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There is now strong evidence that ecosystem properties are influenced by

alterations in biodiversity. The consensus that has emerged from over two dec-

ades of research is that the form of the biodiversity–functioning relationship

follows a saturating curve. However, the foundation from which these con-

clusions are drawn mostly stems from empirical investigations that have not

accounted for post-extinction changes in community composition and struc-

ture, or how surviving species respond to new circumstances and modify

their contribution to functioning. Here, we use marine sediment-dwelling

invertebrate communities to experimentally assess whether post-extinction

compensatory mechanisms (simulated by increasing species biomass) have

the potential to alter biodiversity–ecosystem function relations. Consistent

with recent numerical simulations, we find that the form of the biodiver-

sity–function curve is dependent on whether or not compensatory

responses are present, the cause and extent of extinction, and species density.

When species losses are combined with the compensatory responses of surviv-

ing species, both community composition, dominance structure, and the pool

and relative expression of functionally important traits change and affect

species interactions and behaviour. These observations emphasize the impor-

tance of post-extinction community composition in determining the stability of

ecosystem functioning following extinction. Our results caution against the use

of the generalized biodiversity–function curve when generating probabilistic

estimates of post-extinction ecosystem properties for practical application.
1. Introduction
Populations can respond to the loss of, or reduction in, the number of individ-

uals or species in a community through various compensatory mechanisms,

including numeric [1–3], biomass [4,5] and/or per capita processing rate

responses [6], or via mechanisms that effectively absorb disturbances through

changes in trophic interactions [7]. Such expressions are often associated with

adjustments in the competitive balance between species [8–10], contributing

to resource-release and new opportunities [7,11–14] or a change in the preva-

lence and strength of functionally important species interactions [15] that

allow a subset of species to prosper and exhibit compensatory responses to

novel circumstances. Intuitively, such fundamental changes in community

structure are likely to modify community contributions to functioning and, ulti-

mately, define the long-term legacy of a perturbation. Yet, the effects of

compensatory responses on ecosystem functioning are not well understood,
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despite recognition that there are multiple instances of

species compensation in geological records following major

perturbation events [16–19], some of which appear to be a

part of a global pattern [20]. Many of these events are associ-

ated with regime shifts, in which substantive rearrangement

in functional trait composition and the use of novel space fol-

lowing species decline takes place and has concomitant

effects on ecosystem properties [20]. These effects are not

necessarily negative, the realized level of functioning can be

conditional on trophic structure and/or the variation

within, and covariation between, the response and effect

traits of the surviving community [21]. This means that the

level of functioning may be maintained, reduced or enhanced

relative to the pre-extinction condition. It follows, therefore,

that the general form of the positive but decelerating biodi-

versity–ecosystem functioning curve that emerges from 2

decades of experimentation [22,23] is unrepresentative of

the most likely post-disturbance outcome for ecosystem func-

tioning. Many community processes and dynamics that are

known to have compensatory attributes [24,25] have

not been fully considered within the biodiversity–function

experimental framework.

Recent studies have shown that the order in which

species are lost can influence ecosystem properties

[25–27], and that the potential of the surviving community

to compensate for the loss or reduction in functionally

important species will be dependent on the level of func-

tional redundancy [28–31] and on realized levels of

species richness [32–35]. Evidence suggests that the effects

of compensation can increase (over-compensation,

[5,36,37]), maintain (complete compensation [1]) or reduce

(partial to no compensation [38]) ecosystem functioning,

and that the ecosystem consequences of biodiversity loss

could be buffered by the presence of a low number of func-

tionally important species [5,39]. While this may be

appealing from a management or conservation perspective,

such a synthesis ignores other important aspects of post-

perturbation community dynamics. In particular, recent

numeric simulations [26,27] and field observations [5]

suggest that ecosystem responses to perturbation may be

dependent on the type of compensation that develops in

the surviving community [25], but because these con-

clusions can take extended time periods to develop [5],

they have not been empirically tested and are yet to be

incorporated into ecosystem models.

Here, we experimentally explore how the effects of bio-

mass compensation following the loss of sediment-dwelling

marine invertebrates may affect sediment mixing and

associated levels of nutrient generation in model benthic

communities. Specifically, invertebrate communities were

assembled to reflect a sequence of species loss that was

random or ordered by body size or rarity to represent likely

generic sources of extinction risk [40–43]. We simulated

post-extinction compensation by introducing additional indi-

viduals of the ‘surviving’ species, circumventing the need for

lengthy studies that incorporate recruitment and growth over

several generations. It was anticipated that functional com-

pensation would be less pronounced in communities in

which extinction order is related to body size, as body size

is often correlated with benthic ecosystem functioning [26]

and is considered a key species trait at the population level

[44]. Similarly, given that species which occur at low abun-

dances generally contribute little to the ecosystem function
inventory, compensation in response to the loss of rare

species was expected to lead to elevated levels of functioning

(sensu, the insurance hypothesis [45,46]). Irrespective of

extinction scenario, we anticipated that compensatory effects

would be more accentuated in communities of high evenness,

because traits are more evenly distributed relative to those

communities assembled to reflect natural evenness levels

where functional dominance is prevalent.

