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Abstract

The adult mammalian brain is composed of distinct regions with specialized roles including regulation of circadian clocks,
feeding, sleep/awake, and seasonal rhythms. To find quantitative differences of expression among such various brain
regions, we conducted the BrainStars (B*) project, in which we profiled the genome-wide expression of ,50 small brain
regions, including sensory centers, and centers for motion, time, memory, fear, and feeding. To avoid confounds from
temporal differences in gene expression, we sampled each region every 4 hours for 24 hours, and pooled the samples for
DNA-microarray assays. Therefore, we focused on spatial differences in gene expression. We used informatics to identify
candidate genes with expression changes showing high or low expression in specific regions. We also identified candidate
genes with stable expression across brain regions that can be used as new internal control genes, and ligand-receptor
interactions of neurohormones and neurotransmitters. Through these analyses, we found 8,159 multi-state genes, 2,212
regional marker gene candidates for 44 small brain regions, 915 internal control gene candidates, and 23,864 inferred
ligand-receptor interactions. We also found that these sets include well-known genes as well as novel candidate genes that
might be related to specific functions in brain regions. We used our findings to develop an integrated database (http://
brainstars.org/) for exploring genome-wide expression in the adult mouse brain, and have made this database openly
accessible. These new resources will help accelerate the functional analysis of the mammalian brain and the elucidation of
its regulatory network systems.
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Introduction

The adult mammalian brain is one of the most sophisticated

and complex organs devised by nature. The distinct functional

regions that comprise it are responsible for processing internal and

external information into the panoply of mammalian experience.

The different locations in the adult brain have specialized

functions, and various kinds of brain ‘‘maps’’ (or atlases), including

anatomical and functional maps [1,2,3,4], have been developed to

illustrate them. Recently, ‘‘expression’’ brain maps, showing the

gene transcription profiles of different brain regions, have been

constructed. Since the distinct anatomical structures of the brain

and their functions develop from and are regulated by transcrip-

tion, at least in part, expression maps should, to some extent,

delineate the same brain regions. In fact, this idea is supported by

the results of published brain transcription profiles

[5,6,7,8,9,10,11,12,13,14,15,16,17], which show concordance

between gene transcription and anatomical and functional brain

regions. To obtain expression maps of various brain regions, in situ

hybridization (ISH) methods have been widely used, and recently,

genome-wide collections of ISH data have been created [5,6,7,18],

including the EMAGE (Edinburgh Mouse Atlas Gene Expression

Database) [19], GenePaint [6], BGEM (St. Jude Brain Gene

Expression Map) [8], BrainMaps.org [20], and Allen Brain Atlas

[9]. Although the expression data obtained by ISH can provide

good, cellular-level resolution in sliced surfaces, its signals have a

narrow dynamic range [21], which can hinder relative compar-

isons of expression levels between brain regions. DNA-microarray

technology is an alternative way to obtain quantitative genome-

wide expression data in tissues and cell culture [22,23]. This

technology is widely used in biological research, including in

neuroscience, and several groups have published resources

showing transcript expression profiles in areas of the mammalian

brain [10,11,12,13,14,15,16,17]. Although these resources provide

quantitative expression data, the size of each sampled region is

relatively large to ensure that adequate volumes of RNA samples

are collected, and therefore, multiple functional nuclei, loci,

ganglia, or substantia are merged into a single sampled region.
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Therefore, no single approach can satisfy quantitativeness and

spatial resolution simultaneously even at the nucleus-level.

To achieve a good balance between quantitativeness and

spatial resolution for an expression profile of distinct functional

regions in the adult mouse brain, we attempted a two-step

approach. We first obtained the expression data of nucleus-level

resolution in the adult mouse brain as a primary data resource, by

using DNA-microarray technology. Although nucleus-level reso-

lution adopted in this study is larger than cellular-level resolution,

the nucleus-level expression profile can still provide useful

information to identify the genes whose expression are changed

in a target brain region related to a specific function (e.g. food

intake or circadian and photoperiodic behavior), or to identify the

brain regions where a gene of interest has differential expression.

The information of identified genes or brain regions can be used

to plan, for example, construction of knock-out or knock-in

mouse or further inspection of cellular-level ISH datasets.

Therefore, as a second step, we integrated the primary expression

data obtained with the various existing mouse brain expression

maps including ISH expression data of cellular-level resolution.

We call this entire project (nucleus-level, quantitative expression

profiling as well as construction of integrated web interface) as the

BrainStars (B*) project. We then used informatics to analyze the

spatial and quantitative genome-wide expression patterns in

distinct functional brain regions. The entire BrainStars dataset is

publicly available through the integrated database (http://

brainstars.org/).

Results

Quantitative expression profile of the brain
We sampled 51 regions with distinct functions in the central

nervous system (CNS) of the adult mouse: 49 brain regions and 2

spinal-cord regions (Figure 1A–B and Table S1), including

centers of vision, hearing, taste, olfaction, touch, motion, clocks,

calendar, memory, fear, and feeding. We used cylindrical punch

samples, 0.5-mm thick and 0.5 mm in diameter, from 51 distinct

CNS regions. To ensure the accuracy of our spatial expression

dataset, we took samples of the CNS regions every 4 hours,

starting at ZT0 (Zeitgaber time 0; the time of lights on), for

24 hours (6 time-point samples for each region) to avoid potential

artifacts caused by the circadian regulation of gene expression. We

sampled 5–25 mice for each CNS region at each time point (every

4 hours during one day), resulting in samples from 30–150 mice

being collected for each replicate of a single CNS region. This

entire procedure was performed twice (n = 2) to obtain experi-

mental replicates for every CNS region. The sample quality was

confirmed before carrying out the DNA-microarray experiments

by the quantitative PCR (q-PCR) analysis of known region-specific

genes. After the DNA-microarray experiments, we also confirmed

the sample quality by the visual inspection of quality-check graphs,

such as global sample clustering (Figure S1A–B) and degradation

plots [24]. This sampling strategy and quality check of samples

helped to reduce the expression variability between experimental

replicates of the same brain region, as evidenced by the high

correlation (0.994) between experimental replicates (Figure S1F–
G). We also noted that most experimental replicates were clustered

together (Figure S1A–B). Even for mis-clustered replicates of

CNS regions (e.g. the cerebral cortex motor and cerebral cortex

cingulate), when we used an appropriate set of regional marker

genes (e.g. Myl4) retrieved from other in situ databases, their

expression patterns in our data resource could correctly distinguish

them. These results support the reproducibility and consistency of

the data in the BrainStars project.

Global clustering of CNS regions
For the first expression data analysis, we performed global

clustering of these 51 CNS regions for all the DNA microarray

probe sets (45,037) except for the controls, using different distance

metrics (Figure 1C and Figure S1C). The clustering results

indicated that most of the 51 regions were grouped according to

their developmental/evolutional/anatomical classifications inde-

pendently of the distance metrics; for example, into the

telencephalon, thalamus, hypothalamus, or mesencephalon. In-

terestingly, some regions did not cluster according to their classical

developmental/evolutional/anatomical classifications, and these

exceptional clusters seemed to represent more recent evolutionary-

developmental processes supporting their sophisticated functional

linkage. For example, the globus pallidus (GP) and substantia nigra

(SN), which are classified into different classical developmental/

evolutional/anatomical divisions, the telencephalon and mesen-

cephalon, respectively, but are functionally and anatomically

linked, exhibit a tight and robust clustering of their genome-wide

expressions in correlation and Euclidean distance (Figure 1C and

Figure S1C–E; see also Text S1). We also noted that three CNS

regions (the retina, pituitary, and pineal) were significantly

separated from the other 48 in the global clustering analysis

(Figure 1C and Figure S1C–E), possibly owing to their

anatomical differences or different proportions of multiple cell

types. Therefore, we used only the other 48 regions for our further

analysis in the following sections, to focus on subtler differences in

gene expression.

