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Abstract The neurophysiology of cells and tissues are monitored electrophysiologically and 
optically in diverse experiments and species, ranging from flies to humans. Understanding the brain 
requires integration of data across this diversity, and thus these data must be findable, accessible, 
interoperable, and reusable (FAIR). This requires a standard language for data and metadata that 
can coevolve with neuroscience. We describe design and implementation principles for a language 
for neurophysiology data. Our open- source software (Neurodata Without Borders, NWB) defines 
and modularizes the interdependent, yet separable, components of a data language. We demon-
strate NWB’s impact through unified description of neurophysiology data across diverse modalities 
and species. NWB exists in an ecosystem, which includes data management, analysis, visualization, 
and archive tools. Thus, the NWB data language enables reproduction, interchange, and reuse of 
diverse neurophysiology data. More broadly, the design principles of NWB are generally applicable 
to enhance discovery across biology through data FAIRness.

Editor's evaluation
This manuscript provides an overview of an important project that proposes a common language 
to share neurophysiology data across diverse species and recording methods, Neurodata Without 
Borders (NWB). The NWB project includes tools for data management, analysis, visualization, and 
archiving, which are applicable throughout the context of the entire data lifecycle. This paper will 
help raise awareness of this endeavor and should be useful for many researchers across a broad 
range of fields who are interested in analyzing diverse neurophysiology datasets.
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Introduction
The immense diversity of life on Earth (Darwin, 1909) has always provided both inspiration and insight 
for biologists. For example, in neuroscience, the functioning of the brain is studied in species ranging 
from flies, to mice, to humans (Figure 1a; Kandel et al., 2013). Because brains evolved to produce 
a plethora of behaviors that advance organismal survival, neuroscientists monitor brain activity with 
a variety of different tasks and neural recording techniques. (Figure 1a). These technologies provide 
complementary views of the brain, and creating a coherent model of how the brain works will require 
synthesizing data generated by these heterogeneous experiments. However, the extreme hetero-
geneity of neurophysiological experiments impedes the integration, reproduction, interchange, and 
reuse of diverse neurophysiology data. As other fields of science, such as climate science (Eaton, 
2003), astrophysics (Hanisch et al., 2001), and high- energy physics (Brun and Rademakers, 1997) 
have demonstrated, community- driven standards for data and metadata are a critical step in creating 
robust data and analysis ecosystems, as well as enabling collaboration and reuse of data across labo-
ratories. A standardized language for neurophysiology data and metadata (i.e., a data language) is 
required to enable neuroscientists to effectively describe and communicate about their experiments, 
and thus share the data.

The extreme heterogeneity of neurophysiology experiments is exemplified in Figure 1. Diverse 
experiments are designed to investigate a variety of neural functions, including sensation, percep-
tion, cognition, and action. Tasks include running on balls or treadmills (e.g. pictures, Figure  1i; 
Mallory et al., 2021), memory- guided navigation of mazes (Figure 1ii; Kastner et al., 2020), produc-
tion of speech (Figure 1iii; Bouchard et al., 2013), and memory formation (Figure 1iv). The use of 
different species in neuroscience is driven, in part, by the applicability of specific neurophysiological 
recording techniques (Figure 1b). For example, the availability of genetically modified mice makes 
this species ideal to monitor the activity of genetically defined neurons using calcium sensors (e.g. 
with GCaMP; optophysiology, ‘o- phys’; Figure 1bi,ci). On the other hand, intracranially implanted 

eLife digest The brain is an immensely complex organ which regulates many of the behaviors 
that animals need to survive. To understand how the brain works, scientists monitor and record brain 
activity under different conditions using a variety of experimental techniques. These neurophysiolog-
ical studies are often conducted on multiple types of cells in the brain as well as a variety of species, 
ranging from mice to flies, or even frogs and worms.

Such a range of approaches provides us with highly informative, complementary ‘views’ of the 
brain. However, to form a complete, coherent picture of how the brain works, scientists need to be 
able to integrate all the data from these different experiments. For this to happen effectively, neuro-
physiology data need to meet certain criteria: namely, they must be findable, accessible, interoper-
able, and re- usable (or FAIR for short). However, the sheer diversity of neurophysiology experiments 
impedes the ‘FAIR’-ness of the information obtained from them.

To overcome this problem, researchers need a standardized way to communicate their experi-
ments and share their results – in other words, a ‘standard language’ to describe neurophysiology 
data. Rübel, Tritt, Ly, Dichter, Ghosh et al. therefore set out to create such a language that was not 
only FAIR, but could also co- evolve with neurophysiology research.

First, they produced a computer software program (called Neurodata Without Borders, or NWB for 
short) which generated and defined the different components of the new standard language. Then, 
other tools for data management were created to expand the NWB platform using the standard-
ized language. This included data analysis and visualization methods, as well as an ‘archive’ to store 
and access data. Testing the new language and associated tools showed that they indeed allowed 
researchers to access, analyze, and share information from many different types of experiments, in 
organisms ranging from flies to humans.

The NWB software is open- source, meaning that anyone can obtain a copy and make changes to 
it. Thus, NWB and its associated resources provide the basis for a collaborative, community- based 
system for sharing neurophysiology data. Rübel et al. hope that NWB will inspire similar develop-
ments across other fields of biology that share similar levels of complexity with neurophysiology.

https://doi.org/10.7554/eLife.78362
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Figure 1. NWB addresses the massive diversity of neurophysiology data and metadata. (a) Diversity of experimental systems: species and tasks: 
(i) mice performing a visual discrimination task; (ii) rats performing a memory- guided navigation task; (iii) humans speaking consonant- vowel syllables; 
(iv) biophysically detailed simulations of mouse hippocampus during memory formation. The corresponding acquisition modalities and signals are 
shown in the corresponding columns in figure (b and c). (b) Diversity of data modalities and acquisition devices: (i) optophysiological Ca2+ imaging 
with two- photon microscope; (ii) intra- cortical extracellular electrophysiological recordings with polytrodes in multiple brain areas (indicated by 
color, see c.ii); (iii) cortical surface electrophysiology recordings with electrocorticography grids; (iv) high- performance computing systems for large- 
scale, biophysically detailed simulations of large neural networks. (c) Diversity of signals and areas: (i) Ca2+ signals as a function of time from visually 
identified individual neurons in primary visual cortex (V1) (Mallory et al., 2021); (ii) spike- raster (each tick demarcates the time of an action potential) 
from simultaneously recorded putative single- units after spike- sorting of extracellular signals from medial prefrontal cortex (mPFC; blue), ventral 
striatum (v. Striatum, red), and orbital frontal cortex (OFC, green) (color corresponds to b.ii) (Kastner et al., 2020); (iii) high- gamma band activity from 
electrodes over the speech sensorimotor cortex (SMC), with dorsal- ventral distance from Sylvian fissure color coded red- to- black (color corresponds to 

Figure 1 continued on next page
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electrophysiology probes (‘e- phys’) with large numbers of electrodes enable monitoring the activity 
of many single neurons at millisecond resolution from different brain regions simultaneously in freely 
behaving rats (Figure 1bii, cii; Kastner et al., 2020). Likewise, in human epilepsy patients, arrays of 
electrodes on the cortical surface (i.e. electrocorticography, ECoG) provides direct electrical recording 
of mesoscale neural activity at high- temporal resolution across multiple brain areas (e.g., speech 
sensorimotor cortex ‘SMC’; Figure  1biii, ciii; Bouchard et  al., 2013). Additionally, to understand 
the intracellular functioning of single neurons, scientists measure membrane potentials (ic- ephys), 
for example, via patch clamp recordings (see Appendix 1). As a final example, to study the detailed 
workings of complete neural circuits, supercomputers are used for biophysically detailed simulation 
of the intracellular membrane potentials of a large variety of neurons organized in complex networks 
(Bezaire et al., 2016; Raikov and Soltesz, unpublished data; Figure 1biv, civ).

Although the heterogeneity described above is most evident across labs, it is present in a reduced 
form within single labs; lab members can use new equipment or different techniques in custom 
experiments to address specific hypotheses. As such, even within the same laboratory, storage and 
descriptions of data and metadata often vary greatly between experiments, making archival sharing 
and reuse of data a significant challenge. Across species and tasks, different acquisition technologies 
measure different neurophysiological quantities from multiple spatial locations over time. Thus, the 
numerical data itself can commonly be described in the form of space- by- time matrices, the storage 
of which has been optimized (for space and rapid access) by computer scientists for decades. It is 
the immense diversity of metadata required to turn those numbers into knowledge that presents the 
outstanding challenge.

Scientific data must be thought of in the context of the entire data lifecycle, which spans planning, 
acquisition, processing, and analysis to publication and reuse (Griffin et al., 2017). In this context, a 
‘data ecosystem’ is a shared market for scientific data, software, and services that are able to work 
together. Such an ecosystem for neurophysiology would empower users to integrate software compo-
nents and products from across the ecosystem to address complex scientific challenges. Foundational 
to realizing a data ecosystem is a common ‘language’ that enables seamless exchange of data and 
information between software components and users. Here, the principles of Findable, Accessible, 
Interoperable, and Reusable (i.e. FAIR) (Wilkinson et al., 2016) data management and stewardship 
are widely accepted as essential to ensure that data can flow reliably between the components of a 
data ecosystem. Traditionally, data standards are often understood as rigid and static data models 
and formats. Such standards are particularly useful to enable the exchange of specific data types 
(e.g. image data), but are insufficient to address the diversity of data types generated by constantly 
evolving experiments. Together, these challenges and requirements necessitate a conceptual depar-
ture from the traditional notion of a rigid and static data standard. That is, we need a ‘language’ where 
fundamental structures can be reused and combined in new ways to express novel concepts and 
experiments. A data language for neurophysiology will enable precise communication about neural 
data that can co- evolve with the needs of the neuroscience community.

We created the Neurodata Without Borders (NWB) data language (i.e. a standardized language 
for describing data) for neurophysiology to address the challenges described above. NWB(v2) accom-
modates the massive heterogeneity and evolution of neurophysiology data and metadata in a unified 
framework through the development of a novel data language that can co- evolve with neurophysi-
ology experiments. We demonstrate this through the storage of multimodal neurophysiology data, 
and derived products, in a single NWB file with easy visualization tools. This generality was enabled 
by the development of a robust, extensible, and sustainable software architecture based on our Hier-
archical Data Modeling Framework (HDMF) (Tritt et al., 2019). To facilitate new experimental para-
digms, we developed methods for creating and sharing NWB Extensions that permit the NWB data 

b.iii) (Bouchard et al., 2013); (iv) simulated intracellular membrane potentials from different cell- types from large- scale biophysical simulation of the 
hippocampus (BC, Basket Cell); HC, Hilar Interneuron (with axon associated with the) Perforant Path; HCC, Hilar Interneuron (with axon associated with 
the) Commissural/Associational Path; IS, Interneuron- Specific Interneuron; MCPP, medial Perforant Path; NGFC, neurogliaform cell; MC, mossy cell; GC, 
granule cell](Raikov and Soltesz, unpublished data). (d) Neurodata Without Borders (NWB) provides a robust, extensible, and maintainable software 
ecosystem for standardized description, storage, and sharing of the diversity of experimental subjects, behaviors, experimental designs, data acquisition 
systems, and measures of neural activity exemplified in a – c.

Figure 1 continued
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language to co- evolve with the needs of the community. NWB is foundational for the Distributed 
Archives for Neurophysiology Data Integration (DANDI) data repository to enable collaborative data 
sharing and analysis. Together, NWB and DANDI make neurophysiology data FAIR. Indeed, NWB is 
integrated with a growing ecosystem of state- of- the- art analysis tools to provide a unified storage 
platform throughout the data life cycle. Through extensive and coordinated efforts in community 
engagement, software development, and interdisciplinary governance, NWB is now being utilized 
by more than 53 labs and research organizations. Across these groups, NWB is used for all neuro-
physiology data modalities collected from species ranging from flies to humans during diverse tasks. 
Together, the capabilities of NWB provide the basis for a community- based neurophysiology data 
ecosystem. The processes and principles we utilized to create NWB provide an exemplar for biolog-
ical data ecosystems more broadly.

Results
NWB enables unified description and storage of multimodal data and 
derived products
NWB files contain all of the measurements for a single experiment, along with all of the necessary 
metadata to understand that data. Neurophysiology experiments often contain multiple simultaneous 
streams of data, for example, via simultaneous recording of neural activity, sensory stimuli, behav-
ioral tracking, and direct neural modulation. Furthermore, neuroscientists are increasingly leveraging 
multiple neurophysiology recording modalities simultaneously (e.g. ephys and ophys), which offer 
complementary information not achievable in a single modality. These distinct raw data input types 
often require processing, further expanding the multiplicity of data types that need to be described 
and stored.

A key capability of NWB is to describe and store many data sources (including neurophysiological 
recordings, behavior, and stimulation information) in a unified way that is readily analyzed with all time 
bases aligned to a common clock. For each data source, raw acquired signals and/or preprocessed 
data can be stored in the same file. Figure 2a illustrates a workflow for storing and processing elec-
trophysiology and optical physiology in NWB (Ledochowitsch et  al., 2019; Huang et  al., 2020). 
Raw voltage traces (Figure  2a, top) from an extracellular electrophysiology recording and image 
sequences from an optical recording (Figure 2a, bottom) can both be stored in the same NWB file, 
or separate NWB files synchronized to each other. Extracellular electrophysiology data often goes 
through spike sorting, which processes the voltage traces into putative single units and action poten-
tial (a.k.a., spikes) times for those units (Figure 2a, top). The single unit spike times can then also be 
written to the NWB file. Similarly, optical physiology is generally processed using segmentation algo-
rithms to identify regions of the image that correspond to neurons and extract fluorescence traces for 
each neuron (Figure 2a, bottom). The fluorescence traces can also be stored in the NWB file, resulting 
in raw and processed data for multiple input streams. The timing of these streams is each defined 
separately, allowing streams with different sampling rates and starting times to be registered to the 
same common clock. As illustrated in Figure 1d, NWB can also store raw and processed behavioral 
data as well as stimuli, such as animal location and amplitude/frequency of sounds. The multi- modal 
capability of NWB is critical for capturing the diverse types of data simultaneously acquired in many 
neurophysiology experiments, particularly if those experiments involve multiple simultaneous neural 
recording modalities.

Having pre- synchronized data in the same format enables faster and less error- prone development 
of analysis and visualizations tools that provide simultaneous views across multiple streams. Figure 2b 
shows an interactive dashboard for exploring a dataset of simultaneously recorded optical physiology 
and electrophysiology data published by the Allen Institute (Ledochowitsch et al., 2019). This dash-
board illustrates the simultaneous exploration of five data elements all stored in a single NWB file. The 
microscopic image panel (Figure 2b, far left) shows a frame of the video recorded by the microscope. 
The red outline overlaid on that image shows the region- of- interest where a cell has been identified 
by the experimenter. The fluorescence trace (dF/F) shows the activation of the region- of- interest over 
time. This activity is displayed in line with electrophysiology recordings of the same cell (ephys), and 
extracted spikes (below ephys). Interactive controls (Figure 2b, bottom) allow a user to explore the 
complex and important relationship between these data sources.

https://doi.org/10.7554/eLife.78362
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Figure 2. NWB enables unified description and storage of multimodal raw and processed data. (a) Example pipelines for extracellular electrophysiology 
and optical physiology demonstrate how NWB facilitates data processing. For extracellular electrophysiology (top), raw acquired data is written to the 
NWB file. The NWB ecosystem provides interfaces to a variety of spike sorters that extract unit spike times from the raw electrophysiology data. The 
spike sorting results are then stored into the same NWB file (bottom). Separate experimental data acquired from an optical technique is converted 
and written to the NWB file. Several modern software tools can then be used to process and segment this data, identifying regions that correspond 
to individual neurons, and outputting the fluorescence trace of each putative neuron. The fluorescence traces are written to the same NWB file. NWB 
handles the time alignment of multiple modalities, and can store multiple modalities simultaneously, as shown here. The NWB file also contains 
essential metadata about the experimental preparation. (b) NWBWidgets provides visualizations for the data within NWB files with interactive views 
of the data across temporally aligned data types. Here, we show an example dashboard for simultaneously recorded electrophysiology and imaging 
data. This interactive dashboard shows on the left the acquired image and the outline of a segmented neuron (red) and on the right a juxtaposition 
of extracellular electrophysiology, extracted spike times, and simultaneous fluorescence for the segmented region. The orange line on the ephys and 
dF/F plots indicate the frame that is shown to the left. The controls shown at the bottom allow a user to change the window of view and the frame of 
reference within that window.

https://doi.org/10.7554/eLife.78362
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Visualizations of multiple streams of data is a common need across different types of neurophys-
iology data. Another NWBWidgets dashboard is described in Peterson et al., 2021, which demon-
strates a dashboard for viewing human body position tracking with simultaneously acquired ECoG 
data, as well as a panel for viewing the 3D position of electrodes on the participant’s brain. Dash-
boards for specific experiment types can be constructed using NWBWidgets, a library for interactive 
web- based visualizations of NWB data, that provides tools for navigating and combining data across 
modalities.

