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Abstract 

Background:  Analysis of the 3D structures of protein–ligand binding sites can provide valuable insights for drug 
discovery. Binding site comparison (BSC) studies can be employed to elucidate the function of orphan proteins or to 
predict the potential for polypharmacology. Many previous binding site analyses only consider binding sites sur-
rounding an experimentally observed bound ligand.

Results:  To encompass potential protein–ligand binding sites that do not have ligands known to bind, we have 
incorporated fpocket cavity detection software and assessed the impact of this inclusion on BSC performance. Using 
fpocket, we generated a database of ligand-independent potential binding sites and applied the BSC tool, SiteHop-
per, to analyze similarity relationships between protein binding sites. We developed a method for clustering potential 
binding sites using a curated dataset of structures for six therapeutically relevant proteins from diverse protein classes 
in the protein data bank. Two clustering methods were explored; hierarchical clustering and a density-based method 
adept at excluding noise and outliers from a dataset. We introduce circular plots to visualize binding site structure 
space. From the datasets analyzed in this study, we highlight a structural relationship between binding sites of cati-
onic trypsin and prothrombin, protein targets known to bind structurally similar small molecules, exemplifying the 
potential utility of objectively and holistically mapping binding site space from the structural proteome.

Conclusions:  We present a workflow for the objective mapping of potential protein–ligand binding sites derived 
from the currently available structural proteome. We show that ligand-independent binding site detection tools can 
be introduced without excessive penalty on BSC performance. Clustering combined with intuitive visualization tools 
can be applied to map relationships between the 3D structures of protein binding sites.
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Background
Analysis of the three-dimensional structures of proteins 
is integral to our understanding of the molecular machin-
ery involved in their biological function and is increas-
ingly enabled by the wealth of structural data available in 
the Protein Data Bank (PDB) [1]. In particular, the exami-
nation of functional binding sites is of importance in bio-
logical chemistry and drug discovery by rational design 
[2]. Here, we present a method for generating a structural 
map of potential small molecule binding sites derived 
from the currently available structural proteome [3, 4].

Evidence for the existence and location of a binding site 
can be built through experimental observation of pro-
tein–ligand binding events—often facilitated by protein 
X-ray crystallography and/or Nuclear Magnetic Reso-
nance (NMR) spectroscopy. However, prospective com-
putational analysis to discover novel potential binding 
sites requires an objective and systematic cavity detection 
method, for which many tools exist [5–7]. For example, 
fpocket is a widely used and freely available software that 
employs geometric alpha shape theory to detect cavities 
in protein structure coordinates [8].

A number of Binding Site Comparison (BSC) tools 
exist to quantify the structural similarity between a pair 
of binding sites [9–12]. BSC has been applied to sug-
gest the function of orphan proteins and to predict the 
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potential for polypharmacology [4, 12]. SiteHopper [13] is 
a recently developed BSC tool in which binding sites are 
represented as three-dimensional patches encoded with 
spatial information concerning the local molecular sur-
face (shape) and chemical properties (color) of residues 
lining the binding site. An example binding site patch 
is shown in Fig. 1 for the cofactor binding site of CDK2 
[14]. Binding site patches can be aligned rapidly in a pair-
wise manner and assessed for structural similarity based 
on the maximal overlap of atom-centered Gaussian func-
tions [15]. A more detailed description of the SiteHopper 
BSC tool has recently been published [16].

BSC tools commonly define binding sites as the protein 
environment surrounding an experimentally observed 
bound ligand. Importantly, this definition excludes 
potential binding sites that have not been demonstrated 
to bind ligands (so called unliganded binding sites), 
thereby creating a bias towards currently exemplified 

protein–ligand complexes. To address this, tools such as 
CavBase [18], RAPMAD [19], IsoMIF [20] and TrixP [21], 
have integrated binding site detection algorithms with 
BSC. However, to the best of our knowledge, there has 
been no systematic analysis of the implications for BSC 
performance with unliganded cavities in the dataset. To 
mitigate this concern, we applied a modular approach 
and independently validated both the cavity detection 
and BSC components when applied to datasets compris-
ing both liganded and unliganded protein binding sites.

A structural mapping of protein binding sites can 
provide a useful tool for probing the three-dimensional 
structural relationships between biological macromol-
ecules [3, 10]. Tools that aim to provide an assessment of 
similarity between protein–ligand binding sites include 
Relibase, a database of known protein–ligand binding 
sites [22]; the sc-PDB, an annotated database of drugga-
ble binding sites from the PDB [23]; and the Pocketome, 
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Fig. 1  SiteHopper patch exemplified for the cofactor binding site of CDK2 (PDB ID: 2A0C) defined by surface protein atoms within 4 Å of a bound 
ligand (shown in green). A pharmacophore model defines pseudocenters for five key interaction types: hydrogen bond donor (blue mesh), hydrogen 
bond acceptor (red mesh), anion (red solid), cation (blue solid) and hydrophobe (yellow). Surface vertices also encode the shape of the binding site 
(gray). Image produced using VIDA [17]
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an encyclopedia of conformational ensembles of drugga-
ble binding sites [24]. While each of these tools provides 
an assessment of similarity between binding sites, the 
potential for identifying novel three-dimensional rela-
tionships involving currently unliganded binding sites is 
limited without the incorporation of objective methods 
for cavity detection.

