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Formany years, themain application of [18F]F-DOPAhas been the PET imaging of neuropsychiatric diseases, movement disorders,
and brain malignancies. Recent findings however point to very favorable results of this tracer for the imaging of other malignant
diseases such as neuroendocrine tumors, pheochromocytoma, and pancreatic adenocarcinoma expanding its application spectrum.
With the application of this tracer in neuroendocrine tumor imaging, improved radiosyntheses have been developed. Among these,
the no-carrier-added nucleophilic introduction of fluorine-18, especially, has gained increasing attention as it gives [18F]F-DOPA
in higher specific activities and shorter reaction times by less intricate synthesis protocols. The nucleophilic syntheses which were
developed recently are able to provide [18F]F-DOPA by automated syntheses in very high specific activities, radiochemical yields,
and enantiomeric purities. This review summarizes the developments in the field of [18F]F-DOPA syntheses using electrophilic
synthesis pathways as well as recent developments of nucleophilic syntheses of [18F]F-DOPA and compares the different synthesis
strategies regarding the accessibility and applicability of the products for human in vivo PET tumor imaging.

1. Introduction

The 18F-radiolabeled nonproteinogenic amino acid 3,4-
dihydroxy-6-[18F]fluoro-l-phenylalanine ([18F]F-DOPA)
(Figure 1) has been used for over 30 years to image the
presynaptic dopaminergic system in the human brain in
order to investigate a number of CNS disorders, in particular
schizophrenia [1, 2] and Parkinson’s disease with positron
emission tomography (PET) [3, 4]. As DOPA is the precur-
sor of the neurotransmitter dopamine, the extent of accumu-
lation of [18F]F-DOPA in the brain reflects the functional
integrity of the presynaptic dopaminergic synthesis [5] and
visualizes the activity of aromatic amino acid decarboxylase
(AADC), which converts [18F]F-DOPA to 18F-dopamine.
Likewise, the [18F]F-DOPA uptake can also be relevant
for determining the effects of treatment of the underlying
pathophysiology. For example, its uptake in the striatum

is increased during dopamine replacement therapies in
Parkinson’s disease [6] and modulated by administration
of dopamine D

2
receptor antagonist-based antipsychotic

compounds [7, 8]. As a diagnostic tool for the investigation
of the neuronal dopaminergic metabolism, a high specific
activity (SA) of [18F]F-DOPA is not mandatory.

Incidental findings in a patient undergoing a movement
disorder diagnosis resulted in a coincidental discovery of a
malignant glioma, indicating the potential applicability of
[18F]F-DOPA also for glioma imaging [9]. In the following,
numerous studies were conducted establishing [18F]F-DOPA
as the main diagnostic tool for brain tumor imaging giv-
ing more favorable diagnostic results than [18F]FDG [10]
(Figure 1) due to a significantly lower background accumula-
tion. Also other alternatives based on amino acids were
developed for the imaging of brain malignancies such
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Figure 1: Selected radiotracers applicable in (brain-)tumor imaging.

as [11C]methyl-l-methionine ([11C]CH
3
-MET) [11–13],

3󸀠-deoxy-3󸀠-l-[18F]fluorothymidine ([18F]FLT) [14, 15], or
[18F]fluoroethyl-l-tyrosine ([18F]FET) [16–19] (Figure 1)
which also exhibit the advantage to show a low physiological
accumulation in normal cerebral tissue and inflamed lesions
compared to [18F]FDG, thus giving more favorable results
in brain tumor imaging. Among these tracers used for
neurooncologic imaging, [18F]F-DOPA shows a high uptake
in the malignant tissues, thus allowing a very sensitive tumor
detection via PET imaging.