The NWB software architecture modularizes and integrates all 
components of a data language
Neuroscientists use NWB through a core software stack (Figure 3b) with four modularized compo-
nents: the specification language, the data standard schema, data use APIs, and storage backends 
(Figure 3a) The identification and modularization of these components was a core conceptual advance 
of the NWB software. This software architecture provides flexible accommodation of the heteroge-
nous use cases and needs of NWB users. Modularizing the software in this way allows extending the 
schema to handle new types of data, to implement APIs in new programming languages, and to store 
NWB using different backends, all while maintaining compliance with NWB and providing a stable 
interface for users to interact with.

First, we describe the specification language used to define hierarchical data models. The YAML- 
based specification language defines four primitive structures: Groups, Datasets, Attributes, and 
Links. Each of these primitive structures has characteristics to define their names and parameters (e.g. 
the allowable shapes of a Dataset). Importantly, these primitives are abstract, and are not tied to any 
particular data storage backend. The specification language also uses object- oriented principles to 
define neurodata types that, like classes, can be reused through inheritance and combined through 
composition to build more complex structures.

The NWB core schema uses the primitives defined in the specification language to define more 
complicated structures and requirements for particular types of neurophysiology data. For instance, an 
ElectricalSeries is a neurodata type that defines the data and metadata for an intracranially recorded 
voltage time series in an extracellular electrophysiology experiment. ElectricalSeries extends the 
TimeSeries neurodata type, which is a generic structure designed for any measurement that is sampled 
over time, and defines fields, such as, data, units of measurement, and sample times (specified either 
with timestamps or sampling rate and start time). ElectricalSeries also requires an electrodes field, 
which provides a reference to a table of electrodes describing the locations and characteristics of the 
electrodes used to record the data. The NWB core schema defines many neurodata types in this way, 
building from generic concepts to specific data elements. The neurodata types have rigorous meta-
data requirements that ensure a sufficiently rich description of the data for reanalysis. The neurodata 
types are divided into modules such as ecephys (extracellular electrophysiology), icephys (intracellular 
electrophysiology), ophys (optical physiology), and behavior. Importantly, the core schema is defined 
on its own and is agnostic to APIs and programming languages. This allows for the creation of an API 
in any programming language, which will allow NWB to stay up to date as programming technologies 
advance.

Application Programming Interfaces (APIs) allow convenient interfaces for writing and reading 
data according to the NWB schema. The development team maintains APIs in Python (PyNWB) and 
MATLAB (MatNWB), the two most widely used programming languages in neurophysiology. These 
APIs (Figure 3c and d) are governed by the NWB schema and use an object- oriented design in which 
neurodata types (e.g. ElectricalSeries or TowPhotonSeries) are represented by a dedicated interface 
class. Both APIs are fully compliant with the NWB standard and are, hence, interoperable (i.e. files 
generated by PyNWB can be read via MatNWB and vice versa). Both APIs also support advanced 
data Input/Output (I/O) features, such as lazy data read, compression, and iterative data write for 
data streaming. A key difference in the design of PyNWB and MatNWB is the implementation of the 
data translation process. PyNWB uses a dynamic data translation process based on data builders 
(Figure 3c). The data builders are classes that mirror the NWB specification language primitives and 
provide an interoperability layer where data from different storage backends can be mapped using 
object mappers into a uniform API. In contrast, MatNWB implements a static translation process 
that generates the MATLAB API classes automatically from the schema (Figure 3d). The MatNWB 

https://doi.org/10.7554/eLife.78362
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the specification language to formally define the data standard, (iii) the data storage (blue gray) for translating the data primitives (e.g., groups and 
datasets) described by the schema to/from disk, and (iv) the APIs (green) to enable users to easily read and write data using the standard. Additional 
data translation components (dark blue arrows) defined in the software then insulate and separate these four main components to enable the individual 
components to evolve while minimizing impacts on the other components. For example, by insulating the schema from the storage we can extend 
the standard schema without having to modify the data storage and conversely also integrate new storage backends without having to modify the 
standard schema. (b) Software stack for defining and extending the NWB data standard and creating and using NWB data files. The software stack 
covers all aspects of data standardization: (i) data specification, (ii) data modeling, (iii) data storage, (iv) data APIs, (v) data translation, and (vi) tools. 
Depending on their role, different stakeholders typically interact with different subsets of the software ecosystem. End users typically interact with the 
data APIs (green) and higher- level tools (red, gray) while tool developers typically interact with the data APIs and data modeling layers (green, blue). 
Working groups and developers of extensions then typically interact with the data modeling and data standard specification components. Finally, core 
NWB developers typically interact with the entire developer stack, from foundational documents (lilac) to data APIs (green). (c) Software architecture of 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.78362


 Tools and resources Neuroscience

Rübel, Tritt, Ly et al. eLife 2022;11:e78362. DOI: https:// doi. org/ 10. 7554/ eLife. 78362  9 of 48

approach simplifies updating of the API to support new versions of the NWB schema and extensions, 
and helps minimize cost for development, but with reduced flexibility in supported storage backend 
and API. The difference in the data translation process between the APIs (i.e. static vs. dynamic) is a 
reflection of the different target uses (Figure 3c and d). MatNWB primarily targets data conversion 
and analysis. In contrast, PyNWB additionally targets integration with data archives and web technol-
ogies and is used heavily for development of extensions and exploration of new technologies, such as 
alternate storage backends and parallel computing libraries.

Finally, the specification of data storage backends deals with translating NWB data models to/
from storage on disk. Data storage is governed by formal specifications describing the translation of 
NWB data primitives (e.g. groups or datasets) to primitives of the particular storage backend format 
(e.g. HDF5) and is implemented as part of the NWB user APIs. HDF5 is our primary backend, chosen 
for its broad support across scientific programming languages, its sophisticated tools for handling 
large datasets, and its ability to express very complex hierarchical structures in relatively few files. The 
interoperability afforded by the PyNWB builders allows for other backends, and we have a prototype 
for storing NWB in the Zarr format.

Together, these four components (specification language, standard schema, APIs, and storage 
backend) and the interaction between them constitute a sophisticated software infrastructure that 
is applicable beyond neuroscience and could be useful to many other domains. Therefore, we have 
factored out the domain- agnostic components of each of these four components into a Python soft-
ware package called the Hierarchical Data Modeling Framework (HDMF) (Figure 3b). Much of the 
infrastructure described here, including the specification language, fundamental structures of the core 
schema, base classes for the object mapper and builder layers, and base classes of the PyNWB API 
are defined in the HDMF package. With its modular architecture and open- source model, the NWB 
software stack instantiates the NWB data language and makes NWB accessible to users and devel-
opers. The NWB software design illustrates the complexity of creating a data language and provides 
reusable components (e.g. HDMF and the HDMF Common Schema) that can be applied more broadly 
to facilitate development of data languages for other biological fields in the future.

All NWB software is open source, managed and versioned using Git, and released using a permis-
sive BSD license via GitHub. NWB uses automated continuous integration for testing on all major 
architectures (MacOS, Windows, and Linux) and all core software can be installed via common 
package managers (e.g. pip and conda). The suite of NWB core software tools (Figure 3b) enables 
users to easily read and write NWB files, extend NWB to integrate new data types, and builds the 
foundation for integration of NWB with community software. NWB data can also be easily accessed in 
other programming languages (e.g. IGOR or R) using the HDF5 APIs available across modern scientific 
programming languages.

NWB enables creation and sharing of extensions to incorporate new 
use cases
As with all of biology, neurophysiological discovery is driven in large part by new tools that can 
answer previously unconsidered questions. Thus, a language for neurophysiology data must be 
able to co- evolve with the experiments being performed and provide customization capability while 

the PyNWB Python API. PyNWB provides interfaces for interacting with the specification language and schema, data builders, storage backends, and 
data interfaces. Additional software components (arrows) insulate and formalize the transitions between the various components. The object- mapping- 
based data translation describes: (i) the integration of data interfaces (which describe the data) with the specification (which describes the data model) 
to generate data builders (which describe the data for storage) and (ii) vice versa, the integration of data builders with the specification to create data 
interfaces. The object mapping insulates the end- users from specifics of the standard specification, builders, and storage, hence, providing stable, 
easy- to- use interfaces for data use that are agnostic of the data storage and schema. The I/O interface then provides an abstract interface for translating 
data builders to storage which specific I/O backends must implement. Finally, the specification I/O then describes the translation of schema files to/from 
storage, insulating the specification interfaces from schema storage details. Most of the data modeling, data translation, and data storage components 
are general and implemented in HDMF. This approach facilitates the application of the general data modeling capabilities we developed to other 
science applications and allows PyNWB itself to focus on the definition of data interfaces and functionality that are specific to NWB. (d) Software 
architecture of the MatNWB Matlab API. MatNWB generates front- end data interfaces for all NWB types directly from the NWB format schema. This 
allows MatNWB to easily support updates and extensions to the schema while enabling development of higher- level convenience functions.

Figure 3 continued

https://doi.org/10.7554/eLife.78362


 Tools and resources Neuroscience

Rübel, Tritt, Ly et al. eLife 2022;11:e78362. DOI: https:// doi. org/ 10. 7554/ eLife. 78362  10 of 48

maintaining stability. NWB enables the creation and sharing of user- defined extensions to the stan-
dard that support new and specialized data types (Figure  4a1). Neurodata Extensions (NDX) are 
defined using the same formal specification language used by the core NWB schema. Extensions 
can build off of data types defined in the core schema or other extensions through inheritance and 
composition. This enables the reuse of definitions and associated code, facilitates the integration with 
existing tools, and makes it easier to contextualize new data types.

Figure 4. NWB enables creation and sharing of extensions to incorporate new use cases. (a) Schematic of the process of creating a new neurodata 
extension (NDX), sharing it, and integrating it with the core NWB data standard. Users first identify the need for a new data type, such as additional 
subject metadata or data from a new data modality. Users can then use the NDX Template, NWB Specification API, PyNWB/MatNWB data APIs, and 
NWB DocUtils tools to set up a new NDX, define the extension schema, define and test custom API classes for interacting with extension data, and 
generate Sphinx- based documentation in common formats, for example, HTML or PDF. After the NDX is completed, users can publish the NDX on 
PyPI and conda- forge for distribution via the pip and conda tools, and share extensions via the NDX Catalog, a central, searchable catalog. Users 
can easily read/write extension data using PyNWB/MatNWB and publish extension data in DANDI and other archives. Finally, extensions are used to 
facilitate enhancement, maintenance, and governance of the NWB data standard. Users may propose the integration of an extension published in the 
NDX Catalog with the core standard. The proposal undergoes three phases of review: an initial review by the NWB technology team, an evaluation by a 
dedicated working group, and an open, public review by the broader community. Once approved, the proposal is integrated with NWB and included in 
an upcoming version release. (b) Sampling of extensions currently registered in the NDX catalog. Users can search extensions based on keywords and 
textual descriptions of extensions. The catalog manages basic metadata about extensions, enabling users to discover and access extensions, comment 
and make suggestions, contribute to the source code, and collaborate on a proposal for integration into the core standard. While some extensions have 
broad applicability, others represent data and metadata for a specific lab or experiment. (c) Example extension for storing simulation output data using 
the SONATA framework. The new Compartments type extends the base DynamicTable type and contains metadata about each cell and compartment 
within each cell, such as position and label. The CompartmentSeries type extends the base TimeSeries type and contains a link to the Compartments 
type to associate each row of its data array with a compartment from the Compartments table.

https://doi.org/10.7554/eLife.78362
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NWB provides a comprehensive set of tools and services for developing and using neurodata 
extensions. The NWB Specification API, HDMF DocUtils, and the PyNWB and MatNWB user APIs 
work with extensions with little adjustment (Figure 4a2). In addition, the NDX Template makes it easy 
for users to develop new extensions. Appendix 2 demonstrates the steps outlined in Figure 4 for the 
ndx- simulation- output extension shown in Figure 4c. The Neurodata Extensions Catalog (Figure 4a3) 
then provides a centralized listing of extensions for users to publish, share, find, and discuss exten-
sions across the community. Appendix 3 provides a more detailed overview of the extension workflow 
as part of the NDX Catalog. Several extensions have been registered in the Neurodata Extensions 
Catalog (Figure 4), including extensions to support the storage of the cortical surface mesh of an 
electrocorticography experiment subject, storage of fluorescence resonance energy transfer (FRET) 
microscopy data, and metadata from an intracellular electrophysiology acquisition system. The catalog 
also includes the ndx- simulation- output extension for the storage of the outputs of large- scale simula-
tions. Large- scale network models that are described using the new SONATA format (Dai et al., 2020) 
can be converted to NWB using this extension. The breadth of these extensions demonstrates that 
NWB will be able to accommodate new experimental paradigms in the future.

As particular extensions gain traction within the community, they may be integrated into the core 
NWB format for broader use and standardization (Figure 4a4). NWB has a formal, community- driven 
review process for refining the core format so that NWB can adapt to evolving data needs in neuro-
science. The owners of the extension can submit a community proposal for the extension to the 
NWB Technical Advisory Board, which then evaluates the extension against a set of metrics and best 
practices published on the catalog website. The extension is then tested and reviewed by both a 
dedicated working group of potential stakeholders and the general public before it is approved and 
integrated into the core NWB format. Key advantages of the extension approach are to allow itera-
tive development of extensions and complete implementation and vetting of new data types under 
several use cases before they become part of the core NWB format. The NWB extension mechanism 
thus enables NWB to provide a unified data language for all data related to an experiment, allows 
describing of data from novel experiments, and supports the process of evolving the core NWB stan-
dard to fit the needs of the neuroscientific community.

NWB is foundational for the DANDI data repository to enable 
collaborative data sharing
Making neurophysiology data accessible supports published findings and allows secondary reuse. 
To date, many neurophysiology datasets have been deposited into a diverse set of repositories (e.g. 
CRCNS, Figshare, Open Science Framework, Gin). However, no single data archive provides the 
neuroscientific community the capacity and the domain specificity to store and access large neuro-
physiology datasets. Most current repositories have specific limits on data sizes and are often generic, 
and therefore lack the ability to search using domain specific metadata. Further, for most neurosci-
entists, these archives often serve as endpoints associated with publishing, while research is typically 
an ongoing and collaborative process. Few data archives support a collaborative research model that 
allows data submission prospectively, analysis of data directly in the archive, and opening the conver-
sation to a broader community. Enabling reanalysis of published data was a key challenge identified 
by the BRAIN Initiative. Together, these issues impede access and reuse of data, ultimately decreasing 
the return on investment into data collection by both the experimentalist and the funding agencies.

To address these and other challenges associated with neurophysiology data storage and access, 
we developed DANDI, a Web- based data archive that also serves as a collaboration space for neuro-
physiology projects (Figure 5). The DANDI data archive (https://dandiarchive.org) is a cloud- based 
repository for cellular neurophysiology data and uses NWB as its core data language (Figure 5b). 
Users can organize collections of NWB files (e.g. recorded from multiple sessions) into DANDI data-
sets (so called Dandisets). Users can view the public Dandisets using a Web browser (Figure 5a) and 
search for data from different projects, people, species, and modalities. This search is over metadata 
that has been extracted directly from the NWB files where possible. Users can interact with the data 
in the archive using a JupyterHub Web interface (Figure 5c) to explore, visualize and analyze data 
stored in the archive. Using the DANDI Python client, users can organize data locally into the structure 
required by DANDI as well as download data from and upload data to the archive (Figure 5d). Soft-
ware developers can access information about Dandisets and all the files it contains using the DANDI 

https://doi.org/10.7554/eLife.78362
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Representational State Transfer (REST) API (https://api.dandiarchive.org/). The REST API also allows 
developers to create software tools and database systems that interact with the archive. Each Dandiest 
is structured by grouping files belonging to different biosamples, with some relevant metadata stored 
in the name of each file, and thus aligning itself with the BIDS standard (Gorgolewski et al., 2016). 
Metadata in DANDI is stored using the JSON- LD format, thus allowing graph- based queries and 
exposing DANDI to Google Dataset Search. Dandiset creators can use DANDI as a living repository 
and continue to add data and analyses to an existing Dandiset. Released versions of Dandisets are 
immutable and receive a digital object identifier (DOI). The data are presently stored on an Amazon 
Web Services Public dataset program bucket, enabling open access to the data over the Web, and 
backed up on institutional repositories. DANDI is working with hardware platforms (e.g. OpenEphys), 
database software (e.g. DataJoint) and various data producers to generate and distribute NWB data-
sets to the scientific community.

DANDI provides neuroscientists and software developers with a Platform as a Service (PAAS) 
infrastructure based on the NWB data language and supports interaction via the web browser or 
through programmatic clients, software, and other services. In addition to serving as a data archive 
and providing persistence to data, it supports continued evolution of Dandisets. This allows scien-
tists to use the archive to collect data toward common projects across sites, and engage collabora-
tors actively, directly at the onset of data collection rather than at the end. DANDI also provides a 
computational interface to the archive to accelerate analytics on data and links these Dandisets to 

Figure 5. NWB is foundational for the DANDI data repository to enable collaborative data sharing. The DANDI project makes data and software for 
cellular neurophysiology FAIR. DANDI stores electrical and optical cellular neurophysiology recordings and associated MRI and/or optical imaging data. 
NWB is foundational for the DANDI data repository to enable collaborative data sharing. (a) DANDI provides a Web application allowing scientists to 
share, collaborate, and process data from cellular neurophysiology experiments. The dashboard provides a summary of Dandisets and allows users to 
view details of each dataset. (b) DANDI works with US BRAIN Initiative awardees and the neurophysiology community to curate data using community 
data standards such as NWB, BIDS, and NIDM. DANDI is supported by the US BRAIN Initiative and the Amazon Web Services (AWS) Public Dataset 
Program. (c) DANDI provides a JupyterHub interface to visualize the data and interact with the archive directly through a browser, without the need to 
download any data locally. (d) Using Python clients and/or a Web browser, researchers can submit and retrieve standardized data and metadata from the 
archive. The data and metadata use standard formats such as HDF5, JSON, JSON- LD, NWB, NIfTI, and TIFF.
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eventual publications when generated. The code repositories for the entire infrastructure are available 
on Github (DANDI, 2022) under an Apache 2.0 license.