The workflow presented here enables a structural map-
ping of potentially ligandable binding sites of the cur-
rently available structural proteome. We apply fpocket to 
objectively detect protein cavities and SiteHopper BSC 
to systematically generate pairwise structural similarities 
between all detected cavities. We also assess the perfor-
mance of BSC incorporating all fpocket-detected cavi-
ties versus datasets only containing cavities surrounding 
an experimentally observed ligand. We then describe a 
number of clustering methods and visualization tech-
niques for the mapping of potential binding site space. 
Altogether we present a validated workflow and describe 
challenges associated with the methodologies employed 
therein. In this work, we have adopted the following 
definitions throughout: a cavity is a surface depression 
identified by fpocket in static protein structure data. A 
potential protein–ligand binding site is one predicted by 
fpocket to bind small molecules, whereas a known pro-
tein–ligand binding site is one that has been experimen-
tally shown to bind small molecules.

Methods
Protein structure datasets
Four datasets of protein structures were studied.

An ensemble of five cAMP-dependent protein kinase 
structures, all bound to the endogenous co-factor adeno-
sine 5′-triphosphate (ATP) (Additional file), was retrieved 
from the PDB [1]. Crystallographic structure data was 
selected to satisfy ligand-centric quality criteria: resolu-
tion ≥2.7 ångströms (Å) [25], Real-Space Correlation 
Coefficient (RSCC) of ligand instance ≥0.9, Real-Space 
R-factor (RSR) of ligand instance ≤0.15 and Occupancy-
Weighted Average B-factor (OWAB) of ligand instance 
between 5 and 50  Å2 [26]. All structures were aligned 
using the PDB entry 1ATP as the reference coordinates 
and Schrödinger’s Protein Preparation Wizard [27] 
was applied to ensure consistent protonation, removal 
of waters and assignment of tautomers. All structures 
exhibit very similar conformations of the protein with a 
mean all-atom Root-Mean-Square Deviation (RMSD) for 
pairwise alignment of 1.0 Å, calculated in PyMOL using 
the align command with the cycles flag set to zero [28].

The PDBBind-refined set (2014) [29] is a curated set of 
3446 high-quality, binary protein-small molecule com-
plexes associated with measured binding affinity (Ki or 
Kd). This dataset was used to evaluate models for ranking 

detected cavities and to determine a threshold above 
which detected cavities constitute potential binding sites.

The sc-PDB (2013) [23] is a curated database of 9283 
proteins bound to drug-like ligands and was used to 
assess the performance of SiteHopper BSC [13].

A further dataset was manually curated from the 
PDB to guide the generation of a map of the structures 
of diverse and therapeutically relevant potential small 
molecule binding sites. This dataset contains 1085 crys-
tallographically determined protein structures of the fol-
lowing protein targets: bromodomain-containing protein 
4 (BRD4) (93), cyclin-dependent kinase 2 (CDK2) (148), 
estrogen receptor (52), human immunodeficiency virus-1 
(HIV-1) protease (335), prothrombin (142) and cationic 
trypsin (315). Structures were retrieved by their respec-
tive UniProt [30] identifiers, except HIV-1 Protease for 
which structures were retrieved with 90% sequence 
identity (Protein BLAST [31], E =  10−20) to a reference 
sequence [32]. Retrieved crystal structures were selected 
to satisfy protein-centric crystallographic quality criteria: 
resolution ≥2.5  Å, Free R-factor (Rfree) ≤0.3 and Dif-
fraction Precision Index (DPI) [33] ≤0.5 Å [34]—calcu-
lated using DPI calculator [35]. This dataset is referred to 
as the Pilot dataset (Additional file).

All crystallographic quality descriptors were retrieved 
from either the PDB or Electron Density Server (EDS) 
[36] unless otherwise stated.

Binding site detection
fpocket (version 2.0) [8] was implemented for ligand-
independent cavity detection using default settings 
with two parameter alterations; the −r flag was set to 
3.0 (default 4.5) and the −n flag was set to 3 (default 
2). fpocket ranks cavities according to a Partial Least 
Squares (PLS) model Score trained on five descriptors 
relating to hydrophobicity, polarity and the size of a 
detected binding site [8]. Cavities were detected for pro-
tein structures in the PDBBind-refined set (2014) [29] 
and an fpocket Score ≥16.8 was determined, above which 
cavities were considered as potential ligand-binding sites. 
This threshold corresponds to the Score above which 95% 
of known ligand binding sites from the PDBBind-refined 
set were identified.