Beyond glioma imaging, recent studies have also shown
the increasing importance of [18F]F-DOPA for the visual-
ization of various peripheral tumor entities via PET [20]
which can be attributed to the upregulation of amino acid
transporters in malignant tissues due to an often increased
proliferation [21, 22]. [18F]F-DOPA, which is transported
via the dopamine transporter (DAT) into cells, has thus
shown diagnostic advantages in the imaging of high- and
low-grade malignancies like neuroendocrine tumors [23–
27], pheochromocytoma [28, 29], and pancreatic adenocarci-
noma [30–32] regarding diagnostic efficiency and sensitivity.
[18F]FDG on the contrary is taken up by the glucose trans-
porter not only by malignant tissues but also by inflamed
and healthy tissues exhibiting a high glucose metabolism,
resulting in low tumor-to-background ratios [10] in CNS
malignancies.The proliferationmarker [18F]FLTwhich accu-
mulates in malignant tissues due to an enhanced activity of
TK1 however often shows relatively low tumor uptakes [15],
favoring [18F]F-DOPA for the PET imaging of malignancies.

Due to its increasing importance for human tumor imag-
ing, the synthesis of [18F]F-DOPAbecomes a criticalmeasure
regarding its dissemination in clinical routine. Ideally, the
radiotracer should be easily accessible in high radiochemical
yields (RCYs) and specific activities (SAs) as well as in short
synthesis times by an automated process. Furthermore, as
it was demonstrated that d-amino acids lack a permeability
through the blood-brain barrier, an enantioselective synthe-
sis for [18F]F-DOPA is mandatory [33].

The following review outlines the developments in
the field of [18F]F-DOPA radiosyntheses via electrophilic

synthesis routes and themore recent synthesis improvements
via nucleophilic syntheses. The main focus of this work is
to compare the radiochemical yields (RCYs), radiochemical
purities (RCPs), enantiomeric excess (ee), synthesis times,
reliability, and a potential for automation of the different
radiosynthesis pathways.

2. Synthesis Routes for the Production of
[18F]F-DOPA

2.1. First Attempts to Synthesize [18F]F-DOPA. One of the first
fluorine-18-labeled DOPA derivatives was 5-[18F]F-DOPA
[18F]4, synthesized via isotopic exchange by Firnau et al.
in 1973 [34] (Figure 2). In a swimming pool reactor 6Li(𝑛,
4He)3H and 16O(3H, 𝑛)18F nuclear reactions were utilized to
produce fluorine-18 in a mixture of Li

2
CO
3
in H
2
SO
4
and

H
2
O. The resulting [18F]fluoride was subsequently distilled

twice and the diazonium fluoroborate precursor 1 was added
to this solution. After the isotopic exchange reaction has
occurred, the water was removed and the residue was dried
over P

2
O
5
. The dried residue [18F]2 was redissolved in

dioxane, filtered, and heated to 80∘C. After adding xylene, the
solution was further heated to 132∘C for the pyrolysis of the
diazonium[18F]fluoroborate [18F]2 for 30min. After solvent
evaporation, HBr (48%) was added to hydrolyze [18F]3 to the
final product 5-[18F]F-DOPA.

The resulting product [18F]4 was obtained in high radio-
chemical purities of >95% but very low specific activities
between 2.2 and 22 kBq/𝜇mol (0.2–2.0 𝜇Ci/mg). Further-
more, the enantiomeric purity of the product was not
determined, limiting the applicability of this cumbersome
synthesis route.

A significant limitation for the use of 5-[18F]F-DOPA for
in vivo imaging purposes is the accelerated O-methylation
of 5-[18F]F-DOPA in contrast to 6-[18F]F-DOPA ([18F]7,
Figure 3). This increased O-methylation rate is caused by the
fluorine atom in position 5 in direct vicinity to the hydroxyl
group in position 4 [35] and results in a significantly lower
in vivo stability of 5-[18F]F-DOPA ([18F]4, Figure 2). The
same group presented the reaction of [18F]F

2
and l-DOPA



BioMed Research International 3

O

O

O O

O O
O

O

O

O O

O O

OO

O
OO

O

O
O OH

NH

HO

HO

NH

NH

N2BF4
1

[18F]fluoride,

N2BF3
18F

H2O (pH 4),

18F
18F

Dioxane, xylene
30min, 132∘C

NH2-HBr HBr (48%),H2,g

45min, 146–148∘C

(1) 30min, 50∘C
(2) P2O5, 15min [18F

18F

]2

[ ]3[18F]4

Figure 2: Isotopic exchange reaction pathway for the synthesis of 5-[18F]F-DOPA [34].