NWB is integrated with state-of-the-art analysis tools throughout the 
data life cycle
The goal of NWB is to accelerate the rate and improve the quality of scientific discovery through 
rigorous description and high- performance storage of neurophysiology data. Achieving this goal 
requires us to consider not just NWB, but the entire data life cycle, including planning, acquisition, 
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Figure 6. NWB is integrated with state- of- the- art analysis tools throughout the data life cycle. NWB technologies are at the heart of the neurodata 
lifecycle and applications. Data standards are a critical conduit that facilitate the flow of data throughout the data lifecycle and integration of data 
and software across all phases (a. to g.) of the data lifecycle. (a) NWB supports experimental planning through integration with data management, 
best practices, and by allowing users to clearly define what metadata to collect. (b–c) NWB supports storage of unprocessed acquired electrical 
and optical physiology signals, facilitating integration already during data acquisition. NWB is already supported by several acquisition systems 
(b) as well as a growing set of tools for conversion (c) of existing data to NWB. (d) Despite its young age, NWB is already supported by a large set of 
neurophysiology processing software and tools. Being able to access and evaluate multiple processing methods, e.g., different spike sorting algorithms 
and ROI segmentation methods, is important to enable high- quality data analysis. Through integration with multiple different tools, NWB provides 
access to broad range of spike sorters, including, MountainSort, KiloSort, WaveClust, and others, and ophys segmentation methods, e.g., CELLMax, 
CNMF, CNMF- E, and EXTRACT. (e) For scientific analysis, numerous general tools for exploration and visualization of NWB files (e.g. NWBWidgets 
and NWBExplorer) as well as application- specific tools for advanced analytics (e.g. Brainstorm) are accessible to the NWB community. (f–g) NWB is 
supported by a growing set of data archives (e.g. DANDI) for publication and preservation of research data. Data archives in conjunction with NWB APIs, 
validation tools, and the NDX Catalog play a central role in facilitating data reuse and discovery.
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processing, and analysis to publication and reuse (Figure  6). NWB provides a common language 
for neurophysiology data collected using existing and emerging neurophysiology technologies inte-
grated into a vibrant neurophysiology data ecosystem. We describe the software relating to NWB as 
an ‘ecosystem’, because it is a marketplace of a diverse set of tools each playing a different role, from 
data acquisition, to visualization, analysis, and publication. NWB allows scientists to identify an unmet 
need and contribute new tools to address this need. This is critical to truly make neurophysiology data 
Findable, Accessible, Interoperable, and Reusable (i.e. FAIR) (Wilkinson et al., 2016).

NWB supports experiment planning by helping users to clearly define what metadata to collect 
and how the data will be formatted and managed (Figure 6a). To support data acquisition, NWB 
allows for the storage of unprocessed acquired electrical and optical physiology signals. Storage 
of these signals requires either streaming the data directly to the NWB file from the acquisition 
system or converting data from other formats after acquisition (Figure 6b and c). Some acquisition 
systems, such as the MIES (MIES, 2022) intracellular electrophysiology acquisition platform, already 
support direct recording to NWB and the community is actively working to expand support for direct 
recording to NWB, for example, via ScanImage (Pologruto et  al., 2003) and OpenEphys (Siegle 
et  al., 2017). To allow utilization of legacy data and other acquisition systems, a variety of tools 
exist for converting neurophysiology data to NWB. For extracellular electrophysiology, the SpikeIn-
terface package (Buccino et al., 2019) provides a uniform API for conversion and processing data 
that supports conversion for 19+different proprietary acquisition formats to NWB. For intracellular 
electrophysiology, the Intrinsic Physiology Feature Extractor (IPFX) package (IPFX, 2021) supports 
conversion of data acquired with Patchmaster. Direct conversion of raw data to NWB at the beginning 
of the data lifecycle facilitates data re- processing and re- analysis with up- to- date methods and data 
re- use more broadly.

The NWB community has been able to grow and integrate with an ecosystem of software tools 
that offer convenient methods for processing data from NWB files (and other formats) and writing the 
results into an NWB file (Figure 6d). NWB allows these tools to be easily accessed, compared, and 
used interoperably. Furthermore, storage of processed data in NWB files allows direct re- analysis of 
activation traces or spike times via novel analysis methods without having to reproduce time- intensive 
pre- processing steps. For example, the SpikeInterface API supports export of spike sorting results to 
NWB across nine different spike sorters and customizable data curation functions for interrogation 
of results from multiple spike sorters with common metrics. For optical physiology, several popular 
state- of- the- art software packages, such as CaImAn (Giovannucci et al., 2019), suite2p (Pachitariu 
et al., 2016), ciapkg (Ahanonu, 2018), and EXTRACT (Inan et al., 2021) help users build processing 
pipelines that segment optical images into regions of interest corresponding to putative neurons, and 
write these results to NWB.

There is also a range of general and application- specific tools emerging for analysis of neurophysi-
ology data in NWB (Figure 6e). The NWBWidgets (nwb- jupyter- widgets, 2022) library enables inter-
active exploration of NWB files via web- based views of the NWB file hierarchy and dynamic plots of 
neural data, for example visualizations of spike trains and optical responses. NWB Explorer (Cantarelli 
et al., 2022) developed by MetaCell in collaboration with OpenSourceBrain, is a web app that allows 
a user to explore any publicly hosted NWB file and supports custom visualizations and analysis via 
Jupyter notebooks, as well as use of the NWBWidgets. These tools allow neuroscientists to inspect 
their own data for quality control, and enable data reusers to quickly understand the contents of a 
published NWB file. In addition to these general- purpose tools, many application- specific tools, for 
example, RAVE (Magnotti et al., 2020), ecogVIS (Tauffer and Dichter, 2021), Brainstorm (Nasiotis 
et al., 2019), Neo (Garcia et al., 2014) and others are already supporting or are in the process of 
developing support for analysis of NWB files.

Many journals and funding agencies are beginning to require that data be made FAIR. For publica-
tion and preservation (Figure 6f) archives are an essential component of the NWB ecosystem, allowing 
data producers to document data associated with publications and share that data with others. NWB 
files can be stored in many popular archives, such as FigShare and Collaborative Research in Compu-
tational Neuroscience ( CRCNS. org). As described earlier, in the context of the NIH BRAIN Initiative, 
the DANDI archive has been specifically designed to publish and validate NWB files and leverage their 
structure for searching across datasets. In addition, several other archives, for example, DABI (DABI, 
2022) and OpenSourceBrain (Gleeson et al., 2019), are also supporting publication of NWB data.
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Data archives also play a crucial role in discovery and reuse of data (Figure 6g). In addition to 
providing core functionality for data storage and search, archives increasingly also provide compute 
capacity for reanalysis. For example, DANDI Hub provides users a familiar JupyterHub interface that 
supports interactive exploration and processing of NWB files stored in the archive. The NWB data 
APIs, validation, and inspection tools also play a critical role in data reuse by enabling access and 
ensuring data validity. Finally, the Neurodata Extension Catalog described earlier facilitates accessi-
bility and reuse of data files that use NWB extensions.

NWB integrates with (not competes with) existing and emerging technologies across the data 
lifecycle, creating a flourishing NWB software ecosystem that enables users to access state- of- 
the- art analysis tools, share and reuse data, improve efficiency, reduce cost, and accelerate and 
enable the scientific discovery process. See also Appendix 4 for an overview of NWB- enabled 
tools organized by application area and environment. Thus, NWB provides a common language 
to describe neurophysiology experiments, data, and derived data products that enables users to 
maintain and exchange data throughout the data lifecycle and access state- of- the- art software 
tools.
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Figure 7. NWB together with DANDI provides an accessible approach for FAIR sharing of neurophysiology data. The table above assesses various 
approaches for sharing neurophysiology data with regard to their compliance with FAIR data principles. Here, cells shown in gray/green indicate 
non- compliance and compliance, respectively. Cells shown in yellow indicate partial compliance, either due to incomplete implementation or optional 
support, leaving achieving compliance ultimately to the end user. The larger, shaded blocks indicate areas that are typically not covered by data 
standards directly but are the role of other resources in a FAIR data ecosystem, e.g., the DANDI data archive.
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NWB and DANDI build the foundation for a FAIR neurophysiology data 
ecosystem
There have been previous efforts to standardize neurophysiology data, such as NWB(v1.0) and NIX 
(Teeters et al., 2015; Martone et al., 2020). While NWB(v1.0) drafted a standard for neurophysi-
ology, it lacked generality which limited its scope, and did not have a reliable and rigorous software 
strategy and APIs, making it hard to use and unreliable in practice. In contrast, NIX defines a generic 
data model for storage of annotated scientific datasets, with APIs in C++ and Python and bindings 
for Java and MATLAB. As such, NIX provides important functionality towards building a FAIR data 
ecosystem. However, the NIX data model lacks specificity with regard to neurophysiology, leaving it 
up to the user to define appropriate schema to facilitate FAIR compliance. Due to this lack of speci-
ficity, NIX files can also be more varied in structure and naming conventions, which makes it difficult 
to aggregate across NIX datasets from different labs. In Figure 7, we assess and compare the compli-
ance of different solutions for sharing neurophysiology data with FAIR data principles. The assessment 
for NIX is based on the INCF review for SPP endorsement (Martone et al., 2020). We also include a 
more in- depth breakdown of the assessment in Appendix 5. With increasing specificity of data models 
and standard schema—that is, as we move from general, self- describing formats (e.g. Zarr or HDF5) 
to generic data models (e.g. NIX) to application- specific standards (e.g. NWB)—compliance with FAIR 
principles and rigidness of the data specification increases. In practice, the various approaches often 
focus on different data challenges. As such, this is not an assessment of the quality of a product per- se, 
but an assessment of the out- of- the- box compliance with FAIR principles in the context of neurophys-
iology. For example, while self- describing data formats (like HDF5 or Zarr) lack specifics about (meta)
data related to neurophysiology, they provide important technical solutions towards enabling high- 
performance data management and storage.

Complementary to standardization of data, software packages, e.g., Neo (Garcia et al., 2014), 
SpikeInterface (Buccino et al., 2019) and others, aim to simplify programmatic interaction with neuro-
physiology data in diverse formats and/or tools with diverse programming interfaces (e.g. for spike 
sorting) by providing common software interfaces for interacting with the data/tools. This strategy 
provides an important conduit to enable access to and facilitate integration with a diversity of data 
and tools. However, this approach does not address (nor does it aim to address) the issue of compli-
ance of data with FAIR principles, but it rather aims to improve interoperability between and inter-
action with a diversity of tools and data formats. Ultimately, standardization of data and creation 
of common software interfaces are not competing strategies, but are synergistic approaches that 
together help create a more integrated data ecosystem. Indeed, tools such as SpikeInterface (Buccino 
et al., 2019), are an important component of the larger NWB software ecosystem that help create an 
accessible neurophysiology data ecosystem by making it easier for users to integrate their data and 
tools with NWB and facilitating access and interoperability of diverse tools.

Data standards build the foundation for an overall data strategy to ensure compliance with FAIR 
data principles. Ultimately, however, ensuring FAIR data sharing and use depends on an ecosystem of 
data standards and data management, analysis, visualization, and archive tools as well as laws, regu-
lations, and data governance structures—for example the NIH BRAIN Initiative Data Sharing Policy 
(NOT- MH- 19- 010, 2021) or the OMB Open Data Policy (Burwell et al., 2022)—all working together 
(Eke et al., 2022). As Figure 7 illustrates, it is ultimately the combination of NWB and DANDI working 
together that enable compliance with FAIR principles. Here, certain aspects, such as usage licenses 
(R.1.1), indexing and search (F.4), authenticated access (A1.2), and long- term availability of metadata 
(A2) are explicitly the role of the archive. As this table shows, together, NWB and DANDI make neuro-
physiology data FAIR.

Coordinated community engagement, governance, and development 
of NWB
The neurophysiology community consists of a large diversity of stakeholders with vested interests 
and broad use cases. Inclusive engagement and outreach with the community are central to achieve 
acceptance and adoption of NWB and to ensure that NWB meets user needs. Thus, development 
of scientific data languages is as much a sociological challenge as it is a technological challenge. To 
address this challenge, NWB has adopted a modern open- source software strategy (Figure 8a) with 
community resources and governance, and a variety of engagement activities.
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Figure 8. Coordinated community engagement, governance, and development of NWB. (a) NWB is open source with all software and documents 
available online via GitHub and the nwb.org website. NWB provides a broad range of online community resources, e.g., Slack, online Help Desk, 
GitHub, mailing list, or Twitter, to facilitate interaction with the community and provides a broad set of online documentation and tutorials. NWB uses 
an open governance model that is transparent to the community. Broad engagements with industry partners (e.g. DataJoint, Kitware, MathWorks, 
MBFBioscience, Vidrio, CatalystNeuro, etc.) and targeted science engagements with neuroscience labs and tool developers help sustain and grow 
the NWB ecosystem. Broad user training and engagement activities, e.g., via hackathons, virtual training, tutorials at conferences, or online training 
resources, aim at facilitating adoption and growing the NWB community knowledge base. (b) Organizational structure of NWB showing the main bodies 
of the NWB team (blue boxes) and the community (gray boxes), their roles (light blue/gray boxes), and typical interactions (arrows). (c) The timeline of 
the NWB project to date can be roughly divided into three main phases. The initial NWB pilot project (2014–2015) resulted in the creation of the first 
NWB 1.0 prototype data standard. The NWB 2.0 effort then focused on facilitating use and long- term sustainability by redesigning and productizing 
the data standard and developing a sustainable software strategy and governance structure for NWB (2017–2019). The release of NWB 2.0 in Jan. 
2019 marked the beginning of the third main phase of the project, focused on adoption and integration of NWB with neuroscience tools and labs, 
maintenance, and continued evolution and refinement of the data standard. (d) Overview of the growth of core NWB 2.x software in lines of code over 

Figure 8 continued on next page
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Execution of this strategy requires coordinating efforts across stakeholders, use cases, and standard 
technologies to prioritize software development and resolve potential conflicts. Such coordination 
necessitates a governance structure reflecting the values of the project and the diverse composi-
tion of the community (Figure 8b). The NWB Executive Board consists of diverse experimental and 
computational neuroscientists from the community and serves as the steering committee for devel-
oping the long- term vision and strategy. The NWB Executive Board (see Acknowledgements) was 
established in 2007 as an independent body from the technical team and PIs of NWB grants. The 
NWB Core Technology Team leads and coordinates the development of the NWB data language and 
software infrastructure to ensure quality, stability, and consistency of NWB technologies, as well as 
timely response to user issues. The Core Technology Team reports regularly to and coordinates with 
the Executive Board. Neuroscience Application Teams, consisting of expert users and core devel-
opers lead, engagement with targeted neuroscience areas in electrophysiology, optical physiology, 
and other emerging applications. These application teams are responsible for developing extensions 
to the data standard, new features, and technology integration together with Community Working 
Groups. The working groups allow for an agile, community- driven development and evaluation of 
standard extensions and technologies, and allow users to directly engage with the evolution of NWB. 
The broader neuroscience community further contributes to NWB via issue tickets, contributions to 
NWB software and documentation, and by creating and publishing data in NWB. This governance 
and development structure emphasizes a balance between the stability of NWB technologies that 
ensure reliable production software, direct engagement with the community to ensure that NWB 
meets diverse stakeholder needs, and agile response to issues and emerging technologies.

The balance between stability, diversity, and agility is also reflected in the overall timeline of the 
NWB project (Figure 8c). The NWB 1.0 prototype focused on evaluation of existing technologies and 
community needs and development of a draft data standard. Building on this prototype, the NWB 
2.0 project initially focused on the redesign and productization of NWB, emphasizing the creation of 
a sustainable software architecture, reliable data standard, and software ready for use. Following the 
first full release of NWB 2.0 in January 2019, the emphasis then shifted to adoption and integration of 
NWB. The goal has been to grow a community and software ecosystem as well as maintenance and 
continued refinement of NWB.