Binding site comparison (BSC)
A dataset of ligand-dependent binding sites was gener-
ated using the SiteHopper create tool [13] where default 
parameters create a binding site patch within 4 Å of a 
specified bound ligand. This approach was followed to 
generate 9275 binding site patches for the sc-PDB (2013) 
database; this is referred to as the ligCav binding site 
dataset. Eight protein structures failed to yield binding 
site patches.
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To generate ligand-independent binding site patches, 
surface protein atoms associated with fpocket cavities 
were utilized as a pseudo-ligand for input to the Site-
Hopper create tool. Binding site patches were defined as 
surface protein atoms lying within 0.3 Å of the fpocket 
surface atoms. This site size value was determined empir-
ically through a number of retrieval experiments with a 
range of site size values (0.1–0.6 Å, increments of 0.1 Å). 
The ability of SiteHopper to identify similarity between 
a query estrogen receptor binding site patch and other 
members of the estrogen receptor in the sc-PDB (2013) 
was assessed using binding site patches created with 
varying site sizes (Additional file  1: Figure S1). Larger 
binding site patches incur a penalty in calculation time 
during BSC, and therefore the chosen site size represents 
a balance between computational expense and retrieval 
success.

The SiteHopper tool was utilized to generate binding 
site patches and to assess pairwise structure similarity 
between reference and query patches. The default Site-
Hopper PatchScore represents a summation of Tanimoto 
similarity coefficients [37] weighted 3:1 in favor of color 
similarity over shape similarity, yielding a continuous 
value between zero and four, conveying complete dis-
similarity and perfect similarity respectively [13]. Utili-
zation of the symmetric Tanimoto similarity coefficient 
causes an inherent size matching to exist between pairs 
of binding site patches that show high levels of structural 
similarity.

Retrieval analysis
The sc-PDB (2013) database [23] was utilized to assess 
BSC performance through a series of retrieval experi-
ments evaluating the ability of SiteHopper to identify 
similar binding sites belonging to the same protein tar-
get. True positives were defined as binding site patches 
with the same UniProt identifier as the query patch, 
except for those belonging to HIV-1 protease, which 
were defined by sequence searching as previously 
described (“Methods” section). Due to the presence of 
multiple binding sites per protein structure, only the 
binding site with the highest SiteHopper PatchScore 
derived from a matching protein structure was consid-
ered a true positive. Reference binding site patches used 
as queries for retrieval experiments are shown in Addi-
tional file 1: Table S1.

Mapping binding sites
To guide mapping of the potentially ligandable binding 
sites of the structural proteome, an exhaustive all-against-
all BSC was performed on the Pilot dataset containing 
2708 binding sites generated by fpocket. A breakdown of 
the Pilot dataset, including the number of binding sites 

detected for each protein target, is shown in Additional 
file  1: Table S2. The resulting matrix of (2708 ×  2708) 
SiteHopper PatchScores was exploited to produce a clus-
tered heat map of potential binding site space. To remove 
non-conserved binding sites from the dataset, patches 
with fewer than five pairwise SiteHopper PatchScores 
≥2.0 were filtered out. Binding sites were first clustered 
within the protein targets from which they were derived 
using average-linkage agglomerative hierarchical cluster-
ing and the Euclidean distance measure. Subsequent clus-
tering was performed in the same way across the global 
Pilot dataset. Plots were generated using matplotlib [38] 
and clustering was implemented in the Python program-
ming language using the SciPy package [39].

Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) [40] was applied to cluster binding 
sites for each protein using n × n matrices of SiteHopper 
PatchScores. DBSCAN was implemented in the Python 
programming language using the scikit-learn machine 
learning toolkit [41] with range ε =  7 and a minimum 
number of points per core cluster being ten. Circu-
lar plots were generated as an alternative visual tool for 
mapping potential binding site space using the Circos 
software package [42].

Evaluation techniques
Receiver Operating Characteristic (ROC) curves are a 
widely used tool employed to quantify the ability of a 
method to identify instances with similar characteristics 
to a reference (true positives). The Area Under a Receiver 
Operating Characteristic (AUROC) curve provides a 
measure of how well a method distinguishes between 
true positives and false positives in a dataset [43]. A per-
fect separation of all true positives from the data would 
result in an AUROC of 1, whilst a random classifier 
would be expected to distribute true positives through-
out the whole dataset resulting in an AUROC of 0.5.