(A)

(B)

(C)

8 [18F]9

10 [18F]11

O

O

O
O

O

O
O

O

O

O
O

O

O

O

O
O

O
O

O

O
O

O
O

O

O

N N

Si

Sn

R R

5a :R=H
5a :R=NO2

[18F]F2,

CCl4, Freon-11,

18F

18F

18F

18F

[18F]6a:R=H
[18F]6b:R=NO2

HBr 48%),

35min, 135∘C10min, dry ice

H
N

H
N

H
N

H

HO

HO

OH

N

CF3 CF3

HgOCOCF3

[18F]AcOF,
AcOH,

5min, r.t.

HI(55%),

10min, 130∘C

NH2

[18F]F-DOPA([18F]7)

BocO

BocO BocO

BocO

[18F]F2,

CDCl3,

5min, 5∘C

HCI 6M),

5min, 80∘C
8min, 130∘C

(

(

Figure 3: Examples for different demetallation synthesis routes for production of carrier-added [18F]F-DOPA ([18F]7) via desilylation (A)
[42], demercuration (B) [44], and destannylation (C) [95].

in liquid hydrogen fluoride in 1984, yielding a mixture of 2-,
5-, and 6-[18F]F-DOPA in low radiochemical yields: 3.7 GBq
[18F]F

2
was produced from a Ne-target by a tandem Van

de Graaff accelerator to give 111MBq (3%) 6-[18F]F-DOPA,
limiting the applicability of this synthesis pathway for a
routine production [36].

2.2. Electrophilic Syntheses. Twenty years ago, the main route
to produce [18F]F

2
for electrophilic fluorination reactions

was to utilize the nuclear reaction 20Ne(𝑑, 𝛼)18F and a F
2
-

passivated Ni-target [37]. However, this reaction was limited
to facilities with a deuterium accelerator and was thus
mostly replaced by the 18O(𝑝, 𝑛)18F nuclear reaction using
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a respective 18O gas target as this latter method enables the
production of higher 18F activities [37–39].

To overcome the problem with regioselectivity [40, 41]
and the low radiochemical yields obtained by isotopic
exchange reactions, radiodemetallation reactions were pro-
posed by several groups. Thus, desilylation [42] and demer-
curation [43–46] as well as destannylation [47–52] reactions
were developed (Figure 3), of which demercuration and
destannylation gave the best results and were also adopted
to the automated routine production of [18F]F-DOPA [53].
Table 1 compares some of the most promising approaches.
Multiple purification steps utilizing cartridges, HPLC, and
sterile membrane filters were used to remove traces of toxic
metal contaminations in the final product solutions to obtain
the radiolabeled products in acceptable purities. Neverthe-
less, using demetallation reactions in a clinical radiotracer
production, the final quality control has to include a test for
metal contaminants.

Utilizing the carrier-added electrophilic introduction
of fluorine-18, the main route to synthesize [18F]F-DOPA
([18F]7) is by using commercially available and enantiomer-
ically pure mercury or stannyl precursors such as 8 or 10
(Figure 3) in combination with automated synthesis modules
[53, 54]. The main advantages are a high enantiomeric
purity (ee >99%), short reaction times (about 50min), and
a simplified synthesis setup [54]. However, remaining limita-
tions are the achievable radiochemical yields (25 ± 3%; 0.6–
2.6GBq due to the low production yields of [18F]F

2
from

the cyclotron and the substantial loss of at least 50% of
activity) and specific activities (4–25MBq/𝜇mol). As [18F]F

2

can normally be obtained in specific activities of up to
350–600MBq/𝜇mol [55], the [18F]F-DOPA production is
not possible in high specific activities by the electrophilic
method. Another limitation is the cumbersome transport of
gaseous [18F]F

2
. Further, the preparation of the precursor

compounds is expensive and the radiofluorination of the
stannyl precursors gives many side products. In order to
obtain [18F]F-DOPA in higher SAs and RCYs, it was thus
mandatory to develop another synthesis approach. The most
promising one is the nucleophilic labeling using no-carrier-
added [18F]fluoride as it can be obtained in very high specific
activities of up to 314–43,000GBq/𝜇mol [56].