Together, these technical and community engagement efforts have resulted in a vibrant and 
growing ecosystem of public NWB data (Appendix 6) and tools utilizing NWB. The core NWB software 
stack has continued to grow steadily since the release of NWB 2.0 in January 2019, illustrating the 
need for continued development and maintenance of NWB (Figure 8d). See also Appendix 7 for an 
overview of the software release process and history for the NWB schema and APIs. In 2020 more than 
600 scientists participated in NWB developer and user workshops and we have seen steady growth 
in attendance at NWB events over time (Figure 8e). At the same time, the global reach of NWB has 
also been increasing over time (Figure 8e). The NWB team also provides extensive online training 
resources, including video and code tutorials, detailed documentation, as well as guidelines and best 
practices (see and Materials and methods). Community liaisons provide expert consultation for labs 
adopting NWB and for creating customized data conversion software for individual labs. As the table 
in Appendix 6 shows, despite its young age relative to the neurophysiology community, NWB 2.0 is 
being adopted by a growing number of neuroscience laboratories and projects led by diverse prin-
cipal investigators, creating a representative community where users can exchange and reuse data, 
with NWB as a common data language (Chandravadia et al., 2020).

Discussion
Investigating the myriad functions of the brain across species necessitates a massive diversity and 
complexity of neurophysiology experiments. This diversity presents an outstanding barrier in mean-
ingful sharing and collaborative analysis of the collected data, and ultimately prevents the data from 

time. (e) Number of participants at NWB outreach and training events over time. In the count we considered only the NWB hackathons and User Days 
(see c.), the 2019 and 2020 NWB tutorial at Cosyne, and 2019 training at the OpenSourceBrain workshop (i.e. not including attendees at presentations at 
conferences, e.g., SfN).

Figure 8 continued

https://doi.org/10.7554/eLife.78362


 Tools and resources Neuroscience

Rübel, Tritt, Ly et al. eLife 2022;11:e78362. DOI: https:// doi. org/ 10. 7554/ eLife. 78362  19 of 48

being FAIR. To overcome this barrier, we developed a data ecosystem based on the Neurodata 
Without Borders (NWB) data language and software. NWB is being utilized by more than 36 labs 
to enable unified storage and description of intracellular, extracellular, LFP, ECoG, and Ca2+ data in 
fly, mice, rats, monkeys, humans, and simulations. To support the entire data lifecycle, NWB natively 
operates with processing, analysis, visualization, and data management tools, as exemplified by the 
ability to store both raw and pre- processed simultaneous electrophysiology and optophysiology data. 
Formal extension mechanisms enable NWB to co- evolve with the needs of the community. NWB 
enables DANDI to provide a data archive that also serves as a collaboration space for neurophysiology 
projects. Together, these technologies greatly enhance the FAIRness of neurophysiology data.

We argue that there are several key challenges that, until NWB, have not been successfully 
addressed and which ultimately hindered wide- spread adoption of a common standard by the diverse 
neurophysiology community. Conceptually, the complexity of the problem necessitates an interdisci-
plinary approach of neuroscientists, data and computer scientists, and scientific software engineers to 
identify and disentangle the components of the solution. Technologically, the software infrastructure 
instantiating the standard must integrate the separable components of user- facing interfaces (i.e. 
Application Programming Interfaces, APIs), data modeling, standard specification, data translation, 
and storage format. This must be done while maintaining sustainability, reliability, stability, and ease 
of use for the neurophysiologist. Furthermore, because science is advanced by both development 
of new acquisition techniques and experimental designs, mechanisms for extending the standard 
to unforeseen data and metadata are essential. Sociologically, the neuroscientific community must 
accept and adopt the standard, requiring coordinated community engagement, software develop-
ment, and governance. NWB directly addresses these challenges.

NWB as the lingua franca of neurophysiology data
Making neurophysiology data FAIR requires a paradigm shift in how we conceptualize the solution. 
Scientists need more than a rigid data format, but instead require a flexible data language. Such 
a language should enable scientists to communicate via data. Natural languages evolve with the 
concepts of the societies that use them, while still providing a stable basis that enables communi-
cation of common concepts. Similarly, a scientific data language should evolve with the scientific 
research community, and at the same time provide a standardized core that expresses common and 
established methods and data types. NWB is such a data language for neurophysiology experiments.

There are many parallels between NWB and natural languages as used today. The NWB specifica-
tion language provides the basic tools and rules for creating the core concepts required to describe 
neurophysiology data, much like an alphabet and phonetic rules in natural language describe the 
creation of words. Likewise, the format schema provides the words and phrases (neurodata_types) 
of the data language and rules for how to compose them to form data documents (NWB files), much 
like a dictionary and grammatical rules for sentence and document structure. Similarly, flexible data 
storage methods allow NWB to manage and share data in different forms depending on the applica-
tion, much like we store natural languages in many different mediums (e.g. via printed books, elec-
tronic records, or handwritten notes). User APIs (here HDMF, PyNWB, and MatNWB) provide the 
community with tools to create, read, and modify data documents and interact with core aspects of 
the language, similarly to text editors for natural language. NWB Extensions provide a mechanism to 
create, publish, and eventually integrate new modules into NWB to ensure it co- evolves with the tools 
and needs of the neurophysiology community, just as communities create new words to communi-
cate emerging concepts. Finally, DANDI provides a cloud- based platform for archiving, sharing, and 
collaborative analysis of NWB data, much like a bookstore or Wikipedia. Together, these interacting 
components provide the basis of a data language and exchange medium neuroscience community 
that enables reproduction, interchange, and reuse of diverse neurophysiology data.

NWB is community driven, professionally developed, and democratizes 
neurophysiology
Today, there are many data formats and tools used by the neuroscience community that are not 
interoperable. Often, formats and tools are specific to the lab and even the researcher. This level 
of specificity is a major impediment to sharing data and reproducing results, even within the same 
lab. More broadly, the resulting fragmentation of the data space reinforces siloed research, and 
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makes it difficult for datasets or software to be impactful on a community level. Our goal is for the 
NWB data language to be foundational in deepening collaborations between the community of 
neuroscientists. The current NWB software is the result of an intense, community- led, years- long 
collaboration between experimental and computational neuroscientists with data scientists and 
computer scientists. Core to the principles and success of NWB is to account for diverse perspec-
tives and use cases in the development process, integration with community tools, and engage 
in community outreach and feedback collection. NWB is governed by a diverse group to ensure 
both the integrity of the software and that NWB continues to meet the needs of the neuroscience 
community.

As with all sophisticated scientific instruments, there is some training required to get a lab’s data 
into NWB. Several training and outreach activities provide opportunities for the neuroscience commu-
nity to learn how to most effectively utilize NWB. Tutorials, hackathons and user training events allow 
us to bring together neuroscientists who are passionate about open data and data management. 
These users bring their own data to convert or their own tools to integrate, which in turn makes 
the NWB community more diverse and representative of the overall neuroscience community. NWBs 
digital presence has accelerated during the COVID pandemic, and has allowed the community to 
grow internationally and at an exponential rate. Updates on Twitter and the website (https://www. 
nwb.org/), tutorials on YouTube, and free virtual hackathons, all are universally accessible and have 
helped achieve a global reach, interacting with scientists from countries that are too often left out. 
Together, these outreach activities combined with NWB and DANDI democratizes both neurophysi-
ology data and analysis tools, as well as the extracted insights.

The future of NWB
To address the next frontier in grand challenges associated with understanding the brain, the neuro-
science community must integrate information across experiments spanning several orders of magni-
tude in spatial and temporal scales (Bouchard et al., 2016; Bouchard et al., 2018; Bargmann, 2014). 
This issue is particularly relevant in the current age of massive neuroscientific data sets generated by 
emerging technologies from the US BRAIN Initiative, Human Brain Project, and other brain research 
initiatives worldwide. Advanced data processing, machine learning, and artificial intelligence algo-
rithms are required to make discoveries based on such massive volumes of data (Sejnowski et al., 
2014; Bouchard et al., 2016; Bouchard et al., 2018). Currently, different domains of neuroscience 
(e.g. genomic/transcriptomic, anatomy, neurophysiology, etc.,) are supported by standards that are 
not coordinated. Building bridges across neuroscience domains will necessitate interaction between 
the standards, and will require substantial future efforts. There are nascent activities for compatibility 
between NWB and the Brain Imaging Data Structure (BIDS), for example, as part of the BIDS human 
intracranial neurophysiology ECoG/iEEG extension (Holdgraf et al., 2019), but further efforts in this 
and other areas are needed.

It is notoriously challenging to make neurophysiology data FAIR. Together, the NWB data language 
and the NWB- based DANDI data archive support a data science ecosystem for neurophysiology. NWB 
provides the underlying cohesion of this ecosystem through a common language for the description 
of data and experiments. However, like all languages, NWB must continue to adapt to accommodate 
advances in neuroscience technologies and the evolving community using that language. As adoption 
of NWB continues to grow, new needs and opportunities for further harmonization of metadata arise. 
A key ongoing focus area is on development and integration of ontologies with NWB to enhance 
specificity, accuracy, and interpretability of data fields. For example, there are NWB working groups 
on genotype and spatial coordinate representation, as well as the INCF Electrophysiology Stimula-
tion Ontology working group (Electrophysiology Stimulation Ontology Working Group, 2022). 
Another key area is extending NWB to new areas, such as the ongoing working groups on integration 
of behavioral task descriptions with NWB (e.g. based on BEADL Generator, 2022) and enhanced 
integration of simulations with NWB. We strongly advocate for funding support of all aspects of 
the data- software life cycle (development, maintenance, integration, and distribution) to ensure the 
neuroscience community fully reaps the benefits of investment into neurophysiology tools and data 
acquisition.

https://doi.org/10.7554/eLife.78362
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Core design principles and technologies for biological data languages
The problems addressed by NWB technologies are not unique to neurophysiology data. Indeed, 
as was recently discussed in Powell, 2021, lack of standards in genomics data is threatening the 
promise of that data. Many of the tools and concepts of the NWB data language can be applied to 
enhance standardization and exchange of data in biology more broadly. For example, the specifica-
tion language, HDMF, the concept of extensions and the extension catalog are all general and broadly 
applicable technologies. Therefore, the impact of the methods and concepts we have described here 
has the potential to extend well beyond the boundaries of neurophysiology.

We developed design and implementation principles to create a robust, extensible, maintainable, 
and usable data ecosystem that embraces and enables FAIR data science across the breadth of neuro-
physiology data. Across biology, experimental diversity and data heterogeneity are the rule, not the 
exception (Kandel et al., 2013). Indeed, as biology faces the daunting frontier of understanding life 
from atoms to organisms, the complexity of experiments and multimodality of data will only increase. 
Therefore, the principles developed and deployed by NWB may provide a blueprint for creating data 
ecosystems across other fields of biology.

Materials and methods
NWB GitHub organizations
All NWB software is available open source via the following three GitHub organizations. The Neuro-
data Without Borders (Neurodata Without Borders, 2022) GitHub organization is used to manage all 
software resources related to core NWB software developed by the NWB developer community, for 
example, the PyNWB and MatNWB reference APIs. The HDMF development (HDMF-c, 2022) Github 
organization is used to publish all software related to the Hierarchical Data Modeling Framework 
(HDMF), including, HDMF, HDMF DocUtils, HDMF Common Schema and others. Finally, the NWB 
Extensions (NDXCatalog- b, 2021) GitHub organization is used to manage all software related to the 
NDX Catalog, including all extension registrations. Note, the catalog itself only stores metadata about 
NDXs, the source code of NDXs are often managed by the creators in dedicated repositories in their 
own organizations.

HDMF software
HDMF software is available on GitHub using an open BSD licence model.

Hierarchical Data Modeling Framework (HDMF) is a Python package for working with hierarchical 
data. It provides APIs for specifying data models, reading and writing data to different storage back-
ends, and representing data with Python objects. HDMF builds the foundation for the implementation 
of PyNWB and specification language. [Source] (HDMF-a, 2021) [Documentation] (HDMF-b, 2022) 
[Web] (HDMF- dev, 2021).

HDMF Documentation Utilities (hdmf- docutils) are a collection of utility tools for creating docu-
mentation for data standard schema defined using HDMF. The utilities support generation of reStruc-
turedText (RST) documents directly from standard schema which can be compiled to a large variety 
of common document formats (e.g. HTML, PDF, epub, man and others) using Sphinx. [Source] (hdmf- 
docutils, 2022).

HDMF Common Schema defines a collection of common reusable data structures that build the 
foundation for modeling of advanced data formats, e.g., NWB. APIs for the HDMF common data 
types are implemented as part of the  hdmf. common module in the HDMF library. [Source] (hdmf- 
common- schema- a, 2022) [Documentation] (hdmf- common- schema- b, 2022).

HDMF Schema Language provides an easy- to- use language for defining hierarchical data stan-
dards. APIs for creating and interacting with HDMF schema are implemented in HDMF. [Documenta-
tion] (hdmf- schema- language, 2022).

NWB software
NWB software is available on GitHub using an open BSD licence model.

PyNWB is the Python reference API for NWB and provides a high- level interface for efficiently 
working with Neurodata stored in the NWB format. PyNWB is used by users to create and interact 
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with NWB and neuroscience tools to integrate with NWB. [Source] (PyNWB- a, 2021) [Documentation] 
(PyNWB- b, 2021).

MatNWB is the MATLAB reference API for NWB and provides an interface for efficiently working 
with Neurodata stored in the NWB format. MatNWB is used by both users and developers to create 
and interact with NWB and neuroscience tools to integrate with NWB. [Source] (matnwb, 2021b) 
[Documentation] (matnwb, 2021a).

NWBWidgets is an extensible library of widgets for visualizing NWB data in a Jupyter notebook (or 
lab). The widgets support navigation of the NWB file hierarchy and visualization of specific NWB data 
elements. [Source] (nwb- jupyter- widgets, 2022).

NWB Schema defines the complete NWB data standard specification. The schema is a collection of 
YAML files in the NWB specification language describing all neurodata_types supported by NWB and 
their organization in an NWB file. [Source] (NWB Schema- a, 2022) [Documentation] (NWB Schema- b, 
2021).

NWB Schema Language is a specialized variant of the HDMF schema language. The language 
includes minor modifications (e.g., use of the term neurodata_type instead of data_type) to make 
the language more intuitive for neuroscience users, but it is otherwise identical to the HDMF schema 
language. Dedicated interfaces for creating and interacting with NWB schema are available in PyNWB. 
[Documentation] (NWB Specification Language, 2022).

NWB Storage defines the mapping of NWB specification language primitives to HDF5 for storage 
of NWB files. [Documentation] (NWB Storage, 2021).

Neurodata Extensions Catalog (NDX Catalog) is a community- led catalog of Neurodata Extensions 
(NDX) to the NWB data standard. All extensions mentioned in the text can be accessed directly via 
the catalog. [Source] (NDXCatalog- b, 2021) [Online] (NDXCatalog- a, 2022).

NWB Extensions Template (ndx- template) provides an easy- to- use template based on the Cook-
iecutter library for creating Neurodate Extensions (NDX) for the NWB data standard. [Source] 
(NDXtemplate, 2022).

NWB Staged Extensions is a repository for submitting new extensions to the NDX catalog [Source] 
(staged extensions, 2021).

DANDI
The DANDI archive was created by developing and integrating several opensource projects and 
BRAIN Initiative data standards (NWB, BIDS, NIDM). The Web browser application is built using the 
VueJS framework and the DANDI command line interface is built using Python and PyNWB. The initial 
backend of the archive was built on top of the Girder data management system, and is transitioning to 
a Django- based framework. The DANDI analysis hub is built using Jupyterhub deployed over a Kuber-
netes cluster. The different components of the archive are hosted on Amazon Web Services and the 
Heroku platform. The code repositories for the entire infrastructure are available on Github (DANDI, 
2022) under an Apache 2.0 license.

Acknowledgements
Research reported in this publication was supported by the following grants and institutions. OR, AT, 
RL, and KEB were supported by the National Institute Of Mental Health of the National Institutes of 
Health under Award Number R24MH116922 (PI: O Ruebel) as well as through additional support by 
the Kavli Foundation (PI: KEB). BD and IS were supported by the BRAIN Initiative under award number 
U19- NS104590 to IS and by the Kavli Foundation. SG and BD were supported by the NIH BRAIN 
Initiative under award number 1R24MH117295- 01A1. KS is supported by HHMI. Additional support 
for NWB was also provided by the Simons Foundation for the Global Brain grant 521,921 to LF, and 
with additional funding from the Kavli Foundation and Simons Foundation for MatNWB to KS. KEB 
was additionally supported by the Weill Neurohub. CatalystNeuro is also supported by the Simons 
Foundation.

We thank the diverse participants of the NWB hackathons and the global NWB user and developer 
community for their feedback and contributions. We thank Michael Grauer, Matt McCormick, Jean- 
Christophe Fillion- Robin, Doruk Ozturk, Roni Choudhury and Pamela Baker for early work on CI/
CD. We thank the current and former members of the NWB Executive Board for their guidance and 
support: Kristofer Bouchard, Bing Brunton, Elizabeth Buffalo, Anne Churchland, Loren Frank, Satrajit 

https://doi.org/10.7554/eLife.78362


 Tools and resources Neuroscience

Rübel, Tritt, Ly et al. eLife 2022;11:e78362. DOI: https:// doi. org/ 10. 7554/ eLife. 78362  23 of 48

Ghosh, Adam Kepecs, Lydia Ng, Huib Mansvelder, Ueli Rutishauser, Karel Svoboda, Christof Koch, 
Friedrich Sommer, Markus Meister, and Katrin Amunts.