‘‘Multi-state’’ expression patterns in CNS regions
‘‘Multi-state’’ expression patterns, which are represented by a

multi-modal distribution of gene expression, are thought to

contribute to the spatial and temporal specificity of various

biological functions [25,26,27]. To identify genes with such spatial

expression patterns in the adult mouse CNS (‘‘multi-state genes’’),

we used the BrainStars data from the 48 regions, and identified

8,159 genes (12,514 probe sets, ,39% of all the genes in the DNA

microarray) that showed multi-state expression patterns across the

regions sampled (Figure 2A; see also Text S1 and Figure S2).

This multi-state expression analysis provides information about the

‘‘high’’ and ‘‘low’’ states of two-state genes, as well as the

additional ‘‘middle’’ state(s) of genes that have three or more

states. We noted that multiple states (‘‘high,’’ ‘‘middle,’’ or ‘‘low’’

states) observed in the expression pattern could reflect either 1)

different regulation of a gene’s expression level in individual cells,

or 2) regional heterogeneity, with different proportions of multiple

cell types that express a given gene. Even in the latter case,

classification as a multi-state gene indicates the existence of

multiple states of a given gene in the CNS (because this is a

preposition of regional heterogeneity). Thus, as the multi-state

gene analysis may provide useful information for screening and

detection of interesting genes with multi-state expression patterns,

we decided to further analyze the states of multi-state genes.

Since different regions of the adult mammalian brain have

specialized functions, the expression patterns of multi-state genes

could reflect the roles played by the products (proteins) of these

genes in carrying out such specific regional functions. For

example, cerebellin 1 precursor protein (Cbln1), a two-state gene

(Figure 2C), contributes to the control of synaptic structure and

plasticity in the cerebellum [28], and Solute carrier family 17 member 6

(Slc17a6), a three-state gene (Figure 2C), is a vesicular glutamate

transporter in the thalamus [29]. We found that Slc17a6 was

highest in the thalamus and lowest in the cerebellum, and that in

the hippocampus, which is telencephalic, it was expressed in the

middle range (Figure 2C). Calcium/calmodulin-dependent protein kinase

Quantitative Expression in the Mouse Brain Regions
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II alpha (Camk2a), a four-state gene (Figure 2C), is involved in

long-term potentiation in the hippocampus [30]. We found that its

highest expression level (‘‘high’’ state) was in fact in regions of the

hippocampus (cornu ammonis 1 [CA1], CA2/CA3, and dentate

gyrus, DG). Tyrosine hydroxylase (Th), a rate-limiting enzyme for

dopamine synthesis, was classified as a five-state gene, and its

highest expression level (‘‘high’’ state) was in the dopaminergic

nuclei, ventral tegmental area (VTA), and SN.

We also found that some well-known GPCRs (G protein-

coupled receptors) exhibited a two-state expression pattern in the

BrainStars dataset (Figure 2D). For example, 5-hydroxytryptamine

(serotonin) receptor 1A (Htr1a) exhibited a two-state expression

pattern with highest expression in the CA1 [31], Somatostatin receptor

2 (Sstr2) in the habenular nucleus (Hb) [32], Duffy blood group,

chemokine receptor (Darc) in the cerebellar cortex vermis (Cb vermis)

and cerebellar cortex lobe (Cb lobe) [33], and Chemokine (C-X3-C)

receptor 1 (Cx3cr1) in the GP, supraoptic nucleus (SO) and SN [34].

In addition, we found further interesting examples; G protein-coupled

receptor 151 (Gpr151) exhibited a two-state expression pattern with

the highest expression in the Hb (Figure 2D), which is consistent

with the previous report that the expression of Gpr151 is localized

in the Hb of adult mouse brain [35]. Gpr151 shows 25–26%

identity and 41–43% similarity at the amino-acid level with the

galanin-receptor subfamily, and is inferred to respond to Galanin.

Since Galanin is related to pain [36] and Hb is also a nucleus

related to pain, Gpr151 might have a pain-related function.

Interestingly, opioid receptor, mu 1 (Oprm1), the opioid receptor

related to analgesic effects of morphine, also exhibited a two-state

expression pattern with the highest expression in the Hb

(Figure 2D). Another example is the G protein-coupled receptor 126

(Gpr126) showing a two-state expression pattern with high

expression in the median eminence (ME) and suprachiasmatic

nucleus (SCN) (Figure 2D). ME and SCN are centers for the

photoperiodic calendar and circadian clock, respectively. Although

Gpr126 was recently reported to drive the differentiation of

promyelinating Schwann cells in the peripheral nervous system

(PNS) probably through elevating cAMP levels [37], the function

of Gpr126 in the CNS has not yet been clarified. One possible

function of Gpr126 in the CNS might be related to the

photoperiodic calendar or circadian clock through the elevation

of cAMP levels. The G protein-coupled receptor 34 (Gpr34) was also

highly expressed in the GP and SN. Although the function of

Gpr34 in the brain has not been clarified yet, it is known that SN

and GP have a shared function in working as the output nuclei of

the basal ganglia [38], and therefore, Gpr34 might have a

physiological function related to this process. We also found

multi-state expression patterns of GPCRs that have not been yet

examined so much in the adult mouse brain. For example, we

noted that G protein-coupled receptor 81 (Gpr81) was highly expressed

in the SO, G protein-coupled receptor 158 (Gpr158) in the caudate

putamen lateral (CPu lateral), G protein-coupled receptor 174 (Gpr174)

in the GP, neuropeptide Y receptor Y6 (Npy6r) in the SCN, and

sphingosine-1-phosphate receptor 3 (S1pr3) and cysteinyl leukotriene receptor

1 (Cysltr1) in the ME (Figure 2D). We also found Leucine rich repeat

containing 16A (Lrrc16a) expressed at high levels in the olfactory bulb

anterior (OB anterior) and posterior (OB posterior), G protein-

coupled receptor 4 (Gpr4) in the mediodorsal thalamic nucleus (MD),

medial geniculate nucleus (MG) and Hb, and G protein-coupled

receptor 124 (Gpr124) in the OB anterior, OB posterior and SO

(Figure 2D).

Region-specific functions of multi-state genes were also evident

at the level of individual gene categories (Figure 2B, and see also

lists in BrainStars database, http://brainstars.org/). For example,

33 out of the 48 nuclear receptor genes in the DNA microarray

were significantly overrepresented among the multi-state genes

(Fisher’s exact test, P = 0.013), supporting previous findings that

these genes are differentially expressed in regions of the adult

mouse brain [39,40]. In addition, 136 of 239 homeobox genes,

which control developmental processes in the embryo [41], were

also significantly overrepresented among the multi-state genes

(Fisher’s exact test, P = 5.061024), supporting previous and recent

findings that suggest they play a role in the adult body [42,43] and

brain [11]. Finally, members of the cell adhesion and extracellular

matrix gene categories were also overrepresented among the

multi-state genes (Fisher’s exact test, P = 5.061026, and

P = 4.161025, respectively).

