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Abstract
This study aimed to identify modules associated with breast cancer (BC) development by constructing a gene co-expression
network, and mining hub genes that may serve as markers of invasive breast cancer (IBC).
We downloaded 2 gene expression datasets from the Gene Expression Omnibus (GEO) database, and used weighted gene co-

expression network analysis (WGCNA) to dynamically study the changes of co-expression genes in normal breast tissues, ductal
carcinoma in situ (DCIS) tissues, and IBC tissues. Modules that highly correlated with BC development were carried out functional
enrichment analysis for annotation, visualization, and integration discovery. The hub genes detected byWGCNAwere also confirmed
using the Oncomine dataset.
We detected 17 transcriptional modules in total and 4— namely tan, greenyellow, turquoise, and brown—were highly correlated

with BC development. The functions of these 4 modules mainly concerned cell migration (tan module, P=3.03�10�4), the cell cycle
(greenyellow module, P=3.08�10�13), cell–cell adhesion (turquoise module, P= .002), and the extracellular exosome (brown
module, P=1.38�10�22). WGCNA also mined the hub genes, which were highly correlated with the genes in the same module and
with BC development. The Oncomine database confirmed that the expressions levels of 6 hub genes were significantly higher in BC
tissues than in normal tissues, with fold changes larger than 2 (all P< .05). Apart from the 2 well-known genes EPCAM and MELK,
during the development of BC, KRT8, KRT19, KPNA2, and ECT2 also play key roles, and may be used as new targets for the
detection or treatment of BC.
In summary, our study demonstrated that hub genes such as EPCAM and MELK are highly correlated with breast cancer

development. However, KRT8, KRT19, KPNA2, and ECT2may also have potential as diagnostic and prognostic biomarkers of IBC.

Abbreviations: BC = breast cancer, BP= biological process, CC= cellular component, DCIS= ductal carcinoma in situ, DEGs =
differentially expressed genes, GEO= gene expression omnibus, GO= gene ontology, GS= gene significance, IBC= invasive breast
cancer, KEGG = Kyoto Encyclopedia of Genes and Genomes, MEs =module eigengenes, MF =molecular function, MS =module
significance, TOM = topological overlap measure, MDS = multi-dimensional scaling, WGCNA = weighted gene co-expression
network analysis.
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mental factors.[4] One of the most common causes is genetic
1. Introduction

Breast cancer (BC) is the most common cancer in females
worldwide,[1,2] and is the leading cause of mortality in women.[3]

It is therefore a huge burden for both patients and society. BC is a
multifactorial disease caused by complex inherited and environ-
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mutation. Numerous genetic alterations influence human breast
carcinogenesis by affecting cell growth, proliferation, differenti-
ation, apoptosis, and invasion.[5] However, although BC has
been extensively researched in recent years, and numerous
biomarkers have proved to be effectual for the diagnosis and
management of BC, it remains one of the leading causes of cancer
death.[3] Therefore, the mechanism underlying the development
of BC is intricate, and further research is required to discover the
genes involved in BC pathogenesis to develop novel therapeutic
targets for treating the disease. Though Santpere et al described
genes that change in DCIS and basal-like tumors with respect to
normal breast,[6] the dynamic change of co-expression network
from normal breast tissue to ductal carcinoma in situ (DCIS), and
subsequently to all subtypes of invasive breast cancer (IBC), are
still unclear.
Recent developments in oligonucleotide microarray and

sequencing technologies have enabled the rapid monitoring of
gene expression in various tissues, and have provided an excellent
tool and platform for cancer research.[7,8] Owing to the accurate
determination of tumor phenotypes, expression-based classifica-
tion offers insight into the molecular aspects of tumor
progression, recurrence, and differentiation.[9,10] facilitating
the discovery of new biomarkers. Traditional differentially
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expressed genes (DEGs) network analysis can be used to identify
differentially expressed genes in cancer patients compared to
normal people. However, such analysis conventionally treats
thousands of genes independently, and ignores the high
interconnection of the transcriptome. Moreover, it encompasses
different expression profiles of thousands of genes driven by a
wide range of factors, so it is difficult to determine which genes
play a key role in the development of BC.
Scale-free networks differ significantly from random networks.