3. Nucleophilic Synthesis Strategies for the
Production of [18F]F-DOPA

As a tracer for the amino acid metabolism in brain malig-
nancies, a high specific activity is not mandatory for [18F]F-
DOPA. However, the increasing importance of [18F]F-DOPA
for peripheral oncologic diagnosis and the need to produce
the radiotracer in higher radiochemical yields and specific
activities (as too low SAs of [18F]F-DOPAwere shown to pro-
duce pharmacologic effects such as carcinoid crisis by local
conversion in tumor tissue of [18F]F-DOPA to noradrenaline,
induced by the enzymes aromatic acid decarboxylase and
dopamine 𝛽-hydroxylase [57]) resulted in efforts to develop
no-carrier-added nucleophilic labeling methods.

3.1. Isotopic Exchange. In 2001, Tierling et al. presented
the first utilization of an isotopic exchange reaction for
the synthesis of [18F]F-DOPA [58]. This approach yielded
[18F]F-DOPA in RCYs of 8–10% (n. d. c.) and an ee of
>85% within 70min. Based on these results, Wagner et
al. described the utilization of the isotopic exchange reac-
tion for the radiofluorination of a 19F-precursor 12 with
tetrabutylammonium[18F]fluoride to produce [18F]F-DOPA
in high specific activities (Figure 4) [59]. Specific activities
in the range of 1.5–2.5GBq/𝜇mol and RCYs of 22% were
calculated to be achievable from a theoretical starting activity
of 100GBq [18F]fluoride [60] and 19F-precursor amounts of
23 𝜇mol. However, as the reaction was only shown for a
starting activity of 370MBq [18F]fluoride and 5.7 𝜇mol 19F-
precursor and no further isotopic exchange experiments with
higher starting activities were demonstrated, the calculated
achievable yields of up to 2.5GBq/𝜇mol remain to be shown.

In 2013, Martin et al. implemented themethod ofWagner
et al. to a GE TRACERlab MXFDG. In preliminary experi-
ments, the automated synthesis of [18F]F-DOPA resulted in
reproducible RCYs of 10–15% (n. d. c.), RCPs of >95%, and
ee of >98% without giving other synthesis details such as
reaction times and starting activities [61].

3.2. Nucleophilic Syntheses and Aspects of Automation. In
nucleophilic substitution reactions on aromatic rings using
[18F]fluoride, the standard leaving groups are mainly nitro-
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Table 1: Selected synthesis details from electrophilic fluorination reactions for the synthesis of [18F]F-DOPA.

Radiolabeling method Time [min] RCY [%]a Impurities in product SA [MBq/𝜇mol] ee [%] Citation

Desilylation 60 8b n. d. 25.2 100 Diksic and
Farrokhzad ’85 [42]

L-DOPA + BF3 120 18 n. d. n. d. 100 Chirakal et al. ’86 [92]

Demercuration 65 12 <10 ppb Hg n. d. 97 Adam and Jivan ’88
[43]

Demercuration 50 11 <20 ppb Hg 2.6 >99 Luxen et al. ’90 [44]

Destannylation 60 25 <15 ppb Sn n. d. >99 Namavari et al. ’92
[47]

O-Pivaloyl ester of L-DOPA 60 17 ± 1.9 n. d. 17 ± 2.5 100 Ishiwata et al. ’93 [93]
Demercuration 45–50 14b <0.05 𝜇g/mL Hg 17–19 >98 Chaly et al. ’93 [94]
Destannylation 45–50 26 1.5–2.5 ppm Sn 4.4 >99 Dollé et al. ’98 [48]

Destannylation 50 25 ± 3 <1 𝜇g/mL CDCl3 30 ± 2 96 ± 1 Füchtner et al. ’08
[95]

aUnless otherwise stated, RCYs are given decay corrected (d. c.) and bnondecay corrected (n. d. c.).
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or trimethylammonium moieties (Figure 5) in combination
with electron withdrawing groups such as –CO, –CN, and
–NO
2

to enable an efficient reaction. Further, halogen
exchange reactions with substituted veratraldehyde (–Cl,
–Br, and –F) were evaluated [62]. The first nucleophilic
approaches for the synthesis of [18F]F-DOPA gave racemates
of d- and l-isomers of the tracerwhichwere purified by chiral
HPLC resulting in a significant loss of activity [63, 64].