Regional marker genes
The data of multi-state expression patterns among CNS regions

in the BrainStars dataset can be used to identify candidate genes

whose expression levels can ‘‘mark’’ a specific CNS region. To find

such candidate genes, we defined ‘‘marker’’ genes as the subclass

of multi-state genes whose highest (or lowest) state of expression

occurs in only a single CNS region. We found 2,573 (high) and

381 (low) probe sets (1,889 and 323 genes, respectively) for such

marker genes (Figure 3A and see also lists in BrainStars database,

http://brainstars.org/). For example, the highest expression of a

multi-state gene Gpr151 can ‘‘mark’’ Hb in the adult mouse brain

(Figure 3B). We performed ISH with several of these marker

gene candidates, and the results validated their regional specificity

(Figure 3B). We noted that the marker gene candidates included

genes related to a specialized function of each region. For

example, choline acetyltransferase (Chat), a rate-limiting enzyme for

acetylcholine synthesis, was a marker gene candidate for the Hb, a

cholinergic basal forebrain complex. We also noted that among

marker gene candidates expressed by a certain region, we

sometimes identified gene pairs that constituted a transcriptional

regulator and its target gene. For example, nuclear receptor subfamily

0, group B, member 1 (Nr0b1) and nuclear receptor subfamily 5, group A,

member 1 (Nr5a1), marker gene candidates for the subparaven-

tricular zone dorsal (SPa dorsal) region, are known to be co-

expressed [44], and Nr0b1 regulates Nr5a1 [45].

Internal control gene candidates in CNS
In addition to expression differences among the CNS regions

discussed above, we also focused on a final class of genes which

encompassed those that did not exhibit multi-state expression

patterns in CNS regions. We called these ‘‘one-state’’ genes,

because they were expressed unimodally across the CNS regions,

and roughly followed a log-normal distribution (Figure 2A and
2C). Some one-state genes exhibited stable expression patterns,

characterized by a log-normal distribution with small variance,

whereas others exhibited a more variable expression, showing a

log-normal distribution with larger variance (Figure S3A). By

using a ‘‘variability score’’ determined from the expression data

(Materials and Methods and Figure S3B–D), we identified

Figure 1. Sampled adult mouse CNS regions. (A) Map of 44 of the 51 sampled CNS regions. The other seven regions are listed. (B) Abbreviations
and full names of CNS regions. (C) Hierarchical clusters of the expression profiles of the 51 CNS regions. Background colors indicate the classical
developmental/evolutional/anatomical classification of each region.
doi:10.1371/journal.pone.0023228.g001
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1,055 ‘‘stable’’ one-state genes (variability score less than 21.0)

and 2,362 ‘‘variable’’ one-state genes (variability score more than

1.0) in the adult mouse CNS (Figure 4A, and see also lists in

BrainStars database, http://brainstars.org/). We also confirmed

the expression patterns of some of the stable and variable one-state

genes by q-PCR (Figure S3E–L).

We observed that the stable and variable expression patterns of

the one-state genes seemed to correlate with the subcellular

localizations, molecular functions, and biological processes of their

products (Text S1 and Figure S3M–T). Although each

functional category contained some members with stable or

variable expression tendencies, remarkably stable one-state genes

were found in most of the categories, including the metabolic

process proteins, structural proteins, and transcription factors

(Figure 4B). These genes could be novel candidates for internal

controls in experiments using various methodologies, including q-

PCR and ISH. They may prove to be more appropriate controls

than the commonly used glyceraldehyde-3-phosphate dehydrogenase

(Gapdh), actin, beta (Actb), or TATA box binding protein (Tbp), for some

experiments (Figure 4B).

Inferred connections among CNS regions
As one application of the multi-state expression analysis among

CNS regions, we focused on genes related to ligands and receptors

of neurohormones (NHs) and neurotransmitters (NTs). In the

CNS, various NHs and NTs are secreted from neurons to convey

information among distinct regions [46]. Therefore, expression

data (especially multi-state expression patterns) for NH and NT

(NH/NT) genes may be useful for investigating interconnections

among CNS regions and intraconnections within the same CNS

region.

To analyze the expression patterns of multi-state NH/NT

genes, we first made a list that included the multi-state genes for

the ligands themselves and those for enzymes that were rate-

limiting in the biosynthesis of these ligands. Here we termed both

of these categories as ‘‘ligand’’ genes. We also included the genes

for NH/NT receptor proteins (i.e., ‘‘receptor’’ genes). Beginning

with the multi-state NH/NT genes, we analyzed the ligand-

receptor expressions in distinct CNS regions and found 68

neurohormone (NH) and neurotransmitter (NT) signaling path-

ways out of a total of 23,864 ligand-receptor interactions

(including 519 intrinsic ligand-receptor interactions within the

same CNS region) (see lists in BrainStars database, http://

brainstars.org/). We counted the number of NH/NT ligand-

receptor expressions for each CNS region pair, and drew a density

plot of these counts (Figure 5A). In this density plot, we found

strong connections between the hypothalamic and olfactory bulb

regions. We have represented these findings in a network graph,

which illustrates the presence of more than 17 ligand-receptor

pairs (the 0.05 quantile of the distribution of all combinations of

regions, and also with P,0.01 in a binomial test with Bonferroni

correction) with arrows drawn between the CNS regions

expressing ligand genes and those expressing their cognate

receptors (Figure 5B). This analysis confirmed the findings from

the density plot. Note that the network graph shows many arrows

coming into the SCN, the circadian-clock center [47]. This implies

that the SCN receives a wide variety of environmental or internal

information from distinct CNS regions, allowing it to keep proper

circadian timing. This finding is consistent with a previous report

showing that many NH/NT pathways are active in the SCN [48].

We next analyzed the NH/NT ligand-receptor expressions

within given CNS regions to infer their intrinsic connections. To

identify such intraconnections, we retrieved pairs of ligand and

receptor genes that had at least one common ‘‘high’’- or ‘‘up’’-state

region (see lists in BrainStars database, http://brainstars.org/), and

ranked them according to the total number of ligand-receptor

matched states. One possible signaling pathway of intrinsic ligand-

receptor interactions was the vasoactive intestinal peptide (VIP)