Often, it is the early recognition of true positives that 
is important [44], especially in cases where n is large and 
AUROC results are indistinguishable between meth-
ods. To this end, Enrichment Factors (EF) at 5% and the 
Boltzmann-Enhanced Discrimination Receiver Operat-
ing Characteristic (BEDROC) [45] were also calculated. 
An EF is the ratio of the percentage of true positives in 
an initial portion of a dataset, to the overall percentage 
of true positives in the entire dataset. Thus an EF =  1 
implies no enrichment in the initial portion of the data 
(no early enrichment); EF  <  1 implies the classifier per-
forms worse than random at identifying true positives, 
and EF  >  1 implies there is some quantifiable enrich-
ment of true positives among the highest ranked data 
points [46]. BEDROC applies Boltzmann weighting to 
the AUROC calculation thereby emphasizing the initial 
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portion of the ROC curve—calculated using the CROC 
package [45] at α = 20 [46, 47].

Throughout this study, the OEChem chemoinformatics 
toolkit [48] was used as an interface between tools and 
data was handled using the pandas data analysis frame-
work [49].

Results and discussion
Ligand‑independent binding site detection
Typically, BSC studies make use of known binding sites 
characterized by surface protein atoms surrounding an 
experimentally observed bound ligand. To objectively 
consider currently unliganded binding sites, ligand-
independent binding site detection tools were evaluated. 
Incorporation of binding site detection tools removes 
bias associated with utilizing currently known liganded 
binding sites; however, it may also introduce noise to 
the data through inclusion of cavities that are incapable 
of ligand binding. Therefore, an assessment of the noise 
introduced to the data by binding site detection was con-
ducted and also of the subsequent implications for BSC 
performance.

fpocket is a well-established and freely available bind-
ing site detection tool capable of operating in high-
throughput and therefore applicable to large datasets of 
protein structure data [e.g. the sc-PDB (2013) contains 
9283 structures]. fpocket was evaluated according to 
three criteria: Its ability to (1) detect cavities correspond-
ing to functionally relevant binding sites starting from 
a global search of a protein structure; (2) detect similar 
cavities from an ensemble of structurally similar experi-
mental structures of the same protein bound to the 

same ligand; and (3) rank and prioritize detected cavities 
according to their likelihood of binding small molecule 
ligands. Two datasets were utilized to assess these cri-
teria: an ensemble of five ATP-bound cAMP-dependent 
protein kinases, and the PDBBind-refined set (2014) [29].

Initially, fpocket was evaluated qualitatively on a model 
ensemble of five structurally similar ATP-bound cAMP-
dependent protein kinases for its ability to detect a cav-
ity corresponding to the well-characterized ATP-binding 
site. fpocket implemented with default parameters 
tended to identify cavities extending beyond the ATP-
binding domain. To attenuate this phenomenon, default 
parameters were modified to prevent the merging of dis-
tinct sub-pockets, yielding more concisely defined and 
consistent cavities amenable to BSC studies. The differ-
ence between default and modified fpocket parameters 
for an exemplar protein structure is shown in Fig. 2a, b, 
respectively.

Geometric binding site detection algorithms are inher-
ently sensitive to slight variations in protein atomic 
coordinates. A second qualitative validation shows that 
fpocket is capable of identifying similar cavities for 
each member of the aligned cAMP-dependent protein 
kinase ensemble. This assessment is depicted for fpocket 
with both default and modified parameters in Fig. 3a, b 
respectively. fpocket cavities detected for PDB IDs 1ATP 
and 1Q24 show variation from the core ATP-binding cav-
ity when implemented with default parameters; however, 
the modified parameters provided more consistent cavity 
representation.

fpocket binding site detection often identifies multiple 
cavities per protein structure. To reduce the complexity 

Fig. 2  fpocket cavity detection exemplified for the ATP-binding site of a single ATP-bound cAMP-dependent protein kinase (PDB ID: 1ATP), ATP 
shown as black sticks. Alpha spheres corresponding to binding sites detected by fpocket are shown in red for a default, and b modified parameters
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associated with carrying forward multiple cavities per 
protein for BSC, the detected binding sites were ranked 
and subsequently filtered according to their potential to 
bind a small molecule ligand. Many other binding site 
detection tools rank cavities according to binding site 
volume as often the largest cavity corresponds to the 
observed ligand binding site [50]. The fpocket Score model 
aims to predict whether a cavity may contain a bound 
small molecule ligand and is distinct from a drug ability 
model since ligands are not necessarily drug-like [8].

The PDBBind-refined set (2014) [29], comprising 3446 
protein structures, was processed by fpocket. The ability 
of the three descriptors, Score, Volume and Druggability 
Score [51], to prioritize experimentally validated ligand-
binding sites over unliganded cavities was assessed. Fig-
ure 4a, b show ROC curves for fpocket with both default 
and modified parameters, respectively. In both cases, the 
PLS model Score was superior in discriminating between 
true known liganded binding sites, and those corre-
sponding to cavities without ligands bound.