The most notable characteristic of a scale-free network is the
relative commonness of vertices with a degree that greatly
exceeds the average. The highest-degree nodes are often called
"hubs”, and are thought to serve specific purposes in their
networks. WGCNA is based solely on a scale-free network that is
used to determine the relationships between genes, thereby
enabling the identification of modules (clusters) of highly
correlated genes,[11] and the hub gene in each module. Thus,
WGCNA is ideal for the identification of gene modules and key
genes that contribute to phenotypic traits. For example, Colin
et al identified 11 gene co-expression clusters from large-scale BC
data using WGCNA, and suggested that UBE2S indicates a poor
prognosis for BC.[12] Therefore, in the current study, we aimed to
use the WGCNA algorithm to identify highly correlated gene
modules that are associated with BC development, then detected
the hub genes (network-centric genes), to uncover new
biomarkers proved to be effectual for the diagnosis and treatment
of breast cancer.

2. Materials and methods

Statistical computations were performed using R statistical
software (version 3.5) with related packages or our customized
functions.

2.1. Microarray data

The microarray gene expression profiles were downloaded from
the GEO (www.ncbi.nlm.nih.gov/geo) database with accession
numbers GSE15852 and GSE92697. A total of 112 samples were
included in the dataset (42 IBC, 27 DCIS, and 43 normal breast
samples). The 2 series have good consistency after adjusting the
batch effects. Microarray annotation information (HG-U133A
Annotations) was used to match a total of 22,283 microarray
probes with the corresponding genes. Probes with more than one
gene were eliminated, and the average values were calculated for
those genes corresponding to more than one probe. Therefore,
12,709 unique genes representing the expression profiles were
used for analysis. The data of this study are derived from gene
databases, so ethical approval is not applicable.

2.2. Co-expression module detection

We initially used the flashClust tool in the R language to carry out
cluster analysis of the sampleswith the appropriate threshold value
to detect and remove the outliers. The gradientmethodwas used to
test the independence and the average degree of connectivity of the
various modules with different power values (the power values
ranged from 1 to 20). Once the appropriate power value had been
determined when the degree of independence was 0.8, the module
construction proceeded with the WGCNA algorithm. Modules
were identified as gene sets with high topological overlap.[13] The
minimum number of genes was set at 30 to ensure high reliability.
Subsequently, the information pertaining to the corresponding
genes in each module was extracted.
2

2.3. Module and clinical trait association analysis

The WGCNA algorithm utilizes module eigengenes (MEs) to
assess the potential correlation of gene modules with clinical
traits. In the present study, the MEs were defined as the first
principal components calculated using principal component
analysis, which summarizes the expression patterns of the
module genes into a single characteristic expression profile. The
expression patterns of modules associated with the kinds of
samples were then calculated using gene significance (GS) and
module significance (MS). The GS of a gene was defined as the
correlation coefficients for different kinds of samples, whereas
MSwas indexed as the average GS for all the genes in the module.

2.4. Functional annotation of module

Functional annotation of the modules was performed on the basis
of analysis of their gene composition. Gene ontology (GO) terms
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways were performed to explore the biological functions
of selected genes in themodules that had high correlationwith BC
development using the DAVID bioinformatics tool (version 6.7,
https://david.nciferf.gov/). A P value � .05 after correction was
used as the threshold. The top 4 records of the 3 GO sub-
vocabularies ("cellular component”, CC; "biological process”,
BP; "molecular function”, MF) and KEGG pathways were
extracted.

2.5. Association analysis and hub genes

The kME—which is the distance from the expression profile of a
gene to that of the module eigengene — was determined as the
Pearson correlation coefficient between each individual gene and
the ME. Thus, kME quantifies how close a gene is to a module,
that is, it measures the module membership of a gene. The hub
genes are those genes with high network connectivity in a
particular group. Furthermore, the hub genes of modules are also
highly associated with the corresponding clinical traits of the
modules. Thus, genes with the highest kME and highest GS in the
module were informally referred to as intramodular hub genes.
2.6. Validation the hub genes by Oncomine database

Oncomine (https://www.oncomine.org/resource/login.html) is a
cancer microarray database that allows researchers to mine web-
based data on genome-wide expression in various types of human
cancers and the corresponding normal tissues.[14,15] The database
is constantly updated to provide users with the most advanced
data and tools available. Therefore, we used Oncomine because it
is powerful tool that provides a better understanding of the
molecular mechanisms underlying BC development, and the
validation of new targets and biomarkers.