To overcome these problems, new radiosyntheses were
developed based on enantiomerically pure chiral precursors
or chiral auxiliaries [65–70]. The radiolabeling reactions
using these precursors provide the product in moderate
to good RCYs accompanied by a high enantiomeric excess
of >96%. The most promising approach was published by
Lemaire et al. giving [18F]F-DOPA in a RCY of 17–29% (d. c.)
and a SAof>37GBq/𝜇mol [66]. In Table 2, selected syntheses
using different enantiomerically pure chiral precursors or
chiral auxiliaries are compared.

In addition, asymmetric synthesis routes were developed
for the radiosynthesis of [18F]F-DOPA with higher enan-
tiomeric selectivity and higher RCYs comprising approaches
with the precursors depicted in Figure 5 and enantioselective
reactions utilizing different chiral phase-transfer catalysts
(cPTC). The results from these asymmetric approaches are
shown in Table 3.

A very promising approach for the nucleophilic synthesis
of [18F]F-DOPA yielding the product in high enantiomeric
purities was the utilization of the chiral phase-transfer
catalystO-ally-N-9-anthracenylmethyl-cinchonidiniumbro-
mide (18, Figure 6) described by Corey et al. in 1997 [71].
Based on the preliminary results of Lemaire et al. in 1999
[72] and Guillouet et al. in 2001 [73], Zhang et al. adopted
the method in 2002 [74] and presented a promising synthesis
route utilizing this cPTC 18 for the enantioselective radiosyn-
thesis of [18F]F-DOPA in RCYs of 7–15%, radiochemical
purities of >99%, and an ee of 90% within 80–85min syn-
thesis time. However, special care has to be taken concerning
the trimethylammonium veratraldehyde precursor 17 which
exhibits a limited stability upon storage of the precursor for
more than six months at 0–4∘C resulting in a decreasing
RCY for the radiofluorination of 17 from 40% to <10%
[75].

A limitation for this synthesis route is the achievable
enantiomeric purities as, according to the European Phar-
macopoeia monograph, the limit of the D-enantiomer in the
final solution is 2% (ee 96%) [76]. Thus, the synthesis had to
be further improved to comply with this limit. A promising
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Table 2: Selected synthesis parameters using chiral auxiliaries or precursors.

Precursor Time [min] RCY [%] 18F-label. RCY [%] overalla SA [GBq/𝜇mol] ee [%] Citation
16 100–110 51 12b n. d. n. d. Ding et al. ’90 [63]
15 or 16 120 n. d. 5–10 n. d. 50 (rac.) Lemaire et al. ’91 [65]
15 110 n. d. 5–10b n. d. 83–96 Lemaire et al. ’93 [67]
15 or 16 120 20–35; ∼50 3–5b n. d. >99 Reddy et al. ’93 [68]
15 90 45 ± 5 17–29 >37 >96 Lemaire et al. ’94 [66]
15 or 16 125 n. d. 4-5b >74 98 Horti et al. ’95 [69]
15 85 ∼50 6–13b >7.4 98 Najafi ’95 [70]
aUnless otherwise stated, RCYs are given decay corrected (d. c.) and bnondecay corrected (n. d. c.).
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approach was presented by Kaneko et al. in 1999 (Figure 7)
[77].The enzymatic reaction step was evaluated carefully and
provided a conversion rate of 58% from [18F]fluorocatechol
([18F]21) to [18F]F-DOPA ([18F]7) under optimized condi-
tions. Despite the efficient enzymatic conversion of [18F]F-
catechol to the product, the overall RCY of [18F]F-DOPA that
could be obtainedwas only 2.0%but resulted in the formation
of the product in high SAs of >200GBq/𝜇mol within 150min
synthesis time. The enantiomeric excess was assumed to be
100% due to the enzymatic character of the reaction although
being not confirmed.

The automation of radiotracer syntheses is mandatory for
their wide clinical distribution as an automated process gives
the product in reproducible quality and limits the radiation
exposure to the operating personnel, enabling high starting
activities and thus the possibility to synthesize several patient
doses in one radiosynthesis.