2. Methods
(a) Faunal and sediment collection
Sediment (mean+ s.e., n ¼ 4: D50 ¼ 6.122+0.105 mm; total

organic carbon ¼ 11.058+1.087%) and specimens of the gastro-

pod Peringia ulvae were collected from the Hamble Estuary, UK

(50852022.800 N 1818048.900 W), while the amphipod Corophium
volutator was collected from Hayling Island, UK (50849056.900 N

0858’36.800 W) in April 2015. Both P. ulvae and C. volutator were

collected by sieving surface sediment (1 mm and 500 mm mesh,

respectively). Individuals of the polychaete Hediste diversicolor
were collected by hand from Langstone Harbour, Portsmouth

(50850046.500 N 1800005.300 W). These three species co-occur at

the two sites, but sampling location reflected logistical conven-

ience. The sediment was sieved (500 mm mesh) in a seawater

bath to remove macrofauna, allowed to settle (48 h to retain the

fine fraction, less than 63 mm), and homogenized by stirring

prior to distribution between experimental aquaria.
(b) Experimental design
We assembled replicate (n ¼ 4) transparent acrylic aquaria (12 �
12 cm, 35 cm high; 10 cm sediment overlain by 20 cm seawater,

salinity approx. 33) containing all possible permutations of

species composition (no macro-invertebrates, species in monocul-

ture and in combinations of two or three species) for three

scenarios of species loss, where the probability of extinction

was either random (1/n, eight assemblages) or ordered sequen-

tially in proportion to body size (largest species expire first,

four assemblages) or relative abundance (rarity, species with

lowest abundance expire first; four assemblages). To test the

effects of post-extinction biomass compensation, this set of aqua-

ria were duplicated in order to include a set of non-interactive

communities that experienced no biomass compensation, i.e.

species biomass declined with loss of species; versus a set of

interactive communities in which complete biomass compen-

sation was simulated by maintaining the total biomass of each

community across the remaining species (electronic supplemen-

tary material, tables S1 and S2). This design was repeated

across two levels of evenness that represent organism density

distributions that are either evenly distributed and typical of

most biodiversity–ecosystem function experiments (J1) or that

contain a dominance hierarchy more typical of a natural

system (J0.67, based on field observations; [47–49]). Hence, the

experimental design required a total of 256 aquaria (figure 1),

all of which were maintained in a water bath at 128C under a

12 L : 12 D light : dark regime and continually aerated for 12 days.

(c) Measurements of ecosystem process and functioning
Fluorescent sediment profile imaging (f-SPI) was used to

quantify the extent of infaunal particle reworking [50]. This

technique allows the redistribution of an optically distinct par-

ticulate tracer (60 g red coloured sand aquaria21, fluorescent

under ultraviolet light; Brianclegg Ltd, UK) to be quantified

from a composite image (Canon 400D, set to 10 s exposure,

aperture f5.6 and ISO400; 3888 � 2592 pixel, effective resol-

ution 62.5 mm pixel21) of the four sides of each aquarium
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using a custom-made, semi-automated macro within IMAGEJ

(1.47v). From these data, the mean (f-SPILmean, a time-

dependent indication of mixing), median (f-SPILmed, the

extent of mixing typically encountered over the short term)

and maximum (f-SPILmax, the extent of mixing, including

infrequent deep mixing events, achieved over the long term)

depths of particle redistribution were calculated as an indicator

of macro-invertebrate reworking [51]. In addition, surface bound-

ary roughness (SBR, the maximal vertical deviation of the

sediment–water interface) was determined as an indication of sur-

ficial activity.
Burrow ventilation, a significant transport mechanism in the

exchange of solutes between the pore water and overlying water,

was estimated on day 12 from changes in the concentration of the

inert tracer sodium bromide (D[Br2], mg l21; [52] over a 4 h

period (aeration disabled) following the addition of sodium

bromide (2.74 g, raising water column concentration of bromide

to 9.25 mmol l21), and quantified using a Tecator flow injection

auto-analyser (FIA Star 5010 series).