Additional information

Competing interests
Benjamin K Dichter: BD is the Founder and CEO of CatalystNeuro, a software consulting company 
that works with neurophysiology labs to build state- of- the- art data management workflows. Much 
of this work involves converting data from lab- specific formats to the NWB standard, and enhancing 
analysis and visualization tools to read and write NWB data. As such, Dr. Dichter has a personal 
financial state in the success of the NWB standard. Lawrence Niu: LN is a software engineer at MBF 
Bioscience, a for- profit biotech company that develops microscopy software and hardware. The other 
authors declare that no competing interests exist.

Funding

Funder Grant reference number Author

Kavli Foundation Oliver Rübel
Andrew Tritt
Ryan Ly
Benjamin K Dichter
Lawrence Niu
Ivan Soltesz
Karel Svoboda
Loren Frank
Kristofer E Bouchard

National Institute of Mental Health R24MH116922 Oliver Rübel
Andrew Tritt
Ryan Ly
Benjamin K Dichter
Kristofer E Bouchard
Pamela Baker
Lydia Ng

Howard Hughes Medical Institute Karel Svoboda
Loren Frank

Simmons Family Foundation 521921 Benjamin K Dichter
Lawrence Niu
Karel Svoboda
Loren Frank

National Institute of Mental Health 1R24MH117295-01A1 Benjamin K Dichter
Satrajit S Ghosh

National Institute of Neurological 
Disorders and Stroke

U19-NS104590 Benjamin K Dichter
Ivan Soltesz

Weill Neurohub Kristofer E Bouchard

The funders had no role in study design, data collection and interpretation, or the decision to 
submit the work for publication.

Author contributions
Oliver Rübel, Conceptualization, Funding acquisition, Methodology, Project administration, Resources, 
Software, Supervision, Visualization, Writing – original draft, Writing – review and editing; Andrew 
Tritt, Ryan Ly, Methodology, Software, Visualization, Writing – original draft, Writing – review and 
editing; Benjamin K Dichter, Methodology, Visualization, Writing – original draft, Writing – review 
and editing; Satrajit Ghosh, Funding acquisition, Methodology, Visualization, Writing – original draft, 
Writing – review and editing; 
 Niu, Software; Pamela Baker, Software, Validation; Ivan Soltesz, Karel Svoboda, Loren Frank, Funding 
acquisition, Resources, Writing – review and editing; Lydia Ng, Conceptualization, Funding acquisition, 

https://doi.org/10.7554/eLife.78362


 Tools and resources Neuroscience

Rübel, Tritt, Ly et al. eLife 2022;11:e78362. DOI: https:// doi. org/ 10. 7554/ eLife. 78362  24 of 48

Resources, Software, Supervision; Kristofer E Bouchard, Conceptualization, Funding acquisition, 
Project administration, Resources, Supervision, Visualization, Writing – original draft, Writing – review 
and editing

Author ORCIDs
Oliver Rübel    http://orcid.org/0000-0001-9902-1984
Ryan Ly    http://orcid.org/0000-0001-9238-0642
Satrajit Ghosh    http://orcid.org/0000-0002-5312-6729
Kristofer E Bouchard    http://orcid.org/0000-0002-1974-4603

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.78362.sa1
Author response https://doi.org/10.7554/eLife.78362.sa2

Additional files
Supplementary files
•  MDAR checklist 

Data availability
All data used have been previously published and are available for download on the DANDI reposi-
tory. All software is publicly available via GitHub: https://github.com/NeurodataWithoutBorders.

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Kastner DB, Gillespie 
AK, Dayan P, Frank 
LM

2020 Memory Alone Does Not 
Account for the Way Rats 
Learn a Simple Spatial 
Alternation Task

https:// dandiarchive. 
org/ dandiset/ 000065/ 
draft

DANDI, 000065

Bouchard KE, 
Mesgarani N, 
Johnson K, Chang EF

2013 Functional organization of 
human sensorimotor cortex 
for speech articulation

https:// dandiarchive. 
org/ dandiset/ 000019/ 
0. 220126. 2148

DANDI, 
000019/0.220126.2148

Bezaire MJ, Raikov 
I, Burk K, Vyas D, 
Soltesz I

2016 Interneuronal mechanisms 
of hippocampal theta 
oscillations in a full- scale 
model of the rodent CA1 
circuit

https:// dandiarchive. 
org/ dandiset/ 000064/ 
draft

DANDI, 000064

Huang L, Knoblich 
U, Ledochowitsch P, 
Lecoq J, Clay Reid R, 
de Vries SEJ, Buice 
MA, Murphy GJ, 
Waters J, Koch C, 
Zeng H, Li L

2020 Relationship between 
simultaneously recorded 
spiking activity and 
fluorescence signal in 
GCaMP6 transgenic mice

https:// dandiarchive. 
org/ dandiset/ 000048/ 
draft

DANDI, 000048

Gouwens NW, 
Sorensen SA, et al

2020 Cells Patch- seq recordings 
from mouse visual cortex; 
Integrated morphoelectric 
and transcriptomic 
classification of cortical 
GABAergic

https:// dandiarchive. 
org/ dandiset/ 000020

DANDI, 000020

References
Ahanonu B. 2018. calciumImagingAnalysis (ciapkg): a software package for analyzing one- and two- photon 

calcium imaging datasets. Zenodo. https://doi.org/10.5281/zenodo.2222295 DOI: https://doi.org/doi:10.5281/
zenodo.2222295

Bargmann C. 2014. BRAIN 2025: a scientific vision. BRAIN Research through Advancing Innovative 
Neurotechnologies (BRAIN) Working Group Report to the Advisory Committee to the Director, NIH.

https://doi.org/10.7554/eLife.78362
http://orcid.org/0000-0001-9902-1984
http://orcid.org/0000-0001-9238-0642
http://orcid.org/0000-0002-5312-6729
http://orcid.org/0000-0002-1974-4603
https://doi.org/10.7554/eLife.78362.sa1
https://doi.org/10.7554/eLife.78362.sa2
https://github.com/NeurodataWithoutBorders
https://dandiarchive.org/dandiset/000065/draft
https://dandiarchive.org/dandiset/000065/draft
https://dandiarchive.org/dandiset/000065/draft
https://dandiarchive.org/dandiset/000019/0.220126.2148
https://dandiarchive.org/dandiset/000019/0.220126.2148
https://dandiarchive.org/dandiset/000019/0.220126.2148
https://dandiarchive.org/dandiset/000064/draft
https://dandiarchive.org/dandiset/000064/draft
https://dandiarchive.org/dandiset/000064/draft
https://dandiarchive.org/dandiset/000048/draft
https://dandiarchive.org/dandiset/000048/draft
https://dandiarchive.org/dandiset/000048/draft
https://dandiarchive.org/dandiset/000020
https://dandiarchive.org/dandiset/000020
https://doi.org/10.5281/zenodo.2222295
https://doi.org/doi:10.5281/zenodo.2222295
https://doi.org/doi:10.5281/zenodo.2222295


 Tools and resources Neuroscience

Rübel, Tritt, Ly et al. eLife 2022;11:e78362. DOI: https:// doi. org/ 10. 7554/ eLife. 78362  25 of 48

Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. 2016. Interneuronal mechanisms of hippocampal theta oscillations 
in a full- scale model of the rodent CA1 circuit. eLife 5:e18566. DOI: https://doi.org/10.7554/eLife.18566, 
PMID: 28009257

Bouchard KE, Mesgarani N, Johnson K, Chang EF. 2013. Functional organization of human sensorimotor cortex for 
speech articulation. Nature 495:327–332. DOI: https://doi.org/10.1038/nature11911, PMID: 23426266

Bouchard KE, Aimone JB, Chun M, Dean T, Denker M, Diesmann M, Donofrio DD, Frank LM, Kasthuri N, 
Koch C, Ruebel O, Simon HD, Sommer FT. 2016. High- performance computing in neuroscience for data- driven 
discovery, integration, and dissemination. Neuron 92:628–631. DOI: https://doi.org/10.1016/j.neuron.2016.10. 
035, PMID: 27810006

Bouchard KE, Aimone JB, Chun M, Dean T, Denker M, Diesmann M, Donofrio DD, Frank LM, Kasthuri N, 
Koch C, Rübel O, Simon HD, Sommer FT. 2018. International neuroscience initiatives through the lens of 
high- performance computing. Computer 51:50–59. DOI: https://doi.org/10.1109/MC.2018.2141039

Brun R, Rademakers F. 1997. ROOT — An object oriented data analysis framework. Nuclear Instruments and 
Methods in Physics Research Section A 389:81–86. https://doi.org/10.1016/S0168-9002(97)00048-X

Buccino AP, Hurwitz CL, Garcia S, Magland J, Siegle JH, Hurwitz R, Hennig MH. 2019. SpikeInterface, a Unified 
Framework for Spike Sorting. bioRxiv. DOI: https://doi.org/10.1101/796599

Burwell S, VanRoekel S, Park T, Mancini D. 2022. M- 13- 13 - Open Data Policy- Managing Information as an Asset. 
M- 13- 13.

Cantarelli M, Idili G, Ledda F, Facundo R, Pinto A, Gleeson P. 2022. nwb- explorer. v0.6.2. Github. https://github. 
com/MetaCell/nwb-explorer

Chandravadia N, Liang D, Schjetnan AGP, Carlson A, Faraut M, Chung JM, Reed CM, Dichter B, Maoz U, 
Kalia SK, Valiante TA, Mamelak AN, Rutishauser U. 2020. A NWB- based dataset and processing pipeline of 
human single- neuron activity during A declarative memory task. Scientific Data 7:78. DOI: https://doi.org/10. 
1038/s41597-020-0415-9, PMID: 32132545

DABI. 2022. Data Archive BRAIN Initiative. Usc.Edu DL. https://dabi.loni.usc.edu/home
Dai K, Hernando J, Billeh YN, Gratiy SL, Planas J, Davison AP, Dura- Bernal S, Gleeson P, Devresse A, Dichter BK, 

Gevaert M, King JG, Van Geit WAH, Povolotsky AV, Muller E, Courcol JD, Arkhipov A. 2020. The SONATA data 
format for efficient description of large- scale network models. PLOS Computational Biology 16:e1007696. 
DOI: https://doi.org/10.1371/journal.pcbi.1007696, PMID: 32092054

DANDI. 2022. DANDI: Distributed Archives for Neurophysiology Data Integration. v0.7.0. Github. https://github. 
com/dandi

Darwin C. 1909. The Origin of Species. PF Collier & son.
Eaton B. 2003. NetCDF Climate and Forecast (CF) metadata conventions. NetCDF.
Eke DO, Bernard A, Bjaalie JG, Chavarriaga R, Hanakawa T, Hannan AJ, Hill SL, Martone ME, McMahon A, 

Ruebel O, Crook S, Thiels E, Pestilli F. 2022. International data governance for neuroscience. Neuron 110: 
600–612. DOI: https://doi.org/10.1016/j.neuron.2021.11.017, PMID: 34914921

Electrophysiology Stimulation Ontology Working Group. 2022. Electrophysiology Stimulation Ontology 
Working Group. Incf. https://www.incf.org/sig/electrophysiology-stimulation-ontology-working-group

Garcia S, Guarino D, Jaillet F, Jennings T, Pröpper R, Rautenberg PL, Rodgers CC, Sobolev A, Wachtler T, Yger P, 
Davison AP. 2014. Neo: an object model for handling electrophysiology data in multiple formats. Frontiers in 
Neuroinformatics 8:10. DOI: https://doi.org/10.3389/fninf.2014.00010, PMID: 24600386

Generator M. 2022. Project information - NIH RePORTER - NIH research portfolio online reporting tools 
expenditures and results. NIH Research Portfolio Online Reporting Tools Expenditures and Results.

Giovannucci A, Friedrich J, Gunn P, Kalfon J, Brown BL, Koay SA, Taxidis J, Najafi F, Gauthier JL, Zhou P, 
Khakh BS, Tank DW, Chklovskii DB, Pnevmatikakis EA. 2019. CaImAn an open source tool for scalable calcium 
imaging data analysis. eLife 8:e38173. DOI: https://doi.org/10.7554/eLife.38173, PMID: 30652683

Gleeson P, Cantarelli M, Marin B, Quintana A, Earnshaw M, Sadeh S, Piasini E, Birgiolas J, Cannon RC, 
Cayco- Gajic NA, Crook S, Davison AP, Dura- Bernal S, Ecker A, Hines ML, Idili G, Lanore F, Larson SD, 
Lytton WW, Majumdar A, et al. 2019. Open source brain: a collaborative resource for visualizing, analyzing, 
simulating, and developing standardized models of neurons and circuits. Neuron 103:395-411.. DOI: https:// 
doi.org/10.1016/j.neuron.2019.05.019, PMID: 31201122

Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, Flandin G, Ghosh SS, Glatard T, 
Halchenko YO, Handwerker DA, Hanke M, Keator D, Li X, Michael Z, Maumet C, Nichols BN, Nichols TE, 
Pellman J, Poline JB, et al. 2016. The brain imaging data structure, a format for organizing and describing 
outputs of neuroimaging experiments. Scientific Data 3:160044. DOI: https://doi.org/10.1038/sdata.2016.44, 
PMID: 27326542

Griffin PC, Khadake J, LeMay KS, Lewis SE, Orchard S, Pask A, Pope B, Roessner U, Russell K, Seemann T, 
Treloar A, Tyagi S, Christiansen JH, Dayalan S, Gladman S, Hangartner SB, Hayden HL, Ho WWH, 
Keeble- Gagnère G, Korhonen PK, et al. 2017. Best practice data life cycle approaches for the life sciences. 
F1000Research 6:1618. DOI: https://doi.org/10.12688/f1000research.12344.2, PMID: 30109017

Hanisch RJ, Farris A, Greisen EW, Pence WD, Schlesinger BM, Teuben PJ, Thompson RW, Warnock A. 2001. 
Definition of the flexible image transport system (FITS). Astronomy & Astrophysics 376:359–380. DOI: https:// 
doi.org/10.1051/0004-6361:20010923

HDMF-a. 2021. Hierarchical data modeling framework [ source ]. 2010de6. Github. https://github.com/hdmf-
dev/ hdmf

HDMF-b. 2022. The hierarchical data modeling framework – HDMF 2.3.0 documentation. 56c6284. 
Readthedocs. https://hdmf.readthedocs.io

https://doi.org/10.7554/eLife.78362
https://doi.org/10.7554/eLife.18566
http://www.ncbi.nlm.nih.gov/pubmed/28009257
https://doi.org/10.1038/nature11911
http://www.ncbi.nlm.nih.gov/pubmed/23426266
https://doi.org/10.1016/j.neuron.2016.10.035
https://doi.org/10.1016/j.neuron.2016.10.035
http://www.ncbi.nlm.nih.gov/pubmed/27810006
https://doi.org/10.1109/MC.2018.2141039
https://doi.org/10.1016/S0168-9002%2897%2900048-X
https://doi.org/10.1101/796599
https://github.com/MetaCell/nwb-explorer
https://github.com/MetaCell/nwb-explorer
https://doi.org/10.1038/s41597-020-0415-9
https://doi.org/10.1038/s41597-020-0415-9
http://www.ncbi.nlm.nih.gov/pubmed/32132545
https://dabi.loni.usc.edu/home
https://doi.org/10.1371/journal.pcbi.1007696
http://www.ncbi.nlm.nih.gov/pubmed/32092054
https://github.com/dandi
https://github.com/dandi
https://doi.org/10.1016/j.neuron.2021.11.017
http://www.ncbi.nlm.nih.gov/pubmed/34914921
https://www.incf.org/sig/electrophysiology-stimulation-ontology-working-group
https://doi.org/10.3389/fninf.2014.00010
http://www.ncbi.nlm.nih.gov/pubmed/24600386
https://doi.org/10.7554/eLife.38173
http://www.ncbi.nlm.nih.gov/pubmed/30652683
https://doi.org/10.1016/j.neuron.2019.05.019
https://doi.org/10.1016/j.neuron.2019.05.019
http://www.ncbi.nlm.nih.gov/pubmed/31201122
https://doi.org/10.1038/sdata.2016.44
http://www.ncbi.nlm.nih.gov/pubmed/27326542
https://doi.org/10.12688/f1000research.12344.2
http://www.ncbi.nlm.nih.gov/pubmed/30109017
https://doi.org/10.1051/0004-6361:20010923
https://doi.org/10.1051/0004-6361:20010923
https://github.com/hdmf-dev/hdmf
https://github.com/hdmf-dev/hdmf
https://hdmf.readthedocs.io


 Tools and resources Neuroscience

Rübel, Tritt, Ly et al. eLife 2022;11:e78362. DOI: https:// doi. org/ 10. 7554/ eLife. 78362  26 of 48

HDMF-c. 2022. Hierarchical data modeling framework. 0.1. Github. https://github.com/hdmf-dev
hdmf- common- schema- a. 2022. Hdmf- common- schema. b3e48fc. Github. https://github.com/hdmf-dev/ 

hdmf-common-schema
hdmf- common- schema- b. 2022. Welcome to the HDMF- common format specification — HDMF- common 

specification v1.3.0 documentation. 1.3.0. Readthedocs. https://hdmf-common-schema.readthedocs.io
HDMF- dev. 2021. HDMF. 2010de6. Github. https://hdmf-dev.github.io/
hdmf- docutils. 2022. Hdmf- docutils. 8a414db. Github. https://github.com/hdmf-dev/hdmf-docutils
hdmf- schema- language. 2022. Hdmf- schema- language. 376bad4. Github. https://github.com/hdmf-dev/hdmf- 

schema-language
Holdgraf C, Appelhoff S, Bickel S, Bouchard K, D’Ambrosio S, David O, Devinsky O, Dichter B, Flinker A, 

Foster BL, Gorgolewski KJ, Groen I, Groppe D, Gunduz A, Hamilton L, Honey CJ, Jas M, Knight R, Lachaux JP, 
Lau JC, et al. 2019. iEEG- BIDS, extending the Brain Imaging Data Structure specification to human intracranial 
electrophysiology. Scientific Data 6:102. DOI: https://doi.org/10.1038/s41597-019-0105-7, PMID: 31239438

Huang L, Knoblich U, Ledochowitsch P, Lecoq J, Clay Reid R, Vries SEJ, Buice MA, Murphy GJ, Waters J, Koch C, 
Zeng H, Li L. 2020. Relationship between simultaneously recorded spiking activity and fluorescence signal in 
GCaMP6 transgenic mice. Cold Spring Harbor Laboratory 10:788802. DOI: https://doi.org/10.1101/788802

Inan H, Schmuckermair C, Tasci T, Ahanonu BO, Hernandez O, Lecoq J, Dinç F, Wagner MJ, Erdogdu MA, 
Schnitzer MJ. 2021. Fast and Statistically Robust Cell Extraction from Large- Scale Neural Calcium Imaging 
Datasets. bioRxiv. DOI: https://doi.org/10.1101/2021.03.24.436279

INCF Training. 2022. Neurodata Without Borders: Neurophysiology (NWB:N). https://training.incf.org/collection/ 
neurodata-without-borders-neurophysiology-nwbn [Accessed May 13, 2022].