Therefore, Lemaire et al. optimized the enantioselective
reaction using the chiral phase-transfer catalysts 18 and were
able to obtain enantiomeric excesses of about 96% when
performing the reaction in toluene at 0∘C [78]. However, this
reaction setup is difficult to realize in automated processes,
due to cooling and heating steps in the same synthesis
process. Thus, an optimized synthesis route was developed,
preventing the use of diiodosilane. Aldehyde [18F]19 and its
precursor 17 (Figure 5) were trapped on a C18 cartridge, the

precursor 17 was removed with water from the solid support,
and [18F]19was reduced by aqueousNaBH

4
and subsequently

halogenated by HBr or HI on solid support, resulting in a
synthesis setup that could be transferred to an automated
synthesis module. Recently, this reaction setup was applied
for the radiosynthesis and online conversion from aldehyde
[18F]19 to different benzyl halides [79].

Another very promising approach was presented in
2004 by Krasikova et al. [80]. An automated enantios-
elective radiosynthesis utilizing a novel substrate/catalyst
pair, namely, NiPBPGly 25 and (S)-NOBIN 26 (Figure 8),
was developed. In the key alkylation step, the electrophilic
bromide [18F]2 reacts with the nickel complex 25 in the
presence of (S)-NOBIN to form the (S)-complex [18F]27.
This enantioselective reaction step was accomplished at room
temperature, which is favorable in terms of automation.
Subsequently, the alkylation was quenched by HI or acetic
acid before the solvent was removed in order to prevent
racemization of the (S)-complex. Different purification steps
were optimized to remove any potentially toxic substances
present during the synthesis (Ni, Br, P, or B) which was
confirmed by ICP-MS analysis of the final product. Using
this method, [18F]F-DOPA was synthesized in an ee of 96%
and RCYs of 16 ± 5% [80] in a total synthesis time of 110–
120min. Although this approach seems to be promising, it
has not found a widespread application so far which may
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Table 3: Selected synthesis parameters utilizing chiral phase-transfer catalysts (cPTC) or asymmetric synthesis routes.

Precursor Method Time [min] RCY [%]
18F-label.

RCY [%]
overalla SA [GBq/𝜇mol] ee [%] Citation

15 Enzymatic 150 27 2 >200 >99 Kaneko et al. ’99 [77]
17 cPTC 18c 110 n. d. 10–15b 74–185 95 Guillouet et al. ’01 [73]
17 cPTC 18 80–85 10–40 7–15 n. d. 90 Zhang et al. ’02 [74]
16 Catalyst 25d 120 53 16 ± 5 n. d. 96 Krasikova et al. ’04 [80]
17 cPTC 18 100 40–50 25–30 n. d. 96 Lemaire et al. ’04 [78]
15 cPTC 18 120 71 20 ± 4 >50 ≥95 Shen et al. ’09 [83]
17 cPTC 31e 63 50 36 ± 3 >750 >97 Libert et al. ’13 [86]
aUnless otherwise stated, RCYs are given decay corrected (d. c.) and bnondecay corrected (n. d. c.); csee Figure 6; dsee Figure 8; esee Figure 10.

 

O

O

O

O

O

O

O

O O

O

O

O

OO

O
O

O

O

O N

N

N

N

Ni

Ni
OH

OH

H

H

H

OH

HO

HO

NO2

K[18F]F,K222

18F 18F 18F

18F

18F

K2CO3,DMSO

5min, 180∘C

NaBH4 ,

2min, r.t.

Ph3PBr2,

5min, r.t.

Br

[18F]22

[18F]7

[18F]23

[18F]27

[18F]2416

26

25
NH2

NH2

HI (57%),

10min, 170∘C (S)-NOBIN 26,CH2Cl2,
NaOH, 5min, r.t.

Figure 8: Schematic depiction of the synthesis pathway utilizing NiPBPGly 25 and (S)-NOBIN 26 as a novel substrate/catalyst pair for the
enantioselective radiosynthesis of [18F]F-DOPA by Krasikova et al. [80].

be due to the laborious synthesis of the catalyst pair [81,
82] and the challenging purification procedures required for
the synthesis which include self-made columns/cartridges in
order to remove intermediate reagents and side products.