signaling pathway (Figure 5C; the ligand gene was Vip and the

receptor gene was vasoactive intestinal peptide receptor 2 [Vipr2]). These

two genes were highly expressed in the SCN, supporting previous

findings that Vip and Vipr2 contribute to the synchronization of clock

cells within the SCN [49,50,51]. A second example of an intrinsic

pathway was the thyroid-stimulating hormone (TSH) signaling

pathway (Figure 5D; ligand genes were glycoprotein hormones, alpha

subunit [Cga] and thyroid stimulating hormone, beta subunit [Tshb], and the

receptor gene was thyroid stimulating hormone receptor [Tshr]). These

three genes were highly expressed in the ME, a possible center for

the photoperiodic calendar, supporting previous findings that the

TSH signaling pathway is involved in photoperiodism [52,53] and

that that Tshr itself is required to maintain the high expression of

Tshb in the ME [53]. A third example was the acetylcholine

signaling pathway (ligand gene was Chat and receptor genes were

cholinergic receptor, nicotinic, alpha polypeptide 3 [Chrna3] and cholinergic

receptor, nicotinic, beta polypeptide 4 [Chrnb4]); these three genes were

highly expressed in the Hb, one of the cholinergic nuclei

(Figure 5E). A fourth example was the hepatocyte growth factor

(HGF) signaling pathway (Figure 5F; ligand gene was Hgf, receptor

gene was met proto-oncogene [Met]). These two genes were

expressed in the amygdala posterior (A posterior). Hgf and Met are

expressed in the brain [54], and their signaling mediates multiple

neurodevelopmental and neurophysiological processes. However,

little is known about the function of HGF in the amygdala. HGF

infusion into the cerebral lateral ventricles influences anxiety in rats

[55]. Because the amygdala has an important role in fear and

anxiety [56], the HGF signaling pathway in the amygdala may be

important for emotion. We also analyzed NH/NT ligand-receptor

expressions among different CNS regions to infer extrinsic

connections. To identify such interconnections, we retrieved pairs

of ligand and receptor genes that had ‘‘up’’ states in different CNS

regions. One example of a possible extrinsic ligand-receptor

interaction was the Gastrin signaling pathway (Figure 5G; the

ligand gene was gastrin [Gast] and the receptor gene was cholecystokinin

B receptor [Cckbr]). Gast was expressed in the medial preoptic area

(MPA), and Cckbr was mainly expressed in the retrosplenial cortex

(RS), Cx motor, Cx cingulate, piriform cortex (Pir), and A posterior.

The amygdala plays a key role in fear and anxiety [56], as

mentioned above, and Cckbr knock-out mice are less anxious than

normal mice [57], implying a possible role of Gastrin signaling

between the MPA and the amygdala.

Figure 2. Multi-state genes. (A) Histogram giving the number of different states observed for the 45,037 non-control probe sets. (B) CNS regions
that tended to be selected repeatedly as having ‘‘up’’ states of multi-state genes in various gene categories. Rows represent gene categories, and
columns represent CNS regions. Asterisks indicate that the number of genes was significantly enriched in the designated CNS region (Bonferroni
corrected P-value ,0.05). (C) Examples of one-state, two-state, three-state, and four-state genes. Upper graphs show the expression values in 48 CNS
regions, and lower graphs are histograms of the expression values and fitted Gaussian mixture models. The order of CNS regions in the expression
graphs is the same as shown in Figure 2B. States are distinguished by color. (D) Examples of GPCR genes with multi-state spatial expression
patterns. The order of CNS regions in the expression graph is the same as shown in Figure 2B.
doi:10.1371/journal.pone.0023228.g002
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Comparison of the BrainStars with other resources
Although the BrainStars dataset is intended to be a valuable

resource in itself, it is probably most useful when compared and

combined with other available datasets that show gene expression

in the adult mouse brain, such as BioGPS [58], Teragenomics

[11], and the Allen Brain Atlas (ABA) [9]. To compare these

datasets, we first evaluated the global correlation between the

BrainStars expression dataset and the other resources (BioGPS,

Teragenomics, and ABA). The Pearson’s correlation coefficient

between the BrainStars dataset and the BioGPS dataset was 0.88

(Figure 6A top-left), and the correlation between the BrainStars

dataset and the Teragenomics dataset was 0.77 (Figure 6A top-

Figure 3. Regional marker gene candidates. (A) Heat maps of the expressions of marker gene candidates. Genes expressed at higher (left-lower)
or lower (right-lower) levels in single regions are shown. The columns of the heat maps represent CNS regions whose order is shown at the left top of
this panel. (B) GeneChip expression profiles (upper) of six marker gene candidates: Dsp (highly expressed in the DG), Il1r1 (DG), Gpr151 (Hb), Chrnb4
(Hb), Hcrt (DM), and Npvf (DM) were also confirmed to be expressed in the corresponding regions by in situ hybridization (lower). Inferred states of
marker gene candidates are distinguished by color in the upper charts. The order of CNS regions in the expression graphs is the same as in Figure 2B.
doi:10.1371/journal.pone.0023228.g003
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right). The correlation between the BrainStars dataset and the

ABA dataset (‘‘expression energy,’’ see Lau et al [59] for its

definition) was 0.45 (Table S2; Figure 6A bottom-left). These

results were similar to a published comparison among the GNF

SymAtlas (BioGPS), Teragnomics, and ABA datasets [21], in

which the Pearson’s correlations between the GNF SymAtlas

(BioGPS) and Teragnomics datasets were 0.71–0.73, and between

ABA and each of the other datasets were 0.39–0.52. These results

suggest that the correlation level between the BrainStars dataset

and the other datasets is acceptable, even though our sampling

areas were much smaller than those used for the GNF SymAtlas

(BioGPS) and Teragnomics datasets. We also found high

variability in the correlations between our expression dataset

and the ABA dataset (0.32–0.56) among the sampled regions

(Table S2). The variability in the correlations between the

BrainStars and ABA datasets depended to some extent on the

complexity of the sampled region: the hippocampus and cortex,

which are large and homogeneous, showed higher correlations,

and the hypothalamic regions, which are smaller and more

complex, showed lower ones.

Figure 4. Internal control genes. (A) One-state genes with the 50 most stable (left panel) and variable (right panel) expression patterns. Each box
shows the 0.25- to 0.75-quantiles of expression levels in 48 CNS regions for each probe set, and the error bars show the range of expression for all 48
regions. (B) Expression graphs for nine stable one-state genes identified in this study and three well-known internal control genes (Gapdh, Actb, and
Tbp, right). The order of CNS regions in the expression graphs is the same as in Figure 2B. Top row, genes for metabolic process proteins. Middle
row, genes for structural proteins. Bottom row, genes for transcription factors, expressed at high (left), intermediate (middle), and low (right) levels.
doi:10.1371/journal.pone.0023228.g004
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We next evaluated our marker gene candidates with the ABA

dataset at the level of individual genes (Table S3; Figure 6B and
6C). Of the 120 marker gene candidates determined in the

BrainStar dataset (see Materials and Methods), 95 could be

associated with corresponding entries in the ABA dataset (Figure
S4). Of the 95 marker gene candidates associated with the ABA

dataset, 31 were confirmed in the same regions (‘‘matched’’), 24

were discrepant (‘‘mismatched’’), and 40 could not be confirmed

due to a lack of good-quality expression data in the ABA dataset

(‘‘unconfirmable’’). Examples of marker gene candidates that were

matched (forkhead box B1 [Foxb1]) and mismatched (paternally

expressed 10 [Peg10], and transcription factor AP-2, delta [Tcfap2d])

are shown in Figure 6D. Peg10, which was expressed only in the

DM in the BrainStars dataset, was also expressed in the PVA

(paraventricular thalamic nucleus, anterior part) and the Gi

(gigantocellular reticular nucleus) in the ABA dataset. Tcfap2d

could not be detected only in the ABA dataset, because of non-

specific signals in the ISH images.

Among the 24 ‘‘mismatched’’ genes in the comparison with the

ABA dataset, we also found several that were expressed in

additional regions in the ABA dataset (e.g., our Hb marker gene

candidate Gpr151 was also expressed in the PVA, and our MD

marker gene candidate gastrulation brain homeobox 2 [Gbx2] was also

expressed in the PVA). Furthermore, the expressions of the

remaining genes were detected in different regions from our

dataset (e.g., our A posterior marker gene candidate Met was

expressed in the lateral septal nucleus [LS] in the ABA dataset).

Among the genes that were ‘‘unconfirmable’’ by comparison with

the ABA dataset, we found that our ME marker gene candidates

were not detected in the ABA dataset, which might have been

caused by a disproportionate loss of the ME during slice dissection.