IPFX. 2021. Welcome to intrinsic physiology feature extractor (IPFX). IPFX. https://ipfx.readthedocs.io/
Kandel ER, Mack S, Jessell TM, Schwartz JH, Siegelbaum SA, Hudspeth A. 2013. Principles of Neural Science. 

McGraw Hill Professional.
Kastner DB, Gillespie AK, Dayan P, Frank LM. 2020. Memory alone does not account for the way rats learn a 

simple spatial alternation task. The Journal of Neuroscience 40:7311–7317. DOI: https://doi.org/10.1523/ 
JNEUROSCI.0972-20.2020, PMID: 32753514

Ledochowitsch P, Huang L, Knoblich U, Oliver M, Lecoq J, Reid C, Li L, Zeng H, Koch C, Waters J, de Vries SEJ, 
Buice MA. 2019. On the Correspondence of Electrical and Optical Physiology in iVivo Population- Scale 
Two- Photon Calcium Imaging. bioRxiv. DOI: https://doi.org/10.1101/800102

Magnotti JF, Wang Z, Beauchamp MSR. 2020. RAVE: Comprehensive open- source software for reproducible 
analysis and visualization of intracranial EEG data. NeuroImage 223:117341. DOI: https://doi.org/10.1016/j. 
neuroimage.2020.117341, PMID: 32920161

Mallory CS, Hardcastle K, Campbell MG, Attinger A, Low IIC, Raymond JL, Giocomo LM. 2021. Mouse 
entorhinal cortex encodes a diverse repertoire of self- motion signals. Nature Communications 12:671. DOI: 
https://doi.org/10.1038/s41467-021-20936-8, PMID: 33510164

Martone M, Gerkin R, Moucek R, Das S, Goscinski W, Hellgren- Kotaleski J, Kennedy D, Leergaard T, Boline J, 
Abrams MN. 2020. Neuroscience information exchange format. F1000Research 9:1117858.1. DOI: https://doi. 
org/10.7490/f1000research.1117858.1

matnwb. 2021a. matnwb. Github. https://neurodatawithoutborders.github.io/matnwb/
matnwb. 2021b. mtatnwb. Github. https://github.com/NeurodataWithoutBorders/matnwb
MIES. 2022. MIES. Github. https://github.com/AllenInstitute/MIES
Nasiotis K, Cousineau M, Tadel F, Peyrache A, Leahy RM, Pack CC, Baillet S. 2019. Integrated open- source 

software for multiscale electrophysiology. Scientific Data 6:231. DOI: https://doi.org/10.1038/s41597-019- 
0242-z, PMID: 31653867

NDXCatalog- a. 2022. Neurodata Extensions Catalog. Github. https://nwb-extensions.github.io
NDXCatalog- b. 2021. NWB Extension Catalog. Github. https://github.com/nwb-extensions
NDXtemplate. 2022. Ndx- template. Github. https://github.com/nwb-extensions/ndx-template
Neurodata Without Borders. 2022. Neurodata Without Borders. Github. https://github.com/NeurodataWithout 

Borders
NOT- MH- 19- 010. 2021. Notice of Data Sharing Policy for the BRAIN Initiative. NOT- MH- 19- 010. https://grants. 

nih.gov/grants/guide/notice-files/NOT-MH-19-010.html
nwb- jupyter- widgets. 2022. nwb- jupyter- widgets. Github. https://github.com/NeurodataWithoutBorders/ 

nwb-jupyter-widgets
NWB Mailing List. 2021. Join the NWB Mailing List. https://mailchi.mp/fe2a9bc55a1a/nwb-signup  

[Accessed May 13, 2022].
NWB Schema- a. 2022. nwb- schema. Github. https://github.com/NeurodataWithoutBorders/nwb-schema
NWB Schema- b. 2021. Welcome to the NWB format specification — NWB format specification v2.2.5 

documentation. NWB Format Specification v2.2.5 Documentation. https://nwb-schema.readthedocs.io
NWB Slack. 2022. Neurodata Without Borders Slack. https://nwb-users.slack.com [Accessed May 13, 2022].
NWB Specification Language. 2022. Welcome to the NWB specification language — NWB specification 

language v2.0.0- beta documentation. readthedocs. https://schema-language.readthedocs.io
NWB Storage. 2021. Welcome to NWB storage – NWB storage v1.0.0 documentation. readthedocs. https:// 

nwb-storage.readthedocs.io

https://doi.org/10.7554/eLife.78362
https://github.com/hdmf-dev
https://github.com/hdmf-dev/hdmf-common-schema
https://github.com/hdmf-dev/hdmf-common-schema
https://hdmf-common-schema.readthedocs.io
https://hdmf-dev.github.io/
https://github.com/hdmf-dev/hdmf-docutils
https://github.com/hdmf-dev/hdmf-schema-language
https://github.com/hdmf-dev/hdmf-schema-language
https://doi.org/10.1038/s41597-019-0105-7
http://www.ncbi.nlm.nih.gov/pubmed/31239438
https://doi.org/10.1101/788802
https://doi.org/10.1101/2021.03.24.436279
https://training.incf.org/collection/neurodata-without-borders-neurophysiology-nwbn
https://training.incf.org/collection/neurodata-without-borders-neurophysiology-nwbn
https://ipfx.readthedocs.io/
https://doi.org/10.1523/JNEUROSCI.0972-20.2020
https://doi.org/10.1523/JNEUROSCI.0972-20.2020
http://www.ncbi.nlm.nih.gov/pubmed/32753514
https://doi.org/10.1101/800102
https://doi.org/10.1016/j.neuroimage.2020.117341
https://doi.org/10.1016/j.neuroimage.2020.117341
http://www.ncbi.nlm.nih.gov/pubmed/32920161
https://doi.org/10.1038/s41467-021-20936-8
http://www.ncbi.nlm.nih.gov/pubmed/33510164
https://doi.org/10.7490/f1000research.1117858.1
https://doi.org/10.7490/f1000research.1117858.1
https://neurodatawithoutborders.github.io/matnwb/
https://github.com/NeurodataWithoutBorders/matnwb
https://github.com/AllenInstitute/MIES
https://doi.org/10.1038/s41597-019-0242-z
https://doi.org/10.1038/s41597-019-0242-z
http://www.ncbi.nlm.nih.gov/pubmed/31653867
https://nwb-extensions.github.io
https://github.com/nwb-extensions
https://github.com/nwb-extensions/ndx-template
https://github.com/NeurodataWithoutBorders
https://github.com/NeurodataWithoutBorders
https://grants.nih.gov/grants/guide/notice-files/NOT-MH-19-010.html
https://grants.nih.gov/grants/guide/notice-files/NOT-MH-19-010.html
https://github.com/NeurodataWithoutBorders/nwb-jupyter-widgets
https://github.com/NeurodataWithoutBorders/nwb-jupyter-widgets
https://mailchi.mp/fe2a9bc55a1a/nwb-signup
https://github.com/NeurodataWithoutBorders/nwb-schema
https://nwb-schema.readthedocs.io
https://nwb-users.slack.com
https://schema-language.readthedocs.io
https://nwb-storage.readthedocs.io
https://nwb-storage.readthedocs.io


 Tools and resources Neuroscience

Rübel, Tritt, Ly et al. eLife 2022;11:e78362. DOI: https:// doi. org/ 10. 7554/ eLife. 78362  27 of 48

NWB Twitter. 2022. Neurodata Without Borders Twitter. https://twitter.com/neurodatawb  
[Accessed May 13, 2022].

NWB YouTube. 2021. NWB YouTube Channel. https://www.youtube.com/c/NeurodataWithoutBorders  
[Accessed May 13, 2022].

Pachitariu M, Stringer C, Dipoppa M, Schröder S, Rossi LF, Dalgleish H, Carandini M, Harris KD. 2016. Suite2p: 
Beyond 10,000 Neurons with Standard Two- Photon Microscopy. bioRxiv. DOI: https://doi.org/10.1101/061507

Peterson SM, Singh SH, Dichter B, Scheid M, Rao RPN, Brunton BW. 2021. AJILE12: Long- Term Naturalistic 
Human Intracranial Neural Recordings and Pose. bioRxiv. DOI: https://doi.org/10.1101/2021.07.26.453884

Pologruto TA, Sabatini BL, Svoboda K. 2003. ScanImage: flexible software for operating laser scanning 
microscopes. Biomedical Engineering Online 2:13. DOI: https://doi.org/10.1186/1475-925X-2-13, PMID: 
12801419

Powell K. 2021. The broken promise that undermines human genome research. Nature 590:198–201. DOI: 
https://doi.org/10.1038/d41586-021-00331-5, PMID: 33568833

PyNWB- a. 2021. pynwb. Github. https://github.com/NeurodataWithoutBorders/pynwb
PyNWB- b. 2021. NWB for Python — PyNWB 1.4.0 documentation. readthedocs. https://pynwb.readthedocs.io
Sejnowski TJ, Churchland PS, Movshon JA. 2014. Putting big data to good use in neuroscience. Nature 

Neuroscience 17:1440–1441. DOI: https://doi.org/10.1038/nn.3839, PMID: 25349909
Siegle JH, López AC, Patel YA, Abramov K, Ohayon S, Voigts J. 2017. Open Ephys: an open- source, plugin- 

based platform for multichannel electrophysiology. Journal of Neural Engineering 14:045003. DOI: https://doi. 
org/10.1088/1741-2552/aa5eea, PMID: 28169219

staged extensions. 2021. staged extensions. Github. https://github.com/nwb-extensions/staged-extensions
Tauffer L, Dichter B. 2021. ecogVIS. 3.8. Github. https://github.com/catalystneuro/ecogVIS
Teeters JL, Godfrey K, Young R, Dang C, Friedsam C, Wark B, Asari H, Peron S, Li N, Peyrache A, Denisov G, 

Siegle JH, Olsen SR, Martin C, Chun M, Tripathy S, Blanche TJ, Harris K, Buzsáki G, Koch C, et al. 2015. 
Neurodata without borders: creating a common data format for neurophysiology. Neuron 88:629–634. DOI: 
https://doi.org/10.1016/j.neuron.2015.10.025, PMID: 26590340

Tritt AJ, Rübel O, Dichter B, Ly R, Kang D, Chang EF, Frank LM, Bouchard K. 2019. HDMF: Hierarchical Data 
Modeling Framework for Modern Science Data Standards. 2019 IEEE International Conference on Big Data 
(Big Data. 165–179. DOI: https://doi.org/10.1109/BigData47090.2019.9005648

Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, 
da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, 
Evelo CT, Finkers R, Gonzalez- Beltran A, et al. 2016. The FAIR Guiding Principles for scientific data 
management and stewardship. Scientific Data 3:160018. DOI: https://doi.org/10.1038/sdata.2016.18,  
PMID: 26978244

https://doi.org/10.7554/eLife.78362
https://twitter.com/neurodatawb
https://www.youtube.com/c/NeurodataWithoutBorders
https://doi.org/10.1101/061507
https://doi.org/10.1101/2021.07.26.453884
https://doi.org/10.1186/1475-925X-2-13
http://www.ncbi.nlm.nih.gov/pubmed/12801419
https://doi.org/10.1038/d41586-021-00331-5
http://www.ncbi.nlm.nih.gov/pubmed/33568833
https://github.com/NeurodataWithoutBorders/pynwb
https://pynwb.readthedocs.io
https://doi.org/10.1038/nn.3839
http://www.ncbi.nlm.nih.gov/pubmed/25349909
https://doi.org/10.1088/1741-2552/aa5eea
https://doi.org/10.1088/1741-2552/aa5eea
http://www.ncbi.nlm.nih.gov/pubmed/28169219
https://github.com/nwb-extensions/staged-extensions
https://github.com/catalystneuro/ecogVIS
https://doi.org/10.1016/j.neuron.2015.10.025
http://www.ncbi.nlm.nih.gov/pubmed/26590340
https://doi.org/10.1109/BigData47090.2019.9005648
https://doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244


 Tools and resources Neuroscience

Rübel, Tritt, Ly et al. eLife 2022;11:e78362. DOI: https:// doi. org/ 10. 7554/ eLife. 78362  28 of 48

Appendix 1
Intracellular Electrophysiology Example using NWB and DANDI
The following shows a simple example, demonstrating the use of NWB for storage of intracellular 
electrophysiology data. The file used in this example is from DANDISET 20 (available at https:// 
dandiarchive.org/dandiset/000020) from the Allen Institute for Brain Science as part of the 
multimodal characterization of cell types in the mouse visual cortex (see https://portal.brain-map. 
org/explore/classes/multimodal-characterization/multimodal-characterization-mouse-visual-cortex).

The following simple code example illustrates: (1) downloading of the file from DANDI, (2) reading 
the file with PyNWB, (3) visualization of the stimulus and response recording for a single sweep 
(Appendix 1—figure 1), and (4) visualization of the NWB file in NWB Widgets (Appendix 1—figure 
2).

# import required libraries 
from dandi.dandiapi import DandiAPIClient 
from pynwb import NWBHDF5IO 
from nwbwidgets import nwb2widget 
from nwbwidgets.timeseries import show_indexed_timeseries_mpl 
import numpy as np 
from matplotlib import pyplot as plt 

# Determine the s3path for the file on DANDI 
dandiset_id = '000020' 
filepath = 'sub- 1001658946/ sub-  1001658946_ ses-  1003020741_ icephys. nwb' 
with DandiAPIClient() as client: 
  asset = client.get_dandiset(dandiset_id, 'draft').get_asset_by_path(filepath) 
  s3_path = asset.get_content_url(follow_redirects=1, strip_query=True)

# Open the file using the ros3 driver for streaming data access 
nwb_s3io =NWBHDF5IO(s3_path, mode='r', load_namespaces =True, driver='ros3') 
# Read the file from DANDI. Here we only read the structure and 
# attributes of the file, but not the bulk data 
nwbfile = nwb_ s3f. read()

# Create a simple example visualization of the response and stimulus
# timeseries for a single sweep 
# get the timeseries associated with a particular sweep number 
sweep_number =3 
series =nwbfile.sweep_table.get_series(sweep_number) 
# create a matplotlib figure for plotting 
plt.rcParams[' font. size'] = '16' 
fig, (ax1, ax2)=plt.subplots(2, sharex =True, figsize=(12,8)) 
# plot the response and stimulus timeseries for the given sweep. 
show_indexed_timeseries_mpl(series[0], 
                  title =series[0].neurodata_type + ": "+series[0].name, 
                  xlabel=None, 
                  ax=ax1) 
show_indexed_timeseries_mpl(series[1], 
                  title=series(1).neurodata_type + ": "+series[1].name, 
                  ax=ax2) 
 plt. show()

https://doi.org/10.7554/eLife.78362
https://dandiarchive.org/dandiset/000020
https://dandiarchive.org/dandiset/000020
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Appendix 1—figure 1. Visualization of the stimulus (bottom) and response (top) signals recorded via intracellular 
electrophysiology and stored in NWB.

https://doi.org/10.7554/eLife.78362
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# Display the file with NWBWidgets
nwb2widget(nwbfile)

Appendix 1—figure 2. Visualization of the intracellular electrophysiology file using NWBWidgets.

https://doi.org/10.7554/eLife.78362
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Appendix 2

Creating a New Extension
Using the ndx- simulation- output extension (see Figure  4c) as an example, we illustrate in the 
following the main steps for creating a new extension outlined in Figure 4a2.