A comparison of binding site detection tools has pre-
viously found that 95% of ligand-bound sites are iden-
tifiable using geometric algorithms [7]. Accordingly, a 

sensitivity threshold was determined above which 95% of 
observed ligand binding sites from the PDBBind-refined 
set were identified. This sensitivity threshold precedes a 
sharp increase in false positive rate and therefore exclud-
ing sites below the sensitivity threshold ensures that 
the number of cavities without ligand-binding poten-
tial introduced to the dataset is limited. Thus, cavities 
were taken forward to BSC if the fpocket Score is ≥16.8, 
corresponding to the Score above which 95% of the 
ligand-bound cavities from the PDBBind-refined set are 
identified.

The average number of cavities identified per protein 
structure before and after applying the 95% recall filter is 
shown for both default and modified fpocket parameters 
(Fig.  4c). Although fpocket with modified parameters 
(yielding smaller, more concise cavities) performs slightly 
worse than default according to ROC analysis, the num-
ber of cavities detected per protein is comparable and 
therefore both parameter sets introduce similar levels of 
noise to the dataset. However, smaller and more consist-
ent cavities are beneficial for BSC in terms of studying 
binding site similarity. Therefore, we elected to study BSC 
using cavities detected by fpocket with modified param-
eters; it can be assumed that further mentions of fpocket 
refer to this non-standard modified model.

Binding site comparison (BSC)
Binding site patches were generated using the SiteHop-
per create tool, utilizing fpocket surface protein atoms as 
a pseudo-ligand and isolating binding site patches from 
the original protein structure. The BSC performance of 
SiteHopper was assessed for its ability to find structural 
similarity between a query patch and analogous patches 
derived from the same protein. Six protein targets of rel-
evance to small molecule therapy were selected from the 
sc-PDB (2013) database as exemplar queries (Additional 
file  1: Table S1). To assess the impact of incorporating 
binding site detection into BSC, the retrieval perfor-
mance of SiteHopper was first evaluated utilizing only 
binding site patches defined surrounding an observed 
bound ligand. This ligand-dependent dataset contains 
9275 known binding sites and is referred to as the ligCav 
dataset. The sc-PDB (2013) database was also processed 
by fpocket to produce a dataset of 24,345 potential bind-
ing sites (including known binding sites), for which Site-
Hopper patches were generated. Retrieval performance 
was evaluated through generation of ROC curves along 
with two early enrichment metrics: The EF at 5% and the 
BEDROC at α =  20 [45]. Table  1 summarizes the abil-
ity of SiteHopper to detect structural similarity between 
analogous binding sites derived from structures of the 
same protein, for both the ligCav and fpocket-derived 
datasets.

b 

a  1ATP 

 1Q24 

 3FJQ 

 3QAL 

 3QAM 

Fig. 3  fpocket cavity detection exemplified for the ATP-binding site 
of an aligned ensemble of five ATP-bound cAMP-dependent protein 
kinases; overlaid on an exemplar structure with the ATP ligand shown 
in black sticks (PDB ID: 1ATP). Alpha spheres corresponding to cavi-
ties detected by fpocket are shown for a default, and b modified 
parameters
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As described above, the incorporation of fpocket cav-
ity detection into BSC introduces the potential for noise 
in the binding site dataset compared to only defining 
binding sites surrounding observed bound ligands, and 
this may result in poorer retrieval performance metrics. 
However, in our retrieval analysis, we only observed a 
slight impact on BSC performance using early enrich-
ment metrics; the AUROC enrichment remains high 
when compared to retrieval analyses performed using the 
ligCav dataset. Thus, the incorporation of fpocket objec-
tive cavity detection into BSC workflows is not associated 
with an unreasonable decrease in retrieval capability. In 
summary, we show that SiteHopper is able to identify 
structural similarity between potential binding sites that 
have been detected objectively from protein structure 
coordinates.

Interestingly, we observed a variation in retrieval 
rates across protein targets. Retrieval scores for the 