We also found cases in which signals that were significant in the

BrainStar dataset were not detected in the ABA dataset, owing to

non-specific signals (e.g. for our LS marker gene candidate PR

domain containing 16 [Prdm16], and inferior colliculus [IC] marker

gene candidate Tcfap2d) or to the narrow dynamic range of

expression signals detected in the ABA dataset (e.g., for our SCN

marker gene candidate myocilin [Myoc] and ventromedial hypotha-

lamic nucleus [VMH] marker gene candidate G protein-coupled

receptor 103 [Gpr103]; see also Text S1 and Figure S5).

Discussion

In this study, we constructed a quantitative expression profile

(expression map) of the adult mouse brain at the nucleus-level

resolution. Our resource is especially useful for functional analyses

focusing on specific functional brain regions. Marker gene

candidates can be used to highlight CNS regions of interest.

Multi-state genes can provide information for screening genes

whose expressions in targeted regions are different from ones in

other regions. One-state stable genes are novel internal control

gene candidates for studies on the mouse brains. Although these

kinds of data might be obtained with ISH resources (e.g. ABA),

such data would be indirect and would require post-processing of

ISH images, possibly introducing artifacts by quantification, image

alignment, etc.

As the first set of analyses in the BrainStars project, we sampled

51 regions with distinct functions in the CNS of the adult mouse.

We intended to include as many nuclei, loci, ganglia, and

substantia as possible in the telencephalon, thalamus, hypothala-

mus, mesencephalon, and metencephalon. However, in this first

analysis, we did not include some prominent brain regions, such as

the SVZ (sub-ventricular zone; neurogenesis), LC (locus coeruleus;

noradrenergic), raphe nuclei (serotonergic), and TMN (tubero-

mammillary nucleus, which is histaminergic), which will be

sampled, analyzed, and reported in a future paper.

In collecting RNA of CNS regions, we used cylindrical punch

samples, 0.5-mm thick and 0.5 mm in diameter, from 51 distinct

CNS regions. This is a natural extension of our previous study on

DNA-microarray-based expression profiling of SCN [60] to a

quantitative and spatial genome-wide expression study of distinct

functional regions of the adult mouse brain. To ensure the

accuracy of our spatial expression dataset, we avoided potential

artifacts caused by the circadian regulation of gene expression,

which affects 2–10% of all genes [61], by taking samples of these

small brain regions every 4 hours, starting at ZT0 (Zeitgaber time

0; the time of lights on), for 24 hours (6 time-point samples for

each region). This strategy allowed us to avoid artifacts caused by

temporal differences in gene expression [60], and therefore, to

focus on spatial differences. We chose this strategy because we

wanted to concentrate on spatial differences among the expression

profiles of small brain regions, and this facilitates the identification

of candidate genes. Once candidate genes are selected, we can

collect time-course samples for these genes; this is one of our future

works.

In our analysis of the expression data, we identified ‘‘multi-

state’’ expression patterns in CNS regions. In the multi-state genes,

we can find well-known CNS-active genes (e.g. Camk2a, Th) and

GPCRs (e.g. Htr1a, Sstr2), and this result shows feasibility of our

analysis method with using variational Bayesian inference.

Furthermore, we identified many examples of genes that have

not yet been examined so much in the adult mouse brain (e.g.

Gpr81, Gpr158). These genes might have some physiological

functions in the corresponding CNS regions, and further studies of

such genes could be expected. We also performed a statistical

analysis on region-specific functions of multi-state genes at the

level of individual gene categories, and showed that several gene

categories (e.g. nuclear receptor and cell adhesion) were over-

represented. Although we need to be careful about the

observations in which mRNA levels do not necessarily correlate

with protein expression levels [62,63], this statistical analysis

indicate that digitalized expression patterns of multi-state genes

imply some functional insights into the mouse adult CNS regions.

In our analysis of ‘‘multi-state’’ genes, we simply fit each

expression profile to Gaussian mixture models with 1 to 6 normal

distributions and chose the one with the best fit based on the

variational Bayesian inference. There were several points we

noticed. First, the analysis result contains genes with many states (5

states of Tyrosine hydroxylase, for example), and a few only show

small changes among the states. However, such small changes

among states are sometimes difficult to capture with current

microarray technologies and the limited number of samples that

Figure 5. Inferred connections among CNS regions. (A) Pairs of CNS regions that tended to express the ligand gene for a neurohormone (NH)
or neurotransmitter (NT) in one region and its cognate receptor gene in the other. The color of each tile represents the number of ligand-receptor
pairs that had ‘‘up’’ states in the corresponding pair of CNS regions. (B) Graphical representation of the putative connections among CNS regions.
Arrows originate in the ligand-expressing region and point to the region expressing the cognate NH/NT receptors, when .17 (0.05 quantile of the
distribution of all combinations of regions) ligand–receptor pairs were expressed in the two regions. (C–F) Examples of inferred intrinsic ligand-
receptor connections. (G) Examples of inferred extrinsic connections. The order of CNS regions in the expression graphs is as in Figure 2B.
doi:10.1371/journal.pone.0023228.g005
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we used. Therefore, we classified the multiple states identified

through variational Bayesian inference into ‘‘on/off’’ or ‘‘up/

down’’ states, and used these re-classified states in our further

analyses. Second, there were ‘‘one-state’’ genes that look like

‘‘multi-state’’ genes, and there were ‘‘multi-state’’ genes that look

like ‘‘one-state’’ genes. In some cases, there is not an obvious

difference between some of the one-state and multi-state genes.

These are because the fitness of Gaussian mixture models with one

and multiple normal distributions were similar. We used the

variational Bayesian inference because this method can select a

more appropriate Gaussian mixture model than other methods

such as EM (Expectation Maximization) algorithm [64]. We thus

believe that the misclassification between ‘‘one-state’’ and ‘‘multi-

state’’ genes were lower than other methods.

For ‘‘one-state’’ genes, we should be careful when interpreting

their data because these ‘‘one-state’’ expressions may be caused by

technical factors, such as the dynamic range of the microarray

probe, alternative splicing not detectable by the probe, outdated

probe design, etc. Moreover, since our sample set does not cover

all CNS regions, developmental stages, and conditions such as

environmental stress and diet, we cannot observe the change in a

particular set of circumstances. However, we believe that we can

use the ‘‘one-state’’ gene set in various studies, such as for

identifying candidate positive control genes.

We also identified marker gene candidates for various CNS

regions from the multi-state genes, and validated some of them by

in situ. These genes can be used to highlight specific regions in the

adult mouse brain for a range of further studies. Furthermore, we

found that the candidate marker gene set included transcriptional

regulators and its target gene pairs. Thus, it is possible that certain

information about transcriptional regulation can also be retrieved

from the marker gene candidates. We noted that a set of marker

gene candidates in our genome-wide and nucleus-level expression

data include region-specific genes that were not detected in similar

resources. For example, the Allen Brain Atlas has a genome-wide

ISH data and provides ‘‘fine structure’’ dataset (equivalent to

‘‘marker gene’’ candidates in this study) on their web site (http://

mouse.brain-map.org/). In the ‘‘fine structure’’ dataset, Gpr151

(marker gene candidate in Hb) and Vip (marker gene candidate in

SCN) cannot be detected, although their regional specificities

seemed to be found in the corresponding ABA ISH images. This

may be caused by difficulties in quantitative analysis with ISH data

or by their data quality for positioning brain regions, implying the

advantage of BrainStars dataset in the quantitativeness.

