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The long-term binge intake of ethanol causes neuroadaptive changes that lead

to drinkers requiring higher amounts of ethanol to experience its effects. This

neuroadaptation can be partly attributed to the modulation of numerous neurotransmitter

receptors by the various protein kinases C (PKCs). PKCs are enzymes that control cellular

activities by regulating other proteins via phosphorylation. Among the various isoforms

of PKC, PKCε is the most implicated in ethanol-induced biochemical and behavioral

changes. Ethanol exposure causes changes to PKCε expression and localization

in various brain regions that mediate addiction-favoring plasticity. Ethanol works in

conjunction with numerous upstream kinases and second messenger activators to

affect cellular PKCε expression. Chauffeur proteins, such as receptors for activated

C kinase (RACKs), cause the translocation of PKCε to aberrant sites and mediate

ethanol-induced changes. In this article, we aim to review the following: the general

structure and function of PKCε, ethanol-induced changes in PKCε expression, the

regulation of ethanol-induced PKCε activities in DAG-dependent and DAG-independent

environments, the mechanisms underlying PKCε-RACKε translocation in the presence of

ethanol, and the existing literature on the role of PKCε in ethanol-induced neurobehavioral

changes, with the goal of creating a workingmodel uponwhich further research can build.

Keywords: PKC, PKCε, ethanol, epsilon, alcohol, RACK

INTRODUCTION

Protein kinases C (PKCs) are a family of protein kinase enzymes that regulate most cellular
reactions by controlling the function of other proteins through the phosphorylation of hydroxyl
groups of serine and threonine amino acid residues (Ohno and Nishizuka, 2002). Generally, PKCs
are divided into three classes: atypical aPKCs (PKCζ and PKCλ), conventional cPKCs (PKCα,
PKCβ, and PKCγ), and novel nPKCs (PKCδ and PKCε). PKCs show considerable variations in
their downstream targets, central nervous system (CNS) distribution, second messenger activators,
and affinities toward substrates (Tanaka and Nishizuka, 1994; Newton and Johnson, 1998).

PKCε is a phorbol ester/diacylglycerol (DAG)-sensitive and calcium-independent
serine/threonine kinase. PKCε is abundantly present in regions of the brain that are implicated in
drug addiction, such as the frontal cortex, striatum, nucleus accumbens (NAc), and hippocampus
(Saito et al., 1993; Minami et al., 2000). PKCε is considered to mediate an ethanol-tolerant
phenotype because of its interactions with receptors such as gamma aminobutyric acid
(GABAA) (Poisbeau et al., 1999) and metabotropic glutamate receptor subtype 5 (mGlu5)
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(Olive et al., 2005; Kumar et al., 2017) in CNS. Null
mutations of PKCε have been found to attenuate ethanol
drinking behavior in rodents (Lesscher et al., 2009; Maiya
et al., 2016), and prolonged ethanol exposure significantly
increases PKCε expression (Messing et al., 1991; Coe et al.,
1996; Kumar et al., 2016). Thus, there is an incentive for
developing potent, selective, and brain-penetrant PKCε

inhibitors. However, the first step toward this goal is to
elucidate the ethanol-associated PKCε-mediated signaling
pathways.

The biology of PKCε is complex, and a systematic
approach is required for appreciating its pivotal function
in ethanol addiction. In the present review, we shall
first discuss the general structure and function of PKCε

and its localization in brain regions related to addiction
phenotypes. PKCε expression could be controlled at the
transcriptional, translational, or post-translational levels.
PKCε needs to achieve catalytic maturity through its
complete phosphorylation. In this article, we present a broad
overview of the roles of upstream kinases, phosphatases,
and activators of PKCε and their interactions with ethanol.
Considering that activated PKCε travels to distinct subcellular
locations to exert its effects, we examine the current state of
understanding of ethanol-induced intracellular translocation of
PKCε.

FORM FITS FUNCTION: GENERAL
STRUCTURE OF PKCε AND FUNCTIONAL
RELEVANCE

PKCε consists of a regulatory domain and a catalytic domain
joined together by a hinge region. PKCε consists of three
conserved regions, C1, C3, and C4, and five variable regions,
V1–V5. C1 is known for its regulatory function and C3 and C4
for their catalytic activities (Newton and Ron, 2007; Newton and
Messing, 2010). Intramolecular and intermolecular interactions
of PKCε are regulated by its phosphorylation at Thr-566 in
the activation loop, Ser-729 in the C-terminal hydrophobic
region, and Thr-710 at an autophosphorylation site (Akita,
2002). The binding of a pseudosubstrate to the substrate-binding
cavity maintains PKCε in the inactive conformation (Newton,
2001). Pseudosubstrates are naturally occurring autoinhibitory
domains within the N-terminal regulatory region of PKCε.
They function to maintain PKCε in the inactive state until
the arrival of an appropriate signal, which then relieves the
pseudosubstrate from the regulatory region (Steinberg, 2008).
Numerous second messengers, including phosphatidylinositiol
3,4,5-triphosphate, DAG, and fatty acids (Moriya et al.,
1996; Graneß et al., 1998), can act on the C1 domain
and cause PKCε recruitment at