Water column nutrient concentrations ([NH4–N], [NOx–N]

and [PO4–P]) were determined (Tecator flow injection auto-

analyser, FIA Star 5010 series) from samples (10 ml, 0.45 mm
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pre-filtered, day 12) taken from the centre of each aquarium

approximately 5 cm above the sediment–water interface.
(d) Statistical analyses
A total of seven statistical models were developed, one for

each of the dependent variables (SBR, f-SPILmean, f-SPILmed,
f-SPILmax, D[Br2], [NH4 –N], [NOx –N], [PO4 –P]) with species

richness, extinction order and compensation as fixed effects.

The control treatments were excluded from the statistical ana-

lyses, as the focus is to assess the effects of different extinction

scenarios and not the presence/absence of macrofauna on eco-

system properties. The initial linear models were assessed

visually for normality (Q–Q plot), homogeneity of variance

(plotted residual versus fitted values) as well as for influential

data points (Cook’s distance) [53]. In cases where data explora-

tion indicated heterogeneity of variances, relationships were

defined using restricted maximum likelihood and generalized

least-squares (GLS) estimation [54]. The use of GLS allows the

variance structure to be modelled using appropriate variance

functions (here ‘varIdent’ for nominal explanatory variables)

rather than transforming the data [53,54]. The model with

and without the variance covariate term was compared

using Akaike information criterion (AIC, model improvement

indicated by a reduction of greater than or equal to 2 units)

and by visual inspection, plotting residuals versus fitted

values, in order to identify the optimal random effects structure

for each response variable [53,55]. The optimal fixed effects model

was estimated using maximum-likelihood (ML) estimation and

determined using a backward selection procedure informed by

AIC [55]. All statistical analysis was performed using the ‘R’
statistical and programming environment [56] and the ‘nlme’ R

package (v. 3.1-128, 2016) [57].
3. Results
The analyses confirm that both the sequence in which species

are extirpated, the level of species richness and the degree of

species evenness are important for both ecosystem process

(SBR, f-SPILmean, f-SPILmed, f-SPILmax, D[Br2]) and functioning

([NH4–N], [NOx–N], [PO4–P]), and that post-extinction com-

munity dynamics are particularly influential in determining

ecosystem properties. Indeed, when the total biomass of

each community was maintained to simulate biomass com-

pensation, the type and extent of particle reworking

dramatically altered and subsequently led to changes in nutri-

ent generation. These compensatory effects were stronger in

even communities (J1, figures 2 and 4) relative to those

observed for uneven communities (J0.67, figures 3 and 5).

(a) Effects on particle reworking and burrow ventilation
In even communities (J1), SBR was dependent on a three-way

interaction between compensatory response � order of

extinction � species richness (L-ratio ¼ 12.4925, d.f. ¼ 4, p ¼
0.014; electronic supplementary material, model S1;

figure 2a). Specifically, SBR decreased in non-compensatory

communities with decreasing species richness when extinc-

tion was ordered by body size or by rarity. In communities

with compensatory responses, SBR also decreased with
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declining species richness when extinction was ordered by

body size, but not when extinction was ordered by rarity

(figure 2a). However, when extinction was random, there

was little change in SBR with species richness in both com-

pensatory and non-compensatory communities (figure 2a),

most likely because species that inhabit or otherwise interact

with the sediment–water interface form a distinct functional

group and were not preferentially removed from the commu-

nity. The median depth of particle reworking (f-SPILmed) and

the maximum mixed depth of particle reworking (f-SPILmax)

were dependent on the interactive effects of compensatory

response � order of extinction � species richness (f-SPILmed:

L-ratio ¼ 32.2030, d.f. ¼ 4, p , 0.0001; electronic supplemen-

tary material, model S2; figure 2b; f-SPILmax: L-ratio ¼

18.9542, d.f. ¼ 4, p ¼ 0.0008; electronic supplementary

material, model S3; figure 2c). In communities with compen-

sation, f-SPILmed decreased when extinction occurred

randomly and when ordered by body size, but in commu-

nities without compensation, f-SPILmed decreased when

extinction was ordered by body size or by rarity. Overall,

the maximum mixing depth (f-SPILmax) decreased strongly

with declining species richness irrespective of extinction scen-

ario, with little difference between communities with and

without compensation (figure 2c). Burrow ventilation

(D[Br2]) significantly reduced with species richness irrespec-

tive of extinction or compensation scenario (L-ratio ¼ 6.4222,

d.f. ¼ 2, p ¼ 0.0403; electronic supplementary material,

model S4, figure S1).