As one application of the multi-state expression analysis among

CNS regions, we searched for genes related to ligands and receptors

of neurohormones (NHs) and neurotransmitters (NTs). We found

68 neurohormone (NH) and neurotransmitter (NT) signaling

pathways in a total of 23,864 ligand-receptor interactions, and we

drew an inferred ligand-receptor interaction map of the CNS

regions. Although these inferred interactions represent a ‘‘possibility

map’’ (i.e. there is a possibility of connection between two regions

because they selectively express the appropriate ligands and

receptors), these ligand-receptor interaction candidates will provide

interesting hypotheses for future studies in neuroscience. We expect

various neuroscience studies would be advanced by the close

investigation of such candidate sets by experts in the field.

The results of the comparison among our BrainStars dataset

and other resources indicate the advantages of our strategy for

constructing the BrainStars database, which improved the

dynamic range of detection (compared with the ABA). Although

some discrepancies in the ‘‘mismatched’’ results between our

database and the ABA may be caused by the limited number and

size of the samples used for the BrainStars dataset, this limitation

can be compensated for by comparing and combining datasets,

preventing this from becoming a critical deficit of the BrainStars

dataset. These comparisons indicate that no single method devised

to date can provide complete genome-wide expression data for the

adult mouse brain that has 1) a large dynamic range, 2) high

spatial resolution, and 3) coverage of the whole brain. Because of

the limitations of each method, we believe that the complementary

and cooperative usage of these genome-wide expression datasets is

the most useful platform for further investigation of the structure

and function of the adult mouse brain. Therefore, to make the best

use of these datasets, we constructed an integrated database and

viewer for them (BrainStars viewer). The BrainStars viewer is

publicly available at http://brainstars.org/.

The elucidation of the regulatory mechanisms of the mamma-

lian brain is still a challenging goal that requires a variety of

resources, including CNS expression maps. Our new resource

should help accelerate the functional analysis of the mammalian

brain and the elucidation of its regulatory network systems.

Materials and Methods

Ethics Statement
This study was approved by the Animal Care and Use

Committee, Kinki University School of Medicine, and carefully

followed the Guide for the Care and Use of Laboratory Animals,

Kinki University School of Medicine (approved without IDs). Mice

were also carefully kept and handled according to the RIKEN

Regulations for Animal Experiments (AH18-02-18).

Nucleus-level sampling of CNS regions
Balb/c mice (all mice were male) purchased 5 weeks

postpartum, were adapted under a standard 12-h light/dark cycle

(LD) for 2 weeks, before samples were obtained under LD or

constant darkness (DD) conditions, every 4 h over 1 day, starting

at ZT0. Slices (0.5-mm thick) of mouse brain were cut on a Mouse

Brain Matrix (Neuroscience, Tokyo), frozen, and the specific

regions were punched out bilaterally with a microdissecting needle

(gauge 0.5 mm) under a stereomicroscope. We sampled 5–25 mice

for each CNS region at each time point, and, as a result, samples

from 30–150 mice were collected for each replicate of a single

CNS region. This whole procedure was repeated twice (n = 2) to

obtain experimental replicates for every CNS region.

Microarray Analysis
The total RNA was prepared from the pooled samples for each

region taken at all time points using Trizol reagent (Gibco BRL).

Figure 6. Comparison of BrainStars dataset with other resources. (A) Scatter plots comparing the BrainStars expression datasets with the
BioGPS (top-left), Teragenomics (top-right), and Allen Brain Atlas (ABA) expression level (bottom-left) datasets. All expression values were log2-
transformed. (B) Summary of the comparison of our marker gene candidates with ABA. Our 120 marker gene candidates with corresponding entries
in the target dataset were classified as ‘‘matched’’, ‘‘mismatched’’, ‘‘unconfirmable’’, or ‘‘N/A (not available)’’. (C) Heatmaps of 120 marker gene
candidates in the BrainStars, and ABA datasets. (D) The BrainStars, and ABA expression data for three marker gene candidates: Foxb1, Peg10, and
Tcfap2d, show, respectively, agreement in datasets, or a lack of agreement between the datasets. For each gene, the BrainStars expression values
were mapped onto slice images and are also represented as bar graphs, and the ABA in situ images are shown. The order of CNS regions in the
expression graphs is as in Figure 6C. PVA: paraventricular thalamic nucleus, anterior part. Gi: gigantocellular reticular nucleus.
doi:10.1371/journal.pone.0023228.g006
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The cDNA synthesis and cRNA labeling reactions were performed

as previously described [65]. Affymetrix high-density oligonucle-

otide arrays for Mus musculus (GeneChip Mouse Genome 430 2.0)

were hybridized, stained, and washed according to the Expression

Analysis Technical Manual (Affymetrix). The expression values

were summarized by the RMA method [66]. The resulting

expression values were used in all the subsequent analyses. All data

is MIAME compliant and the GEO accession number for the

microarray data deposited and reported in this paper is

GSE16496.

Quantitative PCR
Quantitative PCR was performed with the ABI Prism 7900 and

SYBR Green Reagents (Applied Biosystems). The cDNAs were

synthesized from 0.25 mg of total RNA using Superscript II reverse

transcriptase (Invitrogen). Samples contained 16 SYBR Green

Master Mix, 0.8 mM primers, and 1/40 synthesized cDNA in a

10 ml volume. The PCR conditions were as follows: 10 min at

95uC, then 45 cycles of 15 s at 94uC, 1 m at 59uC. The absolute

cDNA abundance was calculated using a standard curve obtained

from murine genomic DNAs. We used Tbp as the internal control.

In situ hybridization (ISH)
Mice were deeply anesthetized with ether and intracardially

perfused with 10 ml saline and 20 ml of a fixative containing 4%

paraformaldehyde in 0.1 M phosphate buffer (PB), pH 7.4. Mouse

brain samples were postfixed in the same fixative for 24 h at 4uC,

soaked in PB containing 20% sucrose for 48 h, and finally stored

frozen at 270uC. The ISH method was described in detail

previously [67]. Serial coronal and sagittal sections (40-mm thick)

of the mouse brain were made using a cryostat. Fragments of

cDNA were obtained by PCR, and the products were then

subcloned into the PGEM-T easy vector (Promega). Radiolabeled

probes were generated using 35S-UTP (PerkinElmer) via a

standard protocol for cRNA synthesis. The primers used in

the ISH were ctcacagtgatgctgctaagc (Gpr151, forward),

ccctctgtctcttggccttc (Gpr151, reverse), ctacccagcgtgttatgggg (Chrnb4,

forward), catgggagtagatctctgcc (Chrnb4, reverse), cgaggtctggagac-

tactac (Dsp, forward), agcagaaccctcaacctctc (Dsp, reverse), ggga-

gaaatgtcgctggat (Il1r1, forward), cataagggcacacaagacttcc (Il1r1,

reverse), ctgagaggaatcccaaaagg (Rfrp [Npvf], forward), gctttccac-

caggactctga (Rfrp [Npvf], reverse), ctgctgctgctgctactgct (Hcrt,

forward), and gacgattctctgttggtgtgac (Hcrt, reverse).

Hierarchical clustering of CNS regions with their
expression profiles

For the hierarchical clustering of the 51 CNS regions and 102

samples, the correlation dissimilarity, i.e., 1-(Pearson’s correlation

coefficient) and Euclidean distance were used as distance

functions, and a complete linkage method was used to build the

clusters. For the statistical analysis of the separation of 51 CNS

regions, pvclust clustering [68] was also performed with the four

distance metrics indicated above. For every hierarchical clustering

analysis, the natural expression values of 45,037 non-control probe

sets in the 51 CNS regions or 102 samples were used.