acetyl-lysine binding site of BRD4 are high, likely due to 
the rigidity of the protein structure surrounding this site. 
On the contrary, EF at 5% and BEDROC for the protein 
kinase CDK2 are relatively poor, likely due to the flex-
ibility and range of protein conformations exemplified 
by crystal structures of this protein. Upon inspection of 
instances where structural similarity was expected, but 
not assigned a high SiteHopper score, we found that, in 
many cases, analogous fpocket-detected potential bind-
ing sites showed structural variability. This observation 
highlights the importance of consistency in the binding 
site detection tool; for example, upon inspection of cavi-
ties detected for prothrombin, we found that overlapping 
but dissimilar fpocket-detected sites were extracted from 
very similar protein conformations. This exemplifies how 
the objective implementation of fpocket binding site 
detection can still introduce noise into the BSC workflow 
despite the modifications we describe.
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Fig. 4  ROC curves assessing the ability of fpocket descriptors Score, Volume and Druggability Score to identify the 3446 ligand-bound binding sites 
derived from the PDBbind refined set (2014) over other detected cavities. Curves shown for fpocket a default parameters, and b modified param-
eters; the threshold corresponding to 95% recall is shown on each plot. c Mean number of cavities detected per protein structure before and after 
the 95% recall filter was applied for both default and modified fpocket parameters
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Clustering and mapping of potential binding sites
We applied the Pilot dataset to develop and validate a 
method for clustering and mapping objectively detected 
potentially ligandable binding sites. An exhaustive all-
against-all SiteHopper BSC was performed to generate a 
2708 × 2708 matrix of SiteHopper PatchScores. Possible 
PatchScores range from zero to four, where zero indicates 
total pairwise dissimilarity and four indicates perfect 
similarity. To remove non-conserved, information-poor 
potential binding sites, those with fewer than five Patch-
Scores ≥2.0 were removed. Starting from an initial pool 
of 2708 potential binding sites, this criterion reduced the 
data to a 1706 × 1706 matrix of SiteHopper PatchScores.

Hierarchical clustering provides an objective method 
for grouping structurally similar binding sites. Potential 
binding sites were first clustered locally according to their 
SiteHopper PatchScores across all available structures of 
the same protein target. Binding sites that share a pattern 
of similarity across the dataset are clustered together and 
represent groups of distinct potential binding sites within 
the protein family. Clusters vary in size, indicating that 
some cavities are more conserved than others. For all 
protein targets in the Pilot dataset, the largest cluster for 

each protein corresponds to the conserved, orthosteric 
ligand-binding site. Figure  5 shows exemplar clustered 
heat maps of SiteHopper PatchScores for HIV-1 protease 
and prothrombin with the location of highlighted exem-
plar clusters shown on representative protein structures 
below each heat map. The most conserved cluster of 
potential binding sites for HIV-1 protease corresponds 
to the protease catalytic binding site to which many com-
pounds are known to bind. Interestingly, binding site 
similarity is identified despite the prevalence of binding 
site mutations among structures of this protein. The large 
volume of the HIV-1 protease binding site, such that each 
pharmacophoric pseudocenter contributes less to the 
overall similarity, may contribute to the homogeneity of 
this conserved cluster. Figure  5b highlights two distinct 
prothrombin potential binding sites that show a degree of 
structural similarity to each other. This is a phenomenon 
arising from the integration of cavity detection into the 
workflow and represents a case where two overlapping 
binding sites are detected (depicted in red and yellow).

Next, we applied hierarchical clustering globally to the 
Pilot dataset, grouping clusters of similar binding sites 
regardless of their parent protein target. A combination 
of clustering both locally within protein targets and glob-
ally across the entire Pilot dataset generates a map of 
potential binding site space (Fig. 6).

The number of dominant clusters in the Pilot dataset 
represents the homogeneity of potential binding sites 
across the six proteins (Fig.  6). The scarcity of clusters 
of conserved binding sites among CDK2 structures is 
consistent with the flexibility of this kinase observed 
in protein crystal structures—notably the presence of 
diverse active and inactive protein conformations. Nota-
bly, SiteHopper identifies dominant clusters of substan-
tially conserved binding sites for each of the five other 
protein targets. The most highly conserved binding site 
is that of the HIV-1 protease, likely due to the large vol-
ume and enclosed shape of the catalytic binding site that 
enables consistent identification by fpocket and robust 
detection of similarity by SiteHopper, respectively. Other 
factors that will likely affect the presence or absence of 
conserved binding sites within available structures of a 
particular protein include the presence of apo and holo 
bound structures, particularly for proteins containing 
multiple domains [52].

The global cluster analysis highlights a region of over-
lap between two clusters of binding sites belonging to 
prothrombin and cationic trypsin (Fig.  6). SiteHopper 
identifies structural similarity between the catalytic pro-
tease binding sites of these proteins (highlighted in red, 
Fig.  6). These two proteins are known to bind similar 
compounds and are annotated with a selectivity group of 
254 compounds in the ChEMBL database (version 21) 

Table 1  Evaluation of SiteHopper retrieval of binding site 
patches from  the sc-PDB (2013) belonging to  the same 
protein as a query patch

Comparison between the ligCav dataset of ligand-dependent binding sites 
(N = 9275), and those identified through fpocket cavity detection (N = 24,345). 
Mean results and standard errors are shown. n = number of queries; for further 
detail of the query and true positive patches see Additional file 1: Table S1