For uneven communities that are representative of natural

systems ( J0.67), the results revealed that SBR and the median

mixed depth of particle reworking was dependent on the

interaction compensatory response � order of extinction �
species richness (SBR: L-ratio ¼ 12.5304, d.f. ¼ 4, p ¼ 0.0138;

electronic supplementary material, model S8; figure 3a;
f-SPILmed: L-ratio ¼ 23.8706, d.f. ¼ 4, p ¼ 0.0001; electronic

supplementary material, model S9; figure 3b). Patterns for

SBR under random extinction showed a small net decline

with decreasing species richness, with a slightly greater

decrease in the presence of compensation (figure 3a). When

extinction was ordered by body size, SBR in both compensa-

tory and non-compensatory communities was highest at

intermediate levels of species richness and decreased with

species loss (figure 3a). By contrast, when extinction was

driven by species rarity (figure 3a), SBR increased with

decreasing species richness for both compensatory and non-

compensatory communities. When extinction was random

or ordered by rarity, the median mixing depth decreased
with species richness in communities without compensation

but increased in communities with compensation

(figure 3b). When extinction was ordered by body size, irres-

pective of compensatory dynamics, f-SPILmed was maintained

as species richness declined (figure 3b). There was no effect of

compensation on the maximum mixed depth of particle

reworking or on burrow ventilation, both of which were

dependent on an interactive effect of species richness �
order of extinction (f-SPILmax: L-ratio ¼ 52.8775, d.f. ¼ 4, p ,

0.0001; electronic supplementary material, model S10;

D[Br2]: L-ratio ¼ 16.2130, d.f. ¼ 4, p ¼ 0.0027; electronic

supplementary material, model S11, figure S2a,b).

(b) Effects on nutrient generation
In community assemblages with even species distribution,

water column nutrient concentrations were affected by the

interactive effects of compensatory response � order of

extinction ([NH4–N]: L-ratio ¼ 23.3478, d.f. ¼ 2, p , 0.001;

electronic supplementary material, model S5; figure 4a);

[NOx–N]: L-ratio ¼ 7.4958, d.f. ¼ 2, p ¼ 0.0236; electronic

supplementary material, model S6; figure 4c; [PO4–P]: L-

ratio ¼ 8.3114, d.f. ¼ 2, p ¼ 0.0157; electronic supplementary

material, model S7; figure 4e) as well as compensatory

response � species richness ([NH4–N]: L-ratio ¼ 25.4207,

d.f. ¼ 2, p , 0.001; electronic supplementary material,

model S5; figure 4b; [NOx–N]: L-ratio ¼ 26.2201, d.f. ¼ 2,

p , 0.001; electronic supplementary material, model S6;

figure 4d ). In the presence of compensatory dynamics

[NH4–N] and [NOx–N] showed similar patterns to one

another, irrespective of extinction scenario (figure 4a,c,

respectively); however, in the absence of compensatory

dynamics [NH4–N] and [NOx–N] substantively decreased

when extinctions were ordered by rarity. For compensatory

response � species richness, [NH4–N] decreased with species

loss when compensation was present (figure 4b), while

[NOx–N] increased with decreasing species richness,

irrespective of compensation scenario (figure 4d ).

[PO4–P] was highest in communities with compensation

when extinction was ordered by body size or rarity, but

lowest in the absence of compensatory dynamics when

extinction was driven by rarity.

In uneven communities, irrespective of compensation

scenario, [NH4–N] and [NOx–N] were dependent on the

interactive effects of species richness � order of extinction

([NH4–N]: L-ratio ¼ 24.6755, d.f. ¼ 4, p ¼ 0.0001; electronic

supplementary material, model S12, figure S3a; [NOx–N]:

L-ratio ¼ 9.78363, d.f. ¼ 2, p ¼ 0.0442; electronic supplemen-

tary material, model S13, figure S3a). By contrast, [PO4–P]

was dependent on an interaction between compensatory

response � species richness (L-ratio ¼ 6.51340, d.f. ¼ 2, p ¼
0.0385; electronic supplementary material, model S14;

figure 5). Overall, [PO4–P] increased with decreasing species

richness and was higher in the presence of compensatory

dynamics (figure 5).
4. Discussion
Our study provides empirical evidence, consistent with the

predictions of recent trait-based simulations of species loss

[25], that the ecosystem consequences of extinction can be

fundamentally altered by compensatory responses within
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the surviving community. However, we find that the strength

of such a response is contingent on compositional differences

that arise from the order of species loss and the number of

species remaining in the post-extinction community

[26,27,58]. Further, we find that the effects of biomass com-

pensation, although not as strong as anticipated, are less

prominent in uneven communities that have a structure typi-

cal of natural communities than in communities with an even

species distribution, as per the archetypal design of biodiver-

sity–ecosystem function experiments [22]. This distinction is

important because a majority of experimental manipulations

of biodiversity fall short of allowing community dynamics

and compensatory responses to fully develop [59,60], redu-

cing the likelihood of conveying the most likely community

response to extinction for a natural setting [61,62]. Recent

work has shown that adjustments to community structure

in the absence of species loss can have consequential effects

on ecosystem functioning that relate to the rank order of

species dominance [49], rather than dominant species identity

[63,64], and changes in species density and biomass [65–69].