The optimization efforts towards an automation for
the routine production of [18F]F-DOPA finally resulted in
promising synthesis approaches recently. In 2009, Shen et
al. presented a method for the fully automated synthesis
for [18F]F-DOPA [83] utilizing the cPTC 18 which can be
performed at ambient temperature (Figure 9), combining the
methods described by Zhang et al. [74] and Lemaire et al.
[78]. By optimization of the amounts of reagents during the
alkylation process, they were able to obtain [18F]F-DOPA in
RCYs of 20±4%, SAs of∼50GBq/𝜇mol, and ee of≥95%within
120min synthesis time. In order to obtain higher RCYs, it
is important to radiolabel the nitro precursor 15 in DMF
instead of DMSO due to oxidation processes of the aldehyde
15 occurring in DMSO [84, 85]. Furthermore, the utilization
of HBr in combination with KI in the deprotection step
resulted in higher RCYs compared to HI alone. However, as
noncharacterized substances precipitate during the synthesis,

a limitation of this method is the cumbersome maintenance
of the synthesismodule after each synthesis. To overcome this
obstacle, the use of a cassette module would be favorable as
this approach would not require the elaborate purification of
the module after each use.

Libert and coworkers investigated different cPTC regard-
ing their potential to produce [18F]F-DOPA in the highest
enantiomeric excesses and high enantiomeric purities of
>97% could be obtained under mild reaction conditions
within short reaction times [86]. Together with the use of a
structurally optimized chiral phase-transfer catalyst (31) [71,
87] (Figure 10), amuch simplified synthesis setup for automa-
tion was enabled. With this optimization, the group of Libert
and Lemaire was able to establish a fast automated synthesis
and reported product amounts of >45 GBq obtained in RCYs
of 24% (n. d. c.) and specific activities of >750GBq/𝜇mol [86]
within 63 minutes (Figure 10). Furthermore, utilizing cPTC
31 as the catalyst, an ee of >97% could be achieved.

3.3. Miscellaneous. In this chapter, some unconventional
approaches for the production of [18F]F-DOPAare described.
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In 2008, Forsback et al. presented an electrophilic labeling
approach for the production of [18F]F-DOPA in RCYs of
6.4 ± 1.7% (d. c.) and SAs of 3.7 ± 0.9GBq/𝜇mol [88]. The
key step was the synthesis of [18F]F

2
in an electrical discharge

chamber by a 18F/19F-exchange reaction. The 18F-source was
[18F]fluoromethane, which was mixed with a low amount
(1 𝜇mol) of carrier fluorine in neon (Ne/0.5% F

2
) inside the

discharge chamber. [18F]Fluoromethane was produced from
methyliodide by a nucleophilic substitution reaction with
K[18F]F/K222 in acetonitrile. Deuterated solvents for the
synthesis of [18F]F-DOPA like CDCl

3
, CD
2
Cl
2
, and C

3
D
6
O

were also investigated providing significantly higher yields
than Freon-11 [89].

In 2012, Lee et al. presented a very fast oxidative fluori-
nation approach for 18F-aryl compounds utilizing a nickel-
complex 32 and [18F]fluoride (Figure 11). Nickel complex 32
(1mg), a hypervalent iodine oxidant 33 (1 eq.), an aqueous

solution of [18F]fluoride (2−5 𝜇L, 3.7−18.5MBq), and K222
(2.0mg) in acetonitrile (200−500𝜇L) at 23∘C yielded a Boc-
protected [18F]F-DOPA-analogue [18F]34 in RCYs of 15±7%
(n. d. c.) in less than 1 minute [90].This might be also a useful
approach for a very fast synthesis of [18F]F-DOPA.

In 2013, Stenhagen et al. presented an Ag-mediated
electrophilic [18F]fluorination of an enantiomerically pure
precursor. The protected arylboronic ester was transformed
to a 6-Ag-DOPA derivative with silver triflate. Next,
[18F]selectfluor bis(triflate) in acetone-d

6
was added. [18F]F-

DOPAwas obtained after 20min reaction at ambient temper-
ature and 5min deprotection in RCYs of 19± 12% and SAs of
2.6 ± 0.3GBq/𝜇mol [91]. These results are comparable with
the best known electrophilic approaches and could also serve
for an automated synthesis.