3. Results

3.1. Identification of gene co-expression modules

The dataset and samples were described in the methods.
WGCNA is memory consumption. Therefore, a weighted gene
co-expression network was constructed from the 4236 most
varied genes (the top 1/3 of the 12,709 genes) which included
almost all the differentially expressed genes among groups. The
flashClust tools package was used to perform the cluster analysis,
and 4 outlier samples were subsequently detected and removed
(Fig. 1A). The most critical parameter in WGCNA analysis is the
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Figure 1. (A) Cluster tree of normal, DCIS and IBC samples. The first color-band underneath the tree indicates which arrays appear to be outlying (colored red). The
other color bands color-code the sample traits. The BC development in Figure 1 means the dynamic changes of gene expression from normal to DCIS and then to
IBC. (B) Analysis of network topology for various soft-thresholding powers. BC=breast cancer, DCIS=ductal carcinoma in situ, IBC= invasive breast cancer.
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power value, which mainly affects the independence and the
average degree of connectivity of the co-expression modules.
Figure 1B shows that when the power value was equal to 5, our
data predicted a gene co-expression network that exhibited scale-
free topology with inherent modular features.
We then calculated the topological overlapmeasure (TOM) for

each gene pair. Hierarchical clustering based on TOM
dissimilarity measure (1-TOM) stability revealed 17 modules
(Fig. 2A). Each module contained a group of coordinately
expressed genes with high TOM, and was potentially involved in
shared biological processes. To distinguish the modules individ-
ually, each module was assigned a unique color, and the
corresponding numbers of genes in these modules are shown in
Figure 2B. The background color is grey and represents the 463
genes not assigned to any module. The entire gene expression
network is representation in the heatmap plot shown in Figure 3A
and the multi-dimensional scaling plot shown in Figure 3B.

3.2. Association of modules with clinical traits

Interaction analysis of co-expression modules associated with
tumor characteristics identified correlation between module
eigengenes (MEs) and tumor characteristics (Fig. 4A). The
3

eigengene of the tan module (88 genes) had significant correlation
with BC development (cor= .71, P=8�10�18), whereas the
eigengene of the brown module (519 genes) had the highest
negative correlation (cor=�.6, P=4�10�11). Furthermore, the
eigengenes of greenyellow (94 genes) and turquoise (920 genes)
modules were also highly correlated with BC development
(cor= .47, P=4�10�7 and cor= .44, P=2�10�6, respectively).
Figure 4B shows a hierarchical clustering dendrogram of the
eigengenes (the top panel) as well as eigengene adjacency network
(the bottom panel), which also confirmed that the eigengene of
the tan module is the highest one that correlated with BC
development. The dynamic changes of MS from normal tissue to
DCIS, and then to IBC, were shown in Figure 5. Tan module
shows the highest MS in IBC patients and the lowest in normal
patient. However, the brown module exhibited exactly opposite
results.

3.3. Functional enrichment analysis of genes in modules
of interest

Because the tan, greenyellow, turquoise, and brown modules
were all highly correlated with BC development, we conducted
GO and KEGG enrichment analysis to obtain further biological
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Figure 2. (A) Hierarchical cluster tree of the 4236 genes. The first band shows the assigned module colors and the second color band represents the gene
significance measure: “red” indicates a high positive correlation with BC development. (B) The number of genes in the 17 modules. BC=breast cancer.
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insight into each module. For the tan module, which had strong
positive correlation with BC development, the genes were
mainly enriched in GO: 0016477 (cell migration). For the
brown module, which had strong negative correlation with BC
development, the genes were mainly enriched in GO: 0007155
(cell adhesion). Categories related to GO: 0070062 (the cell
cycle) and GO: 0070062 (cell–cell adhesion) were significantly
over-represented in the remaining 2 modules, namely the
greenyellow and turquoise co-expression modules, respective-
ly. The complete information relating to the significant
biological GO terms and KEGG pathways for these 4 modules
is shown in Figure 6.
Figure 3. (A) Heatmap plot representing the gene network. The heatmap depic
dimensional scaling (MDS) plots representing the entire gene expression network. E
gene module to which that gene belongs.