Gene categories
Genes for transcription factors (TF), channels, GPCRs, cell

adhesion proteins, structural proteins, extracellular matrix pro-

teins, and neurogenesis-associated proteins were retrieved using

the corresponding gene ontology term assignments (GO:0003700

[transcription factor activity]/GO:0016563 [transcription activa-

tor activity]/GO:0016564 [transcription repressor activity],

GO:0015267 [channel activity], GO:0004930 [G-protein coupled

receptor activity], GO:0007155 [cell adhesion], GO:0005198

[structural molecule activity], GO:0031012 [extracellular matrix],

GO:0022008 [neurogenesis], respectively), which were found in

the annotation file (Mouse 430 2.0, na27) provided at the

Affymetrix website. Genes assigned to GO:0003735 [structural

constituent of ribosome] were excluded from the structural

proteins. We chose 293 homeobox genes and 49 nuclear receptors,

respectively, using the following references [40,69]. NH/NT

ligand/receptor genes, SLC transporter genes, and forkhead genes

were manually retrieved. For the NH/NTs, the ligand-coding

genes or the rate-determining enzymes for their biosynthesis were

selected as ‘‘ligand genes,’’ and their receptors were selected as

‘‘receptor genes’’ for ,140 neurohormones. SLC transporter

genes and forkhead genes were also manually retrieved from the

NCBI Entrez Gene database. All the gene category lists can be

found in the BrainStars database (http://brainstars.org/).

Identification of multi-state genes
Genes with multi-state expression patterns were identified with

a variational Bayesian inference to fit a Gaussian mixture model

[64]. We used the Gaussian mixture model with six components,

in which each component has three parameters (mean, variance,

mixture probability) with five hyper-parameters, and we assumed

that components of Gaussian mixture have different variances.

The detailed procedure for determining prior hyper-parameters

and fitting Gaussian mixture models is described in the Text S1
and Figure S2. We used log2-transformed expression values for

the 45,037 non-control probe sets in the 48 CNS regions that did

not include the retina, pituitary, or pineal. After the fitting

procedure, the CNS regions were grouped according to predicted

states. For example, CNS regions were classified into three groups

for three-state genes because there were three states (‘‘high,’’

‘‘low,’’ and ‘‘middle’’).

Statistical analysis on multi-state genes
To test whether a multi-state gene with an ‘‘up’’ state was

significantly enriched in a particular CNS region, we performed

one-sided binomial tests to calculate its P-value based on the

probability where a multi-state gene has an ‘‘up’’ state at a single

CNS region: the total number of regions with ‘‘up’’ states of all

unique multi-state genes/(the number of unique multi-state

genes6the number of CNS regions), i.e., 117,097/(8,159648).

After the P-values were calculated, they were subjected to the

Bonferroni correction.

To determine what kinds of genes were enriched among those

repeatedly selected as having ‘‘up’’ states in pairs of regions, we

performed the hyperGTest in the Bioconductor packages [24],

which assigns P-values to show that a gene category (gene

ontology, or GO term) is enriched in those genes repeatedly

selected as having an ‘‘up’’ state in pairs of regions against all

multi-state genes. After the P-values were assigned, false discovery

rates (FDRs) were calculated within the GO molecular function,

biological process, and cellular component classes for each pair of

regions, and the GO terms whose FDR was less than or equal to

0.01 were retrieved.

Identification of regional marker gene candidates
Multi-state genes whose expression levels were higher or lower

in a single CNS region (marker gene candidates) than in the others

were chosen as marker gene candidates. A multi-state gene was

selected as a marker gene candidate of a designated CNS region if

its probe set had only the single CNS region for the highest (or

lowest) state of its expression.
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Expression variability analysis
We used 32,523 one-state probe sets. To assign variability scores to

the chosen probe sets, we first filtered out probe sets that were not

‘‘present’’ in any CNS region. We regarded a probe set as ‘‘present’’ in

a CNS region when both samples for the region were called ‘‘present’’

by the Affymetrix MAS 5.0 detection algorithm (Statistical Algorithms

Description Document; http://www.affymetrix.com/support/techni

cal/whitepapers/sadd_whitepaper.pdf). Of the 32,523 probe sets,

13,619 were filtered out. Next, we made a scatter plot of the mean

(X-axis) and standard deviation (Y-axis) of the log2-transformed

expression values for each of the ‘‘present’’ probe sets, and drew a

curve showing the running median of the standard deviation (Figure
S3C). Variability scores were calculated by dividing the standard

deviation by its running median, and then applying log2-transforma-

tion (Figure S3D).

Inferred connections among CNS regions
To analyze the expression patterns of the NH/NT genes, we

first made a list that included the genes for the ligands themselves

and those for enzymes that were rate-limiting in the biosynthesis of

these ligands (‘‘ligand’’ genes). We also included the genes for NH/

NT receptor proteins (i.e., ‘‘receptor’’ genes). The list of NH/NT-

related genes contained 176 that encoded ligands and 270 that

encoded receptors, which were components of 118 NH and NT

pathways: 6 for monoamines and acetylcholine, 4 for amino acids,

95 for peptides, 2 for gases, and 11 for other types of pathways.

Multi-state genes comprised 253 of these NH and NT genes. For

every CNS region pair, we then counted the number of NH/NTs

whose ligand gene had an ‘‘up’’ state in one of the CNS region

pair, and whose receptor gene was ‘‘up’’ state in the other region.

In this analysis, we ignored the strength of expression, i.e.,

differences between the ‘‘middle’’ and ‘‘high’’ (highest-level) states.

We illustrated the presence of more than 17 ligand-receptor

pairs that correspond to the 0.05 quantile of the distribution of all

combinations of regions in Figure 5B. To test the significance of

this cutoff number (i.e. 17) of NH/NTs used for illustrating the

inferred network of CNS regions, we performed the bionomial test

to calculate its P-value as follows. The number of unique multi-

state genes was 8,159, and the total number of regions with ‘‘up’’

states of all the unique multi-state genes was 117,097. Thus, the

probability that a CNS region pair was randomly chosen as a

ligand-receptor pair region was (117,097/(8159648))2. The

number of NT/NHs whose ligand and receptor genes were

multi-state genes was 68. We performed binomial tests with these

parameters to estimate the P-values of the null hypothesis that the

number of NT/NHs (for each of 0–68) was random, and adjusted

the P-values with the Bonferroni correction.

Comparison of datasets
To evaluate and compare the BrainStars dataset with the Allen

Brain Atlas (ABA) datasets, we retrieved the expression values

from the ABA dataset for brain regions that were sampled for the

BrainStars database. We mapped our brain regions to the ABA

dataset, and retrieved the mean expression values (defined as

‘‘expression energies’’ [59]), which are available from http://www.

brain-map.org/. If no expression energy for a gene was found in a

specific brain region, that region was excluded from the analysis.