N (sc-PDB) AUROC EF (5%) BEDROC

ligCav

 BRD4 (n = 2) 15 1.00 ± 0.00 20.03 ± 0.00 1.00 ± 0.00

 Carbonic anhy-
drase 2 (n = 3)

76 1.00 ± 0.00 19.77 ± 0.00 0.99 ± 0.00

 CDK2 (n = 3) 180 1.00 ± 0.00 19.66 ± 0.07 0.97 ± 0.01

 Estrogen recep-
tor (n = 5)

58 1.00 ± 0.00 20.03 ± 0.00 0.96 ± 0.01

 HIV-1 protease 
(n = 3)

219 0.99 ± 0.00 19.94 ± 0.00 0.99 ± 0.00

 Prothrombin 
(n = 3)

126 1.00 ± 0.00 20.03 ± 0.00 1.00 ± 0.00

fpocket

 BRD4 (n = 2) 15 0.97 ± 0.03 18.67 ± 1.33 0.94 ± 0.06

 Carbonic anhy-
drase 2 (n = 3)

76 0.99 ± 0.00 18.69 ± 0.00 0.93 ± 0.00

 CDK2 (n = 3) 180 0.76 ± 0.03 8.83 ± 1.74 0.43 ± 0.10

 Estrogen recep-
tor (n = 5)

58 0.94 ± 0.01 16.07 ± 0.17 0.80 ± 0.01

 HIV-1 protease 
(n = 3)

219 0.98 ± 0.00 19.52 ± 0.00 0.97 ± 0.00

 Prothrombin 
(n = 3)

126 0.94 ± 0.01 17.76 ± 0.32 0.88 ± 0.01
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[53, 54] of bioactive molecules. Compounds in the selec-
tivity group represent literature examples where the ratio 
of binding (selectivity coefficient) between prothrombin 
and trypsin has been measured; 99 of the 254 selectiv-
ity group examples exhibit a selectivity ratio of less than 
ten indicating that ligands commonly bind to both pro-
tein targets. The identification of similarity between these 
binding sites exemplifies the potential of BSC tools to 
rationalize and predict polypharmacology independent 
of ligand data.

Despite efforts to minimize the noise introduced by 
cavity detection, non-conserved potential binding sites 
inevitably affect the interpretability of clustered heat 
maps because much of the heat map conveys regions of 

structural dissimilarity—which is less informative than 
similarity. Furthermore, non-conserved binding site 
patches that do not show SiteHopper similarity to other 
patches are grouped together by clustering methods, gen-
erating a group of information-poor binding sites. One 
method to reduce the presence of these information-poor 
binding sites is to apply stricter binding site conservation 
criteria. However, these would penalize potentially inter-
esting novel proteins for which there are fewer instances 
exemplified in the PDB versus more extensively studied 
proteins.

DBSCAN [40] is a clustering algorithm widely used in 
data science that aims to group closely related points, 
and to label those points with few neighbors as noise. 

PatchScore

HIV-1 Protease
n = 381

PDB ID: 3QIH

PatchScore

Prothrombin
n = 196

PDB ID: 3DA9

ba

Fig. 5  Heat map showing clustering of SiteHopper PatchScores within proteins of the same target class for potential binding sites of a HIV-1 
Protease, and b prothrombin. Clustering patches derived from structures of the same protein target identifies conserved potential binding sites; the 
locations of highlighted exemplar clusters are shown on representative protein structures below each heat map
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DBSCAN is suited to binding site analysis because it is 
not designed to create uniformly sized clusters [55]. 
DBSCAN was implemented to cluster potential binding 
sites locally within protein targets for the Pilot dataset. 
Due to the high dimensionality of the underlying data, 
visualization of DBSCAN clustering has proven chal-
lenging (the variance explained by the first two princi-
pal components is 0.42 and 0.18, respectively). Here we 
present a circular plot to map DBSCAN clustering of 
potential binding sites in the Pilot dataset, with protein 
targets arranged on the outer circle (Fig.  7). Conserved 
binding site clusters associated with each protein target 
are represented by gray bands on the inner circle; links 
describing the structural similarity between two bind-
ing sites are shown in the center. Each link is associated 
with the maximum SiteHopper PatchScore exhibited by 
members of two binding site clusters and those associ-
ated with a SiteHopper PatchScore ≥2.0 are highlighted 
as red ribbons. Consistent with the global cluster analysis 
(Fig. 6), this approach also highlights a structural similar-
ity between binding sites belonging to prothrombin and 
cationic trypsin confirming the ability of BSC tools to 
identify the potential for ligand polypharmacology.