4

3.4. Module visualization and hub genes

First, we created a scatterplot of GS of BC development versus
Module Membership in the 17 modules (Fig. 7). We found that
the tan, greenyellow, turquoise, and brownmodules all contained
genes with the highest GS for BC development and highest
intramodular connectivity, which suggests that the intramodular
hub genes of these modules were highly correlated with BC
development.
Then we used Cytoscape software to visualize the network of

targeted modules and the intra-modular connectivity, which was
calculated by WGCNA (Fig. 8). The hub genes in the tan module
included SLC38A1, the KRT family (KRT8, KRT18, and
ts the topological overlap matrix among all genes in the analysis. (B) Multi-
ach gene is represented by a dot, where the color of the dot corresponds to the



Figure 4. (A) Pearson correlation coefficient matrix among module eigengenes (MEs), and breast cancer characteristics. Each cell reports the correlation (and P-
value) between module eigengenes (rows) and traits (columns). (B) Eigengene network representing the relationships among the modules and the sample traits.
BC=breast cancer, MEs=module eigengenes.
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KRT19), EPCAM,HMGN1, etc. With regard to the remaining 3
modules, the most significant hub genes were BUB1B,
MORF4L2, and TNS1 in the greenyellow, turquoise, and brown
modules, respectively.
Figure 5. GS Score for all modules corresponding to normal, DCIS, IBC samples a
gene significance, IBC= invasive breast cancer.

5

3.5. Expression of hub genes in breast cancer and normal
tissues

We evaluated the transcription levels of the hub genes in our 4
targeted modules in BC and normal tissues using the Oncomine
nd BC development. BC=breast cancer, DCIS=ductal carcinoma in situ, GS=
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Figure 6. GO analysis and KEGG pathway enrichment analysis for genes in tan (A), brown (B), turquoise (C), and greenyellow (D) modules. GO=gene ontology,
KEGG=Kyoto Encyclopedia of Genes and Genomes.
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database. The Curtis breast dataset revealed that the EPCAM,
KRT8, KRT19, KPNA2, MELK, and ECT2 expression levels
were significantly higher in BC than in normal tissues, with fold
changes larger than 2. SLC38A1, HMGN1, CD9, CBX3,
ACTR3, and MORF4L2 expression levels were moderately
higher in BC than in normal tissues, with fold changes between
1.4 and 2.0. There were no differences in the expression levels of
BUB1B,KRT18, orMYO6 between BC tissue and normal tissue.
However, the expression levels of TNS1, ADH1B, PNN, ITIH5,
andLPLwere markedly lower in the BC tissue than in the normal
tissue (Fig. 9).

4. Discussion

To the best of our knowledge, this is the first report on the use of
WGCNA analysis to dynamically study co-expression genes in
normal breast tissues, DCIS tissues, and IBC tissues, and to
explore related modules and hub genes. We conclude that the tan
module, which focused on the cell migration pathway, had the
highest correlation with BC development. The functions of the
other 3 modules, which were also correlated with BC develop-
ment, focused on the cell cycle, cell division, and cell adhesion.
Several hub genes derived from these modules that are associated
with BCwere uncovered; some have been reported to exhibit high
tumorigenicity. However, some newly discovered genes may
become potential makers for the diagnosis and treatment of BC.
Our long-term goals are to provide insight into the mechanisms
6

underlying BC development, and to help identify patients who are
likely to develop BC, and who would benefit from alternative
clinical diagnosis and therapy.
Cloning and migration are the 2 basic characteristics of cancer

cells. The function of the tan module, which was identified as the
most significant module associated with BC development,
concerned the cell migration pathway and the formation of the
anatomical structures involved in morphogenesis. Therefore, this
upregulation of the co-expressed genes plays a central role in
increasing the migration of epithelial cells and promoting
structure formation in BC.
Among the hub genes in the tan module, EPCAM is considered

the most frequently and intensely studied tumor-associated
antigen gene because it is overexpressed in most epithelium-
derived tumors, including colorectal,[16] breast,[17] pancreatic,[18]

and liver.[19] Furthermore, EPCAM is also regarded as a
prognostic tumor biomarker for cancer diagnosis, prognosis,
and therapy.[20] However, the mechanism by which EPCAM is
associated with cancer formation has remained elusive. Other
important hub genes in this module were mainly located in the
keratins (KRTs) family, demonstrating that KRTs play a critical
role in the development of BC. KRT8, a type II basic intermediate
filament protein, is expressed in many simple epithelial
cells.[21]KRT8 is also positively expressed in head-and-neck
squamous cell carcinomas and metastases.[22] As for the
association between KRT8 and BC, only one study reported
that KRT8 combinedwith urokinase-type plasminogen activator,