Appendix 2—figure 1. Files and folders generated by the cookiecutter ndx- template. The main folder contains 

the license and readme file for extension along with files required for installing the extension (e.g.,  setup. py,  

setup. cfg,  MANIFEST. in, and  requirements. tx t) as well a markdown file with instructions for next steps. The docs/ 

folder contains the Sphinx documentation setup for the extension. Without any additional changes required, 

the developer can with this setup automatically generate documentation in HTML, PDF, ePub and many other 

formats directly from the extension schema using the HDMF- DocUtils. Generating the documentation is as simple 

as executing “make html” in the docs/ folder. The spec/ folder contains the schema files for the extensions. The 

schema files are generated by the script in /src/spec/ create_ extension_ spec. py (see Define the Extension Schema 
Appendix 2—figure 1 continued on next page

https://doi.org/10.7554/eLife.78362
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next), and are typically not modified manually by the developers. The /src folder then contains main source codes 
for the extension, including the: spec/ folder with the code to generated the extension schema matnwb/ folder 
with code for MatNWB pynwb/ folder with code for PyNWB.

A2.1 Set up new NDX using the NDX template
The following code snippet shows the process for setting up the ndx- simulation- output extension 
using the ndx- template template. The template guides the developer through the setup via a simple 
question- and- answer process. In the code snippet, text shown in black is printed by cookiecutter, 
and text shown in blue are commands/responses entered by the developer.

>>cookiecutter gh:nwb- extensions/ndx- template 
You've downloaded /Users/oruebel/.cookiecutters/ndx- template before. Is it okay to 
delete and re- download it? [yes]: yes 
namespace [ndx- my- namespace]: ndx- simulation- output 
description [My NWB extension]: Data types for recording data from multiple 
compartments of multiple neurons in a single TimeSeries. 
author [My Name]: Ben Dichter 
email [ my_ email@ example. com]: ben.dichter@...... 
github_username [myname]: bendichter 
copyright [2021, Ben Dichter]: 
version [0.1.0]: 0.2.6 
release [alpha]: 
license [BSD 3- Clause]: 
py_pkg_name [ndx_simulation_output]:

A2.2 Define the extension schema
The code example below shows the /src/spec/ create_ extension_ spec. py script to define and generate 
the schema for the ndx- simulation- output extension using the PyNWB data format specification API. 
Code shown in red has been auto- generated by the ndx- template. Code shown in blue has been 
defined by the developer to create the schema. Running this script then automatically generates the 
YAML schema files for the extension stored in the spec/ folder.

# -*- coding: utf- 8 -*-  
import  os. path 
from  pynwb. spec import NWBNamespaceBuilder, export_spec, NWBGroupSpec 
def main(): 
   # these arguments were auto- generated from your cookiecutter inputs 
   ns_builder = NWBNamespaceBuilder(doc='Data types for recording data from multiple 

compartments'
                       'of multiple neurons in a single TimeSeries.',

                      name='ndx- simulation- output', 
                      version='0.2.6', 
                      author='Ben Dichter', 
                                   contact=' ben. dichter@ gmail. com')

   types_to_include = 
['TimeSeries', 'VectorData', 'VectorIndex', 'DynamicTable', 'LabMetaData']

  for ndtype in types_to_include:
       ns_builder.include_type(ndtype, namespace='core') 
  Compartments = NWBGroupSpec(default_name='compartments',

                              neurodata_type_def='Compartments',
                             neurodata_type_inc='DynamicTable',
                             doc='Table that holds information about '
                                  'what places are being recorded.')

  Compartments.add_dataset(name='number',
                        neurodata_type_inc='VectorData', 
             dtype='int', 
             doc= 'Cell compartment ids corresponding to a each 

column in the data.')

Appendix 2—figure 1 continued
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   Compartments.add_dataset(name='number_index',
             neurodata_type_inc='VectorIndex', 
             doc='Index that maps cell to compartments.', 
             quantity='?')

  Compartments.add_dataset(name='position',
             neurodata_type_inc='VectorData', 
             dtype='float', 
             quantity='?', 
             doc='Position of recording within a compartment. '

                '0 is close to soma, 1 is other end.')
  Compartments.add_dataset(name='position_index',

             neurodata_type_inc='VectorIndex', 
             doc='Index for position.', 
             quantity='?')

  Compartments.add_dataset(name='label',
             neurodata_type_inc='VectorData', 
             doc='Labels for compartments.', 
             dtype='text', 
             quantity='?')

  Compartments.add_dataset(name='label_index',
             neurodata_type_inc='VectorIndex', 
             doc='indexes label', 
             quantity='?')

  CompartmentsSeries = NWBGroupSpec(neurodata_type_def='CompartmentSeries',
                   neurodata_type_inc='TimeSeries', 
                   doc= 'Stores continuous data from cell 

compartments')
  CompartmentsSeries.add_link(name='compartments',

               target_type='Compartments', 
               quantity='?', 
               doc= 'Metadata about compartments in this 

CompartmentSeries.')
  SimulationMetaData = NWBGroupSpec(name=’simulation', 
                   neurodata_type_def='SimulationMetaData', 
                   neurodata_type_inc='LabMetaData', 
                   doc='Group that holds metadata for simulations.')
  SimulationMetaData.add_group(name='compartments',

             neurodata_type_inc='Compartments', 
             doc='Table that holds information about '
               'what places are being recorded.')

  new_data_types = [Compartments, CompartmentsSeries, SimulationMetaData] 
  # export the spec to yaml files in the spec folder 
  output_dir = os. path. abspath( os. path. join( os. path. dirname(__ file__), '..', '..',’spec')) 
  export_spec(ns_builder, new_data_types, output_dir)

if __name__ == "__main__":
  main()

A2.3 Create API classes
The following code example is an abbreviated version of the  simulation_ output. py file located at 
ndx- simulation- output/src/pynwb/ndx_simulation_output/ as part of the ndx- simulation- output 
extensions. For illustration purposes and to allow us to focus on the code relevant to the definition 
of the API classes, we here omit code details of the find_compartments function, which defines 
custom functionality.

The example shown here illustrates three main patterns for creating API classes for extensions. 
In part A. the extension uses the get_class method to dynamically generate an API Container 
class for the SimulationMetaData type directly from the schema. In part B. the extension uses the 
same approach for CompartmentSeries, but then further customizes the class by adding the find_
compartments to the class to provide additional user functionality. In part C. the extension then 
defines a custom API Container class for the Compartments type that extends the DynamicTable 
type.

# Import methods for registering and creating container class 
from pynwb import register_class, docval, get_class 
# Import the docval decorator used for documenting functions and type checking 

https://doi.org/10.7554/eLife.78362
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from  hdmf. utils import docval, call_docval_func 
# Import the base Container classes we are extending 
from  hdmf. common. table import DynamicTable, ElementIdentifiers

# Define the name of the namespace of our extension needed to register Container 
classes
namespace = 'ndx- simulation- output' 

# A. Auto- generate a Container class for the SimuluationMetaData type 

SimulationMetaData = get_class('SimulationMetaData', namespace) 

# B. Auto- generate a Container class for the CompartmentSeries type 
CompartmentSeries =get_class('CompartmentSeries', namespace) 
# B.1. Use monkey patching to add custom functionality to the auto- generated class 
def find_compartments(self, cell, compartment_numbers =None, compartment_labels 
=None): 
 [...] # Details of the find_compartment omitted here for clarity. 
CompartmentSeries.find_compartments =find_compartments 

# C. Define a custom Container class for the Compartments table type 
@register_class('Compartments', namespace) # Register the class with the TypeMap 
class Compartments(DynamicTable): 
   # Define the columns for the table. HDMF then automatically handles 
   # setting up the columns for us as part of the class 
   __columns__ = ( 
      {'name': 'number','index': True, 
      'description': 'cell compartment ids corresponding to a each column in the 
      data'}, 
      {'name': 'position','index': True, 
      'description': 'the observation intervals for each unit'}, 
      {'name': 'label','description': 'the electrodes that each spike unit came  
      from','index': True, 'table': True} 
 )

  # Document and define the allowable types for the parameters of the __init__ 
function 
   @docval({'name': 'name','type': str, 
        'doc': 'Name of this Compartments object’,'default': 'compartments'}, 
        {'name': 'id','type': ('array_data', ElementIdentifiers), 
        'doc': 'the identifiers for the units stored in this 
        interface','default': None}, 
        {'name': 'columns','type': (tuple, list), 
        'doc': 'the columns in this table','default': None}, 
        {'name': 'colnames','type': 'array_data', 
        'doc': 'the names of the columns in this table’,'default': None}, 
        {'name': 'description','type': str, 
        'doc': 'a description of what is in this table', 
        'default': 'Table that holds information about what places are being 
        recorded.'}, 
        ) 
   def __init__(self, **kwargs): 
      call_docval_func(super(Compartments, self).__init__, kwargs)

A2.4 Documenting the extension
The ndx- template automatically generates as part of the docs/ folder the full setup for automatically 
generating Sphinx- based documentation for the extension from the schema using the hdmf- docutils 
library. To generate the documentation we simply need to run the command “make html” in the 
docs/ folder. Using the same approach we can generate documentation in a large range of common 
formats, e.g., HTML, PDF, man, or ePub. The ndx- template also generates standard  credits. rst,  
format. rst,  release_ notes. rst,  description. rst, and  index. rst source files to make it easy for developers 
to customize the documentation and include additional details about the extension.

https://doi.org/10.7554/eLife.78362
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Appendix 3
Process for Creating, Publishing, and Updating Neurodata Extensions 
(NDX)
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Appendix 3—figure 1. Illustration of the process for creating, publishing, and updating extensions via the 
Neurodata Extension Catalog (NDX Catalog), and (3) updating an extension/record. Boxes shown in gray indicate 
Git repositories; boxes in orange describe user actions; and boxes in blue indicate actions by administrators of the 
NDX catalog.
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Appendix 3—figure 1 shows an overview of the process for (1) creating a new extension, (2) 
creating a record to publish an extension via the Neurodata Extension Catalog (NDX Catalog), and 
(3) updating an extension/record. The figure also illustrates the automated CI processes that are 
managed in the NDX Catalog. The catalog process is modeled after the conda- forge model, which 
enables automation of many catalog processes using free, public services and avoiding the need for 
NWB to host its own services.

In the NDX Catalog, extensions are shared via the dedicated nwb- extensions GitHub organization 
for the NDX Catalog (blue column). The NDX Catalog provides the ndx- template cookiecutter 
extension template repository as well as the staged- extensions repository for submitting extensions 
to the NDX Catalog. Each extension record is then managed in a corresponding ndx record Git 
repository as part the nwb- extensions GitHub organization. The public NDX record repositories 
contains a  README. md file describing the extension along with a  ndx-  meta. yaml metadata record 
for extensions, with basic information required for installing and locating the extension (see 
Appendix 3—figure 2).

Creation and changes to the extension on record are usually performed by a developer on their 
local system, e.g., laptop computer (green column). The developer then submits the changes to the 
extension or record repository via pull requests.

In this process, the Git repository with the sources of the extension remains in the lab organization 
of the submitter (yellow column). Here the only requirements are that: (1) the extension is stored 
in a Git repository and (2) the repository must be publicly accessible via the organization of the 
submitter, such that the repository can be cloned directly from the source location indicated in 
the NDX metadata record (Appendix 3—figure 2). This strategy allows for labs, universities, and 
independent groups to maintain ownership of the source code for their extensions in their own 
public Git space (e.g, on GitHub, Bitbucket, or GitLab) while creating an open, standardized record 
of all public extensions in a central location as part of the NDX Catalog. The ability for submitters to 
retain ownership of their extensions in their own organization is important to facilitate development 
as well as to retain a clear chain of responsibility and ownership. This is particularly important when 
the developers of the extension are funded by their own grants and/or are applying for funding. 
 
 
 
 

 
name: ndx-simulation-output 
version: 0.2.6 
src: https://github.com/bendichter/ndx-simulation-output 
pip: https://pypi.org/project/ndx-simulation-output 
license: BSD 
maintainers: 
  - bendichter 

Appendix 3—figure 2. Example  ndx-  meta. yaml metadata record for the ndx- simulation- output extension.

https://doi.org/10.7554/eLife.78362
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Appendix 4
Overview of select data analysis, visualization, and management tools 
that support NWB
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Appendix 4—figure 1. Overview of select data analysis, visualization, and management tools that support NWB. 
Visualization showing select data analysis, visualization, and management tools that support NWB organized by 
their main application (x- axis) and programming environment (y- axis).

https://doi.org/10.7554/eLife.78362
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Appendix 5
Assessment of FAIRness of NWB + DANDI
Appendix 5—tables 1–4 below assess different solutions for sharing neurophysiology data with regard to 
their compliance with FAIR data principles, with cells shown in: (i) gray indicate non- compliance, (ii) green 
indicate compliance, and (iii) yellow indicate partial compliance either due to incomplete implementation 
or optional support, leaving achieving compliance ultimately to the end user. The assessment for NIX is 
based on the INCF review for SPP endorsement (https://doi.org/10.7490/f1000research.1117858.1). The 
“Custom” row in the tables refers to lab- specific binary formats.

In practice, the various approaches target different principle uses, and as such this is not an assessment 
of the quality of a product per- se, but rather its out- of- the- box compliance with FAIR principles in the 
context of neurophysiology. For example, self- describing data formats (like HDF5 or Zarr) seek to address 
challenges in high- performance data management and storage independent of a particular application, 
and as such lack specifics about (meta)data related to neurophysiology. However, while self- describing 
formats (like HDF5) are by themselves not sufficient to achieve FAIR compliance, they still form a critical 
building block in an overall strategy for FAIR data as evidenced by the fact that NIX, NWB, and many 
other application standards across science domains build on HDF5. Similarly, NIX provides a generic data 
model to enable storage of “fully annotated scientific datasets, i.e. the data together with its metadata 
within the same container” with the goal to enable “standardization by providing a common/generic 
data structure for a multitude of data types” (text in italic quoted from http://g-node.github.io/nix/). As 
such, NIX provides important functionality towards building a FAIR data strategy, but the NIX data model 
by itself lacks specificity with regard to neurophysiology, leaving it up to the user to define appropriate 
schema to facilitate FAIR compliance. Broadly speaking, with increasing specificity of data standards––
–i.e., as we move from general- purpose, self- describing formats (Zarr, HDF5) to generic data standards 
(NIX) to application- specific standards (NWB)–– compliance with FAIR principles and rigidness of the data 
specification increases.

Appendix 5—table 1. Compliance of NWB+DANDI with FAIR principles: Findability.
Findable

F1. (Meta)data are assigned a 
globally unique and persistent 
identifier

F2. Data are described with 
rich metadata (defined by 
R1 below)

F3. Metadata clearly and explicitly 
include the identifier of the data they 
describe

F4. (Meta)data are registered or 
indexed in a searchable resource

Custom No No No

•	 N/A. This is a key func-
tion of data archives and 
management systems

Zarr No •	 Self- describing, structural metadata (e.g., data type, array 
shape etc.) only

•	 Scientific (meta)data is fully user definedHDF5 No

NIX
•	 UUIDs are assigned 

to all objects

•	 Self- describing, structural metadata (uses HDF5)
•	 Generic data model (i.e., scientific (meta)data is 

user- defined)

NWB 1.0

No

•	 Yes, but the 
schema language 
was not formally 
defined

•	 Similar to NWB 2 .x but the 
much more flexible schema 
(including inclusion of 
arbitrary data) often lead to 
non- compliance

NWB 2 .x

•	 UUIDs are assigned 
to all objects

•	 External file identi-
fier can be stored in 
the identifier field

•	 Rich schema for 
neurophysiology 
(meta)data

•	 Self- describing, 
structural meta-
data (uses HDF5) 
constrained by the 
standard schema

•	 Metadata is either directly 
associated with or explicitly 
linked to by the corre-
sponding objects

DANDI

•	 All dandisets and 
assets carry unique 
and persistent 
identifiers

•	 Uses NWB and 
other modern data 
standards

•	 Provides its own 
Dandiset schema 
for metadata 
about whole data 
collections

•	 Yes, persistent identifiers 
used by the archive are 
included with the metadata

•	 DANDI is a public archive 
that features rich search 
features over publicly 
shared data

https://doi.org/10.7554/eLife.78362
https://doi.org/10.7490/f1000research.1117858.1
http://g-node.github.io/nix/
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Appendix 5—table 2. Compliance of NWB+DANDI with FAIR principles: Accessibility.
Accessible

A1. (Meta)data are retrievable by 
their identifier using a standardised 
communications protocol

A1.1 The protocol is open, free, and 
universally implementable

A1.2 The protocol allows for an 
authentication and authorisation 
procedure, where necessary

A2. Metadata are accessible, 
even when the data are no 
longer available

Custom No No

•	 N/A. This is a key func-
tion of data archives 
and management 
systems

Zarr

•	 Non- persistent file/object 
paths only

•	 Yes, but python- only API
•	 Long- term  

support is  
not clear

•	 N/A. This is a key func-
tion of data archives 
and management  
systems

•	 Encryption of files is 
possible via  
external tools

•	 HDF5/Zarr could 
support encryption of 
data elements  
via I/O filters

HDF5

•	 Portable format  
with broad  
support across  
programming languages  
and compute systems

•	 Intended  
for long- term support

NIX

•	 Yes

•	 Uses HDF5
•	 NIX API for C++.  

