial peak gradient was
used initially, and inconstant variance was observed in residual
plots (Supplementary Material, Fig. S10). After transforming to
square root scale, the residuals scattered more evenly
(Supplementary Material, Fig. S10). To test whether the residuals
fulfill the normality assumption, the Q–Q plots (Supplementary
Material, Fig. S11) and fitted values versus residuals plots
(Supplementary Material, Fig. S12) were illustrated, showing no
systematic deviations and approximately normally disturbed
residuals. In fitted values versus residuals plots, the conditional
residuals were scattered almost evenly around the centreline.

Comparison with linear regression model

To illustrate that a linear regression model may cause biased
estimates compared to the linear mixed-effects model, a linear
regression model that ignores the correlations between repeated
measurements within the same patient was constructed. The
results are shown in Supplementary Material, Table S9 and
Supplementary Material, Fig. S13. Major differences were
observed between the 2 models on estimates and individual
prediction. Compared to linear regression models, linear mixed-
effects models can provide more precise subject-specific pre-
dicted values.

DISCUSSION

Nowadays, many patients undergoing cardiothoracic surgery
have a long-term follow-up after their surgery. Important
biomarkers, such as echocardiographic measurements and
N-terminal pro b-type natriuretic peptides, are measured repeat-
edly over time and assist clinicians in clinical decision-making.
Considering the evolution over time of these measurements ra-
ther than only considering a ‘snapshot’ of 1 measurement can be
of great added value in clinical decision-making. Therefore, the
requirement of an adequate statistical method that can capture
the evolutions of repeated measurements is increasingly neces-
sary for the research of cardiothoracic surgery. Linear mixed-
effects models are applicable to continuous longitudinal data as
well as other grouped continuous data (multilevel data) and flex-
ible in dealing with unbalanced measurements, a very common

Figure 4: Effect plots of the finally fitted model, with considerations of interactions and nonlinearities.
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situation in the follow-up after cardiac surgery. In this article, we
provided step-by-step guidance in using mixed-effects models
with a dataset application. Several aspects were discussed, includ-
ing correlated covariates, interactions and nonlinearities. In par-
ticular, as nonlinearity may exist in both parts of fixed- and
random-effects part, statistical testing combined with visualiza-
tion is highly recommended to deal with it. It is worth noting
that the interactions between sex and other covariates(e.g. sex
and treatment procedures) are usually vital to study in cardio-
thoracic research as sex (and gender) is a strong determinant of
cardiovascular outcomes.

Interpreting estimates of coefficients from a model with mul-
tiple interactions and nonlinearities is not straightforward. Given
the fact that interactions and nonlinearities are common in car-
diothoracic research, presenting the results of the model with ef-
fect plots is especially encouraged in the setting of cardiothoracic
surgery. Effect plots are very intuitive and can be easily used to
visualize evolutions of repeated measurements. As with every
statistical analysis, the assumptions of the linear mixed-effects
models should be evaluated after model construction. The ‘Q-Q
plot’ and ‘fitted-values-versus-residuals plot’ are 2 common ways
of evaluating assumptions. No systematic trend should be
observed if the assumptions are valid.

The R syntax used in the analysis of our example data set is
provided in Supplementary Material 2.

Comparison with simplified approaches of
longitudinal data analysis

The commonly used simplified approaches to longitudinal data
analysis are simple linear regression models and time-to-event
analyses. Compared with linear mixed-effects models, simple lin-
ear regression models ignore the intra-correlations of repeated
measurements, which could cause bias to the estimates. To pro-
vide more valid results, researchers should opt for mixed-effects
model when they model repeated measurements.

Apart from the linear regression model, the time-to-event ana-
lysis is another widely used method in dealing with longitudinal
data, by transforming these measurements into events according
to the definitions. However, this methodology causes loss of in-
formation and may lead to spurious conclusions in the setting of
dynamic outcomes, such as valve function, because survival
models assume events occur at an instant in time. However,
many outcomes of importance are conditions or processes that
evolve with time, such as return of regurgitation after valve re-
pair. Moreover, values for these outcomes are captured at dis-
crete instances in time (‘snapshots’). Snapshots are subject to
many biases, especially when a condition changes rapidly but
snapshots are taken infrequently. If follow-up occurs only when
symptoms recur, the prevalence of undesirable change may be
overestimated [4]. In addition, an event is not reversible, which
means once an event occurs, it is impossible to go back to the
‘no event’ status unless the subject with the subsequent event is
treated as a new one. Thus, 1 patient can be attributed to ‘event’
by an inaccurate measurement and stay in ‘event’ status forever.
It could cause bias, even wrong conclusions if too many patients
have ‘inaccurate measurements’. The 2008 Akins guidelines [4] for
reporting mortality and morbidity after cardiac valve interven-
tions recommend the use of longitudinal data analysis to assess
valve function over time rather than survival analysis.

Extensions of mixed-effects models

Joint models. Researchers might want to investigate whether
a repeatedly measured variable, continuous or categorical, is a
risk factor for an event. For instance, with the dataset used in this
article, clinicians might want to explore the relation between the
evolution of the square root of RVOT peak gradient and the haz-
ard of death for patients receiving homograft in the pulmonary
position. In this situation, a framework connecting repeated
measurements with survival status can be used. This framework is
called joint models of longitudinal and survival data [26]. One
can also use this framework to account for informative censoring
in longitudinal data (MNAR). Its application in heart valve func-
tion has been introduced by Andrinopoulou et al. [27].

Dynamic prediction. Nowadays, as disease populations, clinic-
al practice and healthcare systems are constantly evolving, some
predictive models are quickly becoming outdated and less accurate
over time. A predictive model capable of ‘self-updating’ by includ-
ing new measurements for a specific subject to calibrate the predic-
tion is necessary. A methodology called dynamic prediction can
achieve the purpose, for both mixed-effects models and joint mod-
els [28]. This statistical method is becoming increasingly helpful, and
more personalized and dynamic predictions can be used in clinical
decision-making for each patient by using dynamic prediction.

CONCLUSION

Linear mixed-effects models can be used in modelling repeated
measurements to account for their evolutions over time and give
more valid estimates compared to linear regression models in
the setting of cardio-thoracic surgery outcomes research.
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