Figure 7. Scatterplot of Gene Significance of BC development versus intramodular k (Module Membership) in the 17 modules. BC=Breast cancer, GS=gene significance.
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Figure 8. Visualization of weighted gene co-expression network analysis (WGCNA) network connections of the intramodular hub genes and the top 50 genes in tan
(A), green-yellow (B), turquoise (C) and brown (D) module.
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plasminogen, and fibronectin constitutes a signaling platform
that can modulate breast tumor cell adhesion and invasive-
ness.[23] KRT19 expression is also proved to be associated with
poor tumor differentiation and aggressive tumor behavior in
hepatocellular carcinoma.[24] However, it can be seen that there
are few reports on the functions of the KRT family associated
with BC formation in the literature. Therefore, the 2 most
important hub genes (KRT8 and KRT19) in this module are
potential new markers for the diagnosis and treatment of BC.
Gene functions in the greenyellow module concerned cell

division, and the cell cycle pathway. Cancer basically results from
uncontrolled cell division. The formation and progression of
cancer is usually linked to a series of changes in the activity of cell
cycle regulators. The hub genes in this module included KPNA2,
MELK, and ECT2. A large number of reports have now
confirmed that MELK can regulate cell proliferation and
apoptosis, and promote cancer cell metastasis.[25] However,
there has been little research on KPNA2. A few studies have
8

shown that the expression of KPNA2 is associated with
aggressive behaviors such as higher tumor grade and positive
lymph node,[26,27] and with poor outcomes in BC.[28] ECT2,
which is considered a major oncogene involved in the onset or
progression of human cancers, induces the malignant transfor-
mation of both epithelial cells and fibroblasts, indicating its vital
role in themalignant transformation of cells.[29] Therefore,ECT2
is likely to play a key role in the interaction between BC epithelial
cell and the tumor microenvironment.
The function of the genes in the turquoise module concerned

poly(A) RNA binding, protein processing in the endoplasmic
reticulum, RNA transport, and metabolic pathways, which
implies that the genes in this module inhibit transcription and
regulate the metabolism of tumor cells. The functions of the genes
in the brown module concerned the regulation of the PI3K-Akt
signaling pathway, the transcription of RNA polymerase II
promoter, and signal transduction. The PI3K-Akt signaling
pathway plays an essential role in several cell processes including



Figure 9. Hub genes expression levels in breast cancer and normal tissues using the Curtis breast dataset. The P values were calculated using a log-rank test, and
P< .05 was regarded as statistically significant.

Qiu et al. Medicine (2019) 98:6 www.md-journal.com
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cell proliferation, growth, survival, angiogenesis, and malignan-
cies.[30] TNS1, ADH1B, and LPL, which are markers of
unfavorable prognoses in many cancers, were markedly down-
regulated in BC, but the underlying mechanisms require further
investigation.
Though the majority of hub genes highlighted in this study

have been reported, all the studies just discussed the correlation
between the expression of a single gene, such as KRT8, KRT19,
KPNA2, and ECT2 et al and the prognosis of breast cancer.
However, in our study, we focus on the genes that play critical
roles in the occurrence and development of breast cancer. Besides,
WGCNA analysis was used to detect the correlation of these hub
genes, which will help us understand the interaction of these
genes as well as the mechanism that associated with breast cancer
development.
5. Conclusion

In summary, our study used a systems biology-based WGCNA
approach to demonstrate that 4 modules were correlated with
IBC development. The functions of these modules were
concentrated in migration, cell division, cell proliferation, and
cell adhesion. Hub genes such as EPCAM and MELK are highly
correlated with breast cancer development. However, KRT8,
KRT19, KPNA2, and ECT2 may also have potential as
diagnostic and prognostic biomarkers of IBC. Our results require
further verification.
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