Such transient changes in how dominance and identity are

represented as communities respond to forcing over time

[70] have important ramifications for the design and analysis

of contemporary biodiversity experiments [71,72], as well as

the relevance of their findings for practical application [73].

The results also reinforce the role of species trait identity

and variability [74] as major determinants of ecosystem

functioning [22].

At a broader ecological level, our findings indicate that

the ecological consequences of extinction are unlikely to

meet expectation (i.e. some form of a positive but decelerat-

ing curve [22,23]) when projections are based on

pre-extinction community properties and dynamics [75]. This

is because the type, timing and severity of extinction gener-

ates a legacy that influences the capacity of, and way in

which, the surviving community will respond and affect eco-

system properties. The complexities of how species respond

to novel circumstances are difficult to anticipate and are yet

to be fully explored, even in relation to near-term aspects of

climate change [76]. However, understanding variability in

species responses to abiotic and biotic change [77], as well

as the context-dependent contributions they make to ecosys-

tem functioning over time [59,78,79], will help to refine the

likelihood of various ecological outcomes against specific

scenarios. Here, biomass compensation had a positive effect

on sediment reworking in even communities, especially at

intermediate levels of species richness, while incidences of

over-compensation were particularly pronounced at high

levels of species richness [80]. For uneven communities, func-

tioning was only maintained when extinctions were random

or ordered by rarity. However, when extinction was driven

by body size in both even and uneven communities, pre-

extinction levels of sediment mixing could not be maintained

in the surviving community, regardless of the identity and

ordering of the compensating species because smaller species

contribute little to bioturbation [26,41]. By contrast, where

species shared physiological and/or behavioural traits

across the species pool, as was the case for SBR, function-

ing was generally maintained across the species richness

gradient. Hence, the presence and expression of species

traits dictate how the surviving community moderate eco-

system properties, and explain why ordered species

extinctions can result in no change in some functions and
large changes in other functions [26,49], but these patterns

can be further modified by compensatory adjustments to

the assemblage.

Our findings are in broad agreement with previous

hypotheses which state that the potential or probability for

compensatory dynamics countering the consequences of bio-

diversity loss will depend on the level of functional

redundancy within a system [80,81], but they acknowledge

the importance of species that exhibit low or different effect

trait values in maintaining ecosystems as circumstances

change. Ultimately, the net ecosystem response is a multiple

of the role of which species survive and the population

response to perturbation, including the sequence of species

loss [82]. We find that the effect of extinction order is

driven by species-specific differences within a community,

and especially the disproportionate effect of H. diversicolor
on the depth of particle mixing and the inability of the

mud snail P. ulvae to replace the loss of bioturbation activity

previously performed by other species [38,51,83]. While this

demonstrates that compensatory effects are not always able

to buffer the changes in ecosystem processes and functions

associated with species loss [84], our data suggest that, on

average, compensatory mechanisms will be sufficient to

reduce, in whole or in part, the ecological consequences of

species loss. Indeed, nutrient release was either maintained

or increased in the presence of compensation, even when

extinction was driven by body size, and there is some

evidence to suggest that other mechanisms may lead to

over-compensation prior to the development of community

dynamics over the longer term. Higher levels of functional

redundancy, for example, will be particularly important as

circumstances change and may lessen the likelihood and/or

magnitude of unstable fluctuations in ecosystem properties.

Although the present study was unable to account for pro-

cesses that act over longer time scales, such as adaptation

[85,86] and evolutionary change [87,88], our findings suggest

that an immediate challenge is to determine the circum-

stances under which species exhibit compensatory

responses (e.g. [21]) and whether or not the presence of

compensatory processes refine understanding of biodiversity–

function relations. In the meantime, we advocate that

management efforts should prioritize the conservation of

species based on their contribution to maintaining multiple

ecosystem processes and functions. In doing so, it will be

important to recognize that the compensatory capacity of a

community is dynamic and will respond to changes in bio-

logical and environmental context [89] that, in turn, are

likely to lead to a wider range of ecological outcomes than

are presently appreciated.
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