In summary, radiosynthesis procedures for [18F]F-DOPA
were developed which can give the radiotracer in high RCYs,
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SAs, and enantiomeric excesses in short reaction times.
Future efforts to even further improve these results could
include the utilization of nonoxidizing solvents and micro-
wave conditions in order to achieve even higher [18F]fluoride
incorporation rates. Up to now, automated systems based on
the radiochemistry described by, for example, Wagner et al.
[59], Martin et al. [61], and Libert et al. [86] are commercially
available.

4. Conclusion

In over 30 years, the radiosynthesis of [18F]F-DOPA was per-
formed via electrophilic and isotopic exchange routes, when
the tracer was mainly applied for the in vivo PET imaging
of central motor disorders and metabolism imaging pur-
poses. However, the main production route with [18F]F

2
and

commercially available stannyl precursors provides [18F]F-
DOPA in relatively low RCYs and SAs, limiting the use of this
promising radiotracer to the imaging of neuronal function
and brain malignancies, which is still its main application.

With the discovery of the potential of [18F]F-DOPA as
radiotracer for the imaging of peripheral malignancies such
as neuroendocrine tumors, new radiosynthesis approaches
based on nucleophilic substitution reactions were developed,
yielding [18F]F-DOPA in higher RCYs and SAs as well as
shorter synthesis times. Here, two main approaches were
followed: one comprises the introduction of nucleophilic
[18F]fluoride into complex chiral precursors, followed by
deprotection and purification, and the other approach starts
with introduction of [18F]fluoride into simple precursors
followed by the utilization of chiral phase-transfer catalysts
for an enantioselective synthesis of the product. These pro-
cesses can also be transferred to automated synthesismodules
allowing for a broader dissemination of this favorable radio-
tracer extending the palette of radiotracers towards a patient-
individualized precision medicine.
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[49] F. Füchtner, P. Angelberger, H. Kvaternik, F. Hammerschmidt,
B. P. Simovc, and J. Steinbach, “Aspects of 6-[18F]fluoro-L-
DOPA preparation: precursor synthesis, preparative HPLC
purification and determination of radiochemical purity,”
Nuclear Medicine and Biology, vol. 29, no. 4, pp. 477–481, 2002.

[50] F. Füchtner and J. Steinbach, “Efficient synthesis of the 18F-
labelled 3-O-methyl-6-[18F]fluoro-L-DOPA,” Applied Radia-
tion and Isotopes, vol. 58, no. 5, pp. 575–578, 2003.

[51] C.W.Chang,H. E.Wang,H.M. Lin, C. S. Chtsai, J. B. Chen, and
R.-S. Liu, “Robotic synthesis of 6-[18F]fluoro-L-dopa,” Nuclear
Medicine Communications, vol. 21, no. 9, pp. 799–802, 2000.

[52] M. J. Adam, J. Lu, and S. Jivan, “Stereoselective synthesis of 3-
O-methyl-6-[18F]fluorodopa via fluorodestannylation,” Journal
of Labelled Compounds and Radiopharmaceuticals, vol. 34, no.
6, pp. 565–570, 1994.

[53] E. F. J. de Vries, G. Luurtsema, M. Brüssermann, P. H. Elsinga,
and W. Vaalburg, “Fully automated synthesis module for
the high yield one-pot preparation of 6-[18F]fluoro-L-DOPA,”
Applied Radiation and Isotopes, vol. 51, no. 4, pp. 389–394, 1999.

[54] A. Luxen, M. Guillaume, W. P. Melega, V. W. Pike, O. Solin,
and R. Wagner, “Production of 6-[18F]fluoro-L-DOPA and its
metabolism in vivo: a critical review,” Nuclear Medicine and
Biology, vol. 19, no. 2, pp. 149–158, 1992.

[55] E. Hess, G. Blessing, H. H. Coenen, and S. M. Qaim, “Improved
target system for production of high purity [18F]fluorine via the
18O(p,n)18F reaction,” Applied Radiation and Isotopes, vol. 52,
no. 6, pp. 1431–1440, 2000.
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