Conclusions
In constructing a workflow to map the binding sites of 
the currently characterized structural proteome, we 
adopted a modular approach that comprises objective 
binding site detection, binding site comparison (BSC), 
mapping of detected binding sites using unsupervised 
learning methods, and visualization of binding site maps. 
Although we outline a workflow for mapping potential 
small molecule binding sites in proteins, each of the com-
ponents can be altered according to the tools available 
and specific hypothesis under test.

We applied fpocket as a geometric cavity detection tool 
to identify potentially novel unliganded binding sites, and 
modified fpocket parameters to yield concise cavities that 
are better suited to subsequent BSC studies. To filter out 
fpocket cavities that are unlikely to be ligandable, we deter-
mined a threshold fpocket Score by analyzing retrieval 
rates from the PDBbind-refined set; cavities were taken 
forward to BSC if the fpocket Score is ≥16.8, correspond-
ing to the Score above which 95% of the ligand-bound cav-
ities from the PDBBind-refined set are identified.

Applying fpocket cavity detection to the sc-PDB data-
set (2013) to assess the impact of incorporating objective 

BRD4 

CDK2

Estrogen Receptor

HIV-1 Protease

Prothrom
bin

Ca�onic Trypsin

4.0 

3.6 

3.2 

2.8 

2.4 

2.0 

1.6 

1.2 

0.8 

0.4 

PatchScore 

0.0 

Fig. 6  Heat map of SiteHopper PatchScores across the Pilot dataset of 1085 protein structures represented by 1706 conserved potential binding 
sites. Binding sites are grouped within individual protein targets on the x-axis and a global hierarchical clustering is shown on the y-axis. A similarity 
score of 0 and 4 indicates complete dissimilarity and perfect similarity, respectively. Similarity between potential binding sites derived from different 
protein targets, cationic trypsin and prothrombin, is highlighted in red
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and unbiased cavity detection to BSC compared with 
only defining binding sites that surround exemplified 
bound ligands. Using SiteHopper for BSC, we show that 
the penalty associated with replacing ligand-dependent 
binding sites with objectively detected cavities is minimal 
and importantly also allows consideration of currently 
unliganded sites in BSC studies.

The workflow we describe applies the fpocket geomet-
ric detection algorithm to detect cavities in a protein 
structure. A limitation is that local chemical interaction 
hotspots and flat binding sites that are particularly rele-
vant for the study of Protein–Protein Interactions (PPIs), 

will not be identified. To map such binding sites, it may 
be possible to introduce an interaction hotspot predic-
tion tool such as FTMap [56], GRID [57] or SuperStar 
[58] into the modular workflow; this will be the subject of 
future studies.

The Pilot dataset was processed by fpocket and an all-
against-all SiteHopper BSC was performed to create a 
matrix of binding site similarities. Hierarchical clustering 
within protein structures derived from the same protein 
target reveals a large proportion of cavities that are not 
conserved across multiple structures of the same protein; 
we therefore introduced a conservation filter (removal of 

Prothrombin 

Cationic 
Trypsin 

BRD4 

CDK2 

Estrogen 
Receptor 

HIV-1 Protease 

Fig. 7  Circular map of potential binding site space within the Pilot dataset. Protein targets are ordered alphabetically on the outer circle, and bind-
ing site clusters identified by DBSCAN for each protein are indicated by gray bands. Links between groups of distinct protein binding sites represent 
the maximum PatchScore observed between members of those groups. Links associated with a PatchScore ≥2.0 are shown as a red ribbon. Plot 
generated by Circos [42]
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cavities with fewer than five PatchScores ≥2.0) to mini-
mize the number of information-poor cavities in the 
dataset. A combination of clustering both locally within 
protein targets and globally across the entire dataset, gen-
erates a map of potential binding site space. Furthermore, 
we show that density-based clustering by DBSCAN is an 
appropriate method for generating clusters of binding 
sites and mitigating the noise introduced to the dataset 
by objective fpocket cavity detection.

Although a powerful visualization, heat maps can be 
challenging to interpret, and therefore we introduce cir-
cular plots as an intuitive tool for visualizing and map-
ping structural binding site space. We show that such 
plots can highlight the similarity between binding sites 
derived from different proteins. Here, we exemplify an 
objectively identified similarity between binding sites of 
the serine proteases prothrombin and cationic trypsin 
that is consistent with literature reports that their cata-
lytic sites bind similar ligands. We suggest that such pro-
tein binding site maps will be useful for building further 
understanding of the relationship between small mol-
ecules and complex biological systems; this approach 
is potentially applicable to the discovery of hit matter 
for novel biological targets, for predicting and rational-
izing ligand polypharmacology and for predicting pro-
tein function [3, 4]. In addition, we suggest that such 
an objective binding site map, which encompasses unli-
ganded cavities, will also be useful for optimizing com-
pound screening collections towards a more complete 
chemical coverage of binding site space. We will present 
examples of such applications in due course.
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