Matlab, Python  
and Java

•	 Open source

NWB 1.0
•	 Non- persistent file/object 

paths only (same as HDF5)

•	 Yes, but schema language  
was not formally defined  
and available  
APIs were limited

NWB 2 .x
•	 Yes. Objects retrievable 

based on UUID and path.

•	 Uses HDF5
•	 NWB API in Python and Matlab
•	 Open source

DANDI

•	 Uses NWB
•	 Metadata is exported as 

JSON/JSON- LD alongside 
with data

•	 REST API, Python, CLI, 
DataLad, ROS3 HDF5

•	 Uses standard protocols (e.g., 
REST API)

•	 Supports integration with 
external services

•	 Supports user authen-
tication and authorized 
access to all Dandisets, 
assets and other 
DANDI resources

•	 Searchable on the the 
archive and exposed 
as LinkedData

https://doi.org/10.7554/eLife.78362
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Appendix 5—table 3. Compliance of NWB+DANDI with FAIR principles: Interoperability.
Interoperable

I1. (Meta)data uses a formal, accessible, shared, 
and broadly applicable language for knowledge 
representation.

I2. (Meta)data use vocabularies that follow 
FAIR principles

I3. (Meta)data include qualified references to other 
(meta)data

Custom No No No

Zarr No No No

HDF5 No No No

NIX
•	 Uses odML
•	 Uses HDF5 •	 User defined •	 User defined

NWB 1.0
•	 Uses custom schema definition in 

Python
•	 Data follows the NWB 1.0 

schema
•	 Partially. NWB 2 .x significantly enhanced 

support for linking of metadata with data.

NWB 2 .x

•	 Schema defined in JSON/YAML using 
json- schema

•	 NWB and extension schema are avail-
able with NWB files and online

•	 Uses HDF5

•	 Data follows the NWB schema
•	 NWB supports use of ontologies 

via linking to external resources*

•	 The NWB schema explicitly models links 
between (meta)data

•	 NWB supports linking to external resources3

DANDI
•	 Uses NWB, JSON +json- schema, 

JSON- LD
•	 Uses NWB and other FAIR 

ontologies •	  schema. org,  spdx. org (licenses), PROV

*Support for external resources has been released in HDMF >2.3 and is currently undergoing community review for integration with the NWB core data standard.

https://doi.org/10.7554/eLife.78362
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Appendix 5—table 4. Compliance of NWB+DANDI with FAIR principles: Reusability.
Reusable

R1. (Meta)data are richly 
described with a plurality 
of accurate and relevant 
attributes

R1.1. (Meta)data are released with 
a clear and accessible data usage 
license

R1.2. (Meta)data are associated with 
detailed provenance

R1.3. (Meta)data meet domain- 
relevant community standards

Custom No

•	 N/A. Usage licences are 
typically managed by data 
archives

No No

Zarr No No No

HDF5 No No No

NIX •	 User defined No •	 User defined

NWB 1.0 •	 Yes
•	 Yes. NWB 2 .x further refined 

this significantly •	 Yes

NWB 2 .x

•	 Yes

•	 Includes detailed metadata 
about publications, experi-
menters, devices, subjects etc.

•	 Derived data (e.g., ROIs) link to 
the source data

•	 Yes, NWB provides 
detailed, neurophysiology- 
specific data schema

DANDI

•	 Uses NWB and 
defined dandiset 
schema

•	 All data in DANDI is 
published with a clear 
data usage licence

•	 Dandisets support detailed 
metadata about the data 
generation

•	 Dandisets are versioned

•	 Uses NWB

https://doi.org/10.7554/eLife.78362
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Appendix 6
The table shown below provides an overview of select labs that are using NWB. The last column of 
the table lists relevant DANDI datasets that have been published via the DANDI data archive using 
NWB. Each DANDI dataset typically consists of a large collection of NWB files related to a particular 
publication or experiment, with each NWB file representing the data from a particular recording 
session. All DANDI datasets can be found online at https://dandiarchive.org/dandiset/{6-digit-zero-
padded-id}, e.g., https://dandiarchive.org/dandiset/000007. In the “Modality” column of the table 
we use the following abbreviations:

•  ecephys: extracellular electrophysiology
•  icephys: intracellular electrophysiology
•  ophys: optical physiology
•  ECoG: Electrocorticography
•  fNIRS: Functional near- infrared spectroscopy

Name, Affiliation Species Modality DANDI datasets

AE Studio human fNIRS 122

Allen Institute mouse, human ecephys, icephys, ophys

12, 20, 21, 22, 23, 24, 30, 36, 37, 
39, 42, 43, 48, 49, 50, 66, 107, 109, 
142, 209

R. Axel, Columbia fly ophys   

Blue Brain Project mouse icephys 25

J. Berke, UCSF rat ecephys   

K.Bouchard, LBNL/UC Berkeley rat, simulation ecephys, uECoG   

C. Brody, Princeton rat, mouse ecephys   

B. Brunton, U Washington human ECoG 55

E. Buffalo, U Washington monkey ecephys   

T. Buschman, Princeton monkey ecephys   

G. Buzsaki, NYU rat, mouse ecephys
3, 41, 44, 56, 59, 61, 67, 166,  
213, 218

M. Capogna, Aarhus mouse ecephys   

M. Carandini, UCL mouse ecephys 17

E. Chang, UCSF human ECoG 19

A. Churchland, CSHL mouse ecephys, ophys 16

R. Cossart, Inserm mouse ophys 219

D. Feldman, UC Berkeley mouse ecephys   

A. Fleischmann, Brown mouse ophys 167

L. Frank, UCSF mouse ecephys 65, 115, 165

L. Giocomo, Stanford mouse ecephys, ophys 53, 54

A. Groh, Heidelberg mouse ecephys, ophys   

K. Harris, UCL mouse ecephys 17

M. Hennig, Edinburgh mouse ecephys 28, 34

S. Husainni, Columbia mouse ecephys   

International Brain Lab mouse ecephys 45, 149

M. Jazayeri, MIT monkey ecephys 130

D. Jaeger, Emory mouse ophys, ecephys, icephys   

S. Kastner, Princeton monkey ecephys   

N. Li, Baylor mouse ecephys 7

A. Losonczy, Columbia mouse ophys   

G. Maimon, Rockefeller fly behavior 212

 Continued on next page

https://doi.org/10.7554/eLife.78362
https://dandiarchive.org/dandiset/{6-digit-zero-padded-id}
https://dandiarchive.org/dandiset/{6-digit-zero-padded-id}
https://dandiarchive.org/dandiset/000007
https://dandiarchive.org/dandiset/000122
https://dandiarchive.org/dandiset/000012
https://dandiarchive.org/dandiset/000020
https://dandiarchive.org/dandiset/000021
https://dandiarchive.org/dandiset/000022
https://dandiarchive.org/dandiset/000023
https://dandiarchive.org/dandiset/000024
https://dandiarchive.org/dandiset/000030
https://dandiarchive.org/dandiset/000036
https://dandiarchive.org/dandiset/000037
https://dandiarchive.org/dandiset/000039
https://dandiarchive.org/dandiset/000042
https://dandiarchive.org/dandiset/000043
https://dandiarchive.org/dandiset/000048
https://dandiarchive.org/dandiset/000049
https://dandiarchive.org/dandiset/000050
https://dandiarchive.org/dandiset/000066
https://dandiarchive.org/dandiset/000107
https://dandiarchive.org/dandiset/000109
https://dandiarchive.org/dandiset/000142
https://dandiarchive.org/dandiset/000209
https://dandiarchive.org/dandiset/000025
https://dandiarchive.org/dandiset/000055
https://dandiarchive.org/dandiset/000003
https://dandiarchive.org/dandiset/000041
https://dandiarchive.org/dandiset/000044
https://dandiarchive.org/dandiset/000056
https://dandiarchive.org/dandiset/000059
https://dandiarchive.org/dandiset/000061
https://dandiarchive.org/dandiset/000067
https://dandiarchive.org/dandiset/000166
https://dandiarchive.org/dandiset/000213
https://dandiarchive.org/dandiset/000218/0.220131.1608
https://dandiarchive.org/dandiset/000017
https://dandiarchive.org/dandiset/000019
https://dandiarchive.org/dandiset/000016
https://dandiarchive.org/dandiset/000219/draft
https://dandiarchive.org/dandiset/000167
https://dandiarchive.org/dandiset/000065
https://dandiarchive.org/dandiset/000115
https://dandiarchive.org/dandiset/000165
https://dandiarchive.org/dandiset/000053
https://dandiarchive.org/dandiset/000054
https://dandiarchive.org/dandiset/000017
https://dandiarchive.org/dandiset/000028
https://dandiarchive.org/dandiset/000034
https://dandiarchive.org/dandiset/000045
https://dandiarchive.org/dandiset/000149
https://dandiarchive.org/dandiset/000130
https://dandiarchive.org/dandiset/000007
https://dandiarchive.org/dandiset/000212
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Name, Affiliation Species Modality DANDI datasets

J. Martinez, Western mouse, monkey, human icephys   

R. McGreal, UCSB mouse ophys 206

L. Miller, Northwestern monkey ecephys 127

T. Movshon, NYU monkey ecephys   

D. O'Connor, Johns Hopkins mouse ecephys, ophys   

J. Parvizi, Stanford human ECoG   

U. Rutishauser, Cedars- Sinai human ecephys 4, 207

B. Sabatini, Harvard mouse icephys   

S. Schultz, Imperial mouse ecephys, ophys   

K. Shenoy, Stanford monkey ecephys 70, 121

M. Smear, U Oregon mouse behavior 217

S. Smith, UCSB mouse ophys 206

I. Soltesz, Stanford mouse, simulation ophys, icephys   

N. Steinmetz, U Washington mouse ecephys 17

K. Svoboda, Janelia mouse ecephys, ophys 5, 6, 9, 10, 11, 13, 15, 60, 168

N. Tandon, UT Houston human ECoG   

D. Tank, Princeton mouse ecephys   

H. Tao, USC mouse icephys 117

A. Tolias, Baylor mouse icephys 8, 35

S. Tripathy, UofToronto/CAMH human, mouse icephys   

T. Valiante, Toronto human icephys   

 Continued

https://doi.org/10.7554/eLife.78362
https://dandiarchive.org/dandiset/000206
https://dandiarchive.org/dandiset/000127
https://dandiarchive.org/dandiset/000004
https://dandiarchive.org/dandiset/000207
https://dandiarchive.org/dandiset/000070
https://dandiarchive.org/dandiset/000121
https://dandiarchive.org/dandiset/000217
https://dandiarchive.org/dandiset/000206
https://dandiarchive.org/dandiset/000017
https://dandiarchive.org/dandiset/000005
https://dandiarchive.org/dandiset/000006
https://dandiarchive.org/dandiset/000009
https://dandiarchive.org/dandiset/000010
https://dandiarchive.org/dandiset/000011
https://dandiarchive.org/dandiset/000013
https://dandiarchive.org/dandiset/000015
https://dandiarchive.org/dandiset/000060
https://dandiarchive.org/dandiset/000168
https://dandiarchive.org/dandiset/000117
https://dandiarchive.org/dandiset/000008
https://dandiarchive.org/dandiset/000035
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Appendix 7
Software Release Process and History
Software releases and processes are one indicator for the maturity of software products. As such, 
looking at the release history of NWB also provides some insight into how NWB has evolved over 
the course of the project from a first prototype of NWB 2 to a production data standard and software 
ecosystem.

The initial development of NWB 2 occurred during Nov. 2016 – Nov.2017. This phase did not 
include formal releases as the focus was on agile and rapid development of functionality with the 
goal to establish design principles and create a usable, fully functional prototype. Changes to 
the standard and software were evaluated in this phase by early adopters and reviewed by the 
community as part of NWB community hackathons.

The first beta release of the NWB 2 schema, PyNWB 0.2.0, and MatNWB 0.1.0b then occurred in 
November 2017 in conjunction with SfN. This marked the start of the beta testing and development 
phase of NWB, which occurred between Nov.2017 – Jan.2019. During the beta phase NWB adopted 
a more formal release process of versioned releases via pip, conda, and GitHub. These releases were 
targeted at early adopters and beta testers while development was still largely agile based on GitHub 
source releases. During this phase the focus was on evaluation, refinement, and productization.

In Jan.2019 we then released the first official version of NWB 2, including nwb- schema 2.0, PyNWB 
1.0, and matnwb 0.2.0. This marked the beginning of the adoption and integration phase for the NWB 
2 project. During Jan.2019 – Apr. 2021, a key focus has been on the one hand to continue to advance 
and refine NWB to meet the needs of adopters as well as to work with neuroscience labs and tool 
developers to support NWB. With the shift in focus from development to adoption then also came 
further refinement of the release processes and adoption of stricter software versioning guidelines 
based on semantic versioning to facilitate integration of NWB software with other software tools and 
adoption in lap data pipelines. While software releases in this phase were still often determined on 
a per- need- basis, the goal was to keep the APIs and standard as stable as possible.

One strategy to achieve this goal then was to separate the core data modeling capabilities from 
PyNWB into the separate HDMF library. Publishing HDMF as its own software product has been 
essential both to facilitate reuse of HDMF capabilities for other applications as well as to ensure 
stability of the PyNWB user API. As shown in Appendix 7—figure 1, PyNWB has undergone only 1 
major release and 5 minor releases since the first release of PyNWB 1.0.0. At the same time, HDMF 
underwent a much larger number of releases. This illustrates the effectiveness of the approach 
of separating core infrastructure from user- APIs, as it allowed us to continue to advance core 
NWB technologies while limiting impact on end users. Similarly, extracting general schema (e.g., 
for dynamic data tables) into the separate hdmf- common- schema allowed to further make these 
common building blocks broadly accessible to science applications and to continue to develop them 
as part of the HDMF core software infrastructure.

MatNWB, through its strategy to auto- generate API classes directly from the NWB schema, is 
tied directly in a particular release to the most recent version of the NWB schema that the particular 
release supports. In April 2020, MatNWB, therefore, adopted a new, extended semantic versioning 
scheme for its software release consisting of 4 digits, with the first 3 digits indicating the major, 
minor, and patch release of the NWB schema and the last digit indicating the software patch release 
of MatNWB. As such, version 2.2.5.1 of MatNWB supports NWB schema 2.2.5 as the most recent 
version of the NWB format and includes 1 software patch release of MatNWB. MatNWB then also 
added all tagged versions of the NWB schema with each release to avoid the need for git checkouts 
during the use of the software and facilitate interaction with NWB files with varying schema versions.

https://doi.org/10.7554/eLife.78362
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Appendix 7—figure 1. Software Release Process and History. Overview of the release history of the PyNWB, 
HDMF, and MatNWB APIs and the NWB and hdmf- common data standard schema. 

With the start of the NIH U24 project in April 2021, NWB then entered its next main phase 
with a focus on more widespread adoption to advance standardization of neurophysiology data 
through dissemination and integrating of NWB. With this transition, then also comes the need for 
further refinement of software release processes. This also means that adoption and integration 
projects increasingly no longer involve the NWB team directly, but are being led independently by 
other project teams. To facilitate planning and interaction, this required further refinement of release 
processes to adopt more rigid release plans and schedules and to facilitate contribution of other 
projects to NWB with predictable release timelines.

https://doi.org/10.7554/eLife.78362
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In addition to the software, key components are also releases of the NWB schema. Here, a main 
goal has been stability to ensure that files remain accessible. This is also reflected in the release 
history of the NWB schema, which has undergone only four minor releases and no major releases 
since the first full release of the schema. These releases largely focused on addition and refinement 
of data schema, while the APIs support reading of data of all NWB 2 .x file versions.

https://doi.org/10.7554/eLife.78362
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Appendix 8
NWB Online and Social Media Resources
NWB online and social media resources provide additional resources for users and the broader 
community to engage with and learn about NWB. The  nwb. org website serves as the central entry- 
point for users to NWB and provides high- level information about NWB and links to all relevant 
online resources and tools discussed in the Methods. Additional online resources include Slack 
(NWB Slack, 2022), Twitter (NWB Twitter, 2022), YouTube (NWB YouTube, 2021), and the NWB 
Mailing List (NWB Mailing List, 2021).

https://doi.org/10.7554/eLife.78362
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Appendix 9
NWB Training Resources
NWB provides a broad range of training resources for users and developers. Users who want to learn 
more about how to use NWB can view the NWB online video training course as part of the [INCF 
Training Space] (INCF Training, 2022). Detailed code tutorials are further available as part of the 
[PyNWB Documentation] (PyNWB- b, 2021) and [MatNWB Documentation] (matnwb, 2021a).

For Neurodata Extensions (NDX), detailed documentation of versioning guidelines, sharing 
guidelines and strategies, and the proposal review process are available online as part of the NDX 
Catalog (NDXCatalog- a, 2022). Step- by- step instructions for creating new NDX are provided as 
part of the [NWB Extensions Template] (NDXtemplate, 2022).

Additional resources for developers and data managers include the API documentation for 
[HDMF] (HDMF-b, 2022), [PyNWB] (PyNWB- b, 2021), and [MatNWB] (matnwb, 2021a) and 
documentation of the format schema as part of the [NWB Schema] (NWB Schema- b, 2021), [HDMF 
Common Schema] (hdmf- common- schema- b, 2022), [NWB Storage] (NWB Storage, 2021), and 
[Specification Language] (NWB Specification Language, 2022).

https://doi.org/10.7554/eLife.78362
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