To compare globally the BrainStars dataset with the ABA dataset,

we used our brain regions which excluded the retina, pituitary,

pineal, and spinal cord, drew a scatter plot, and calculated

Pearson’s correlation coefficients. For each gene, the single probe

sets (BrainStars) with the largest mean expression values were

chosen. To compare globally the BrainStars and BioGPS datasets,

the means of {Cx motor, Cx cingulate}, {A anterior, A posterior},

{CA1, CA2/CA3, DG}, {OB anterior, OB posterior}, {spinal

cord anterior, spinal cord posterior}, {M, ME, SCN, MPA, SO,

Pa, SPa ventral, SPa dorsal, DM, VMH, Arc, LH}, {Cb vermis,

Cb lobe, Cb nucleus}, and {CPu lateral, CPu medial} in the

BrainStars dataset were compared with the cerebral cortex,

amygdala, hippocampus, olfactory bulb, spinal cord, hypothala-

mus, cerebellum, and dorsal striatum in the BioGPS dataset,

respectively. To compare globally the BrainStars and Terage-

nomics datasets, the means of {A anterior, A posterior}, {CA1},

{CA2/CA3}, {Cb vermis, Cb lobe, Cb nucleus}, {Cx motor, Cx

cingulate}, {DG}, {CA1, CA2 CA3, DG, ventral S}, {M, ME,

SCN, MPA, SO, Pa, SPa ventral, SPa dorsal, DM, VMH, Arc,

LH}, {IC}, {PAG, SC, IC, VTA, SN, Tg, MD, VA/VL, VPM/

VPL, LG, MG, Hb}, {Cx motor}, {OB anterior, OB posterior},

{PAG}, {Pituitary}, {Pn, MVe}, {Retina}, {spinal cord anterior,

spinal cord posterior}, {CPu lateral, CPu medial}, {SC} in the

BrainStars dataset were compared with the amygdala, CA1, CA3,

cerebellum, cerebral cortex, dentate gyrus, hippocampal forma-

tion, hypothalamus, inferior colliculus, ‘‘midbrain and dienceph-

alon, no hypothalamus’’, motor cortex, olfactory bulb, periaque-

ductal gray, pituitary, pons, retina, spinal cord, striatum, superior

colliculus in the Teragenomics dataset, respectively.

To perform a more detailed comparison of the BrainStars

dataset with the ABA dataset, we first selected up to three probe

sets of BrainStars marker gene candidates that showed the largest

expression changes within the CNS for each of 46 brain regions

(without spinal cord anterior, spinal cord posterior, retina,

pituitary and pineal), choosing 120 unique marker gene candidates

(Table S3). We then manually compared these marker gene

candidates against the ABA dataset, and classified them as

‘‘matched’’ when their regional expression was in the same

location in the Allen Brain Atlas dataset, ‘‘mismatched,’’ when the

genes were confirmed as not being marker genes in the

corresponding brain region, or ‘‘unconfirmable’’ when the genes

could not be confirmed due to a lack of good comparative data.

Supporting Information

Figure S1 Sampled adult mouse CNS regions. (A–E)

Hierarchical clustering of brain regions and samples with various

distance metrics. Brain samples were clustered by (A) correlation

dissimilarity, and (B) Euclidean distance. Brain regions were

clustered by (C) Euclidean distance. Brain regions were also

statistically clustered by (D) correlation dissimilarity and (E)

Euclidean distance with significance scores (red and green scores).

(F) Scatter plot comparing the experimental replicates of all CNS

regions. X- and Y-axes show the log2-transformed expression

value of each experimental replicates. (G) Correlation coefficients

indicating the reproducibility of the experimental replicates of

each CNS region.

(PDF)

Figure S2 Multi-state genes. (A–C) Determination of prior

distributions by variational Bayesian inference of Gaussian

mixture. (A) Distribution of the inverse of the median error

variance. The median error variance was calculated as the median

variance of the duplicated expression values (n = 2) in 48 brain

regions for each probe set. (B) Plot of false-positive rates and false-

negative rates generated by changing the a0 prior hyper-

parameter. The X- and Y-axes show the false-negative rate ( = 1

– sensitivity) and 1 – the false-positive rate ( = specificity),

respectively. Each curve represents a different false discovery rate

(FDR) cut-off for the marker gene candidates, which was regarded

as the true set for parameter evaluation. Gray lines show

y = x+(constant), which represent equal sums of the false-positive
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and false-negative rates. (C) An example in which two mixture

components overlapped and one state was nested into another

state. A histogram of its expression values is shown.

(PDF)

Figure S3 One-state genes. (A) Distribution of the standard

deviation of one-state (blue) and multi-state (red) genes. (B)

Distribution of variability scores. The higher and lower variability

scores of genes indicated that their expression levels were variable

and stable, respectively. (C) Scatter plot of the standard deviations

against the means of the log2-transformed expression values. Blue

dots represent single probe sets, and the red curve shows their

running median. (D) Scatter plot of the mean of the log2-

transformed expression values and the variability scores. (E–L)

Confirmation of several stable and variable one-state genes by q-

PCR. The expression values relative to the Tbp expression are

shown. Stable one-state genes Sgta (F) and Egln2 (H) were also

stable by q-PCR (E and G, respectively), whereas the variable one-

state genes Kcnab1 (J) and Nrip3 (L) were also variable by q-PCR (I
and K, respectively). (M–T) Correlation of the variability score

with the subcellular localization (M–P), molecular function (Q, R),

and biological process (S, T) of the gene products. Each graph

represents the ratios of genes associated with the Gene Ontology

term for 25 subsets of one-state genes, sorted by the rank of their

variability scores. The false discovery rate (FDR) for the

enrichment of gene functions in stable or variable genes are also

shown.

(PDF)

Figure S4 Comparison of BrainStars dataset with other
resources. Candidates for 120 marker genes from the BrainStars

dataset are shown along with results from the Allen Brain Atlas

(ABA) dataset. For each gene, the BrainStars expression values

were mapped onto images of brain slices (upper-left) and

represented in a bar chart (upper-right), and the ABA expression

values (‘‘expression energies’’) from a coronal cross-section at the

expressing CNS region are shown (lower-left).

(PDF)

Figure S5 Comparison of reproducibility and quantita-
tiveness between BrainStars and ABA datasets. (A–B)

Scatter plot showing the reproducibility of the experimental

replicates of all the CNS regions in the BrainStars (A) and Allen

Brain Atlas (B) projects. Blue lines indicate 2-fold changes. (C–D)

The proportion of replicated data points showing a difference

within 2-fold in the BrainStars (C) and Allen Brain Atlas (D)

projects. The dynamic range, which we defined as the range of

more than 50% of replicated data points that showed a less-than 2-

fold change, was from 24 to 214 (,103.0-fold) for the BrainStars

project and 22 to 25 (,100.9-fold) for the ABA project. (E–F)

Correlation coefficient showing the reproducibility of experimental

replicates of each CNS region in the BrainStars (E) and Allen

Brain Atlas (F) projects. (G) Myl4 expression at 51 CNS regions in

our data. Error bars show standard errors. In the Cx motor and

Cx cingulate, the Myl4 expressions were greatly changed with

small standard errors. (H) Number of redundant probes for the

same transcript in each database. (I–J) Maximum correlation

coefficient between redundant probes for the same transcript. (I)

Distribution of the maximum correlation coefficients for the

BrainStars oligo-probes. (J) Distribution of the maximum corre-

lation coefficients in the Allen Brain Atlas.

(PDF)

Table S1 Sample information for all 51 central nervous
system (CNS) regions.

(DOC)

Table S2 Pearson’s correlation coefficients of the
BrainStars dataset with the Allen Brain Atlas (ABA)
dataset.

(DOC)

Table S3 Comparison of the marker gene candidates in
the BrainStars dataset with the Allen Brain Atlas (ABA)
dataset.

(DOC)

Text S1 Supporting materials and methods, and re-
sults.

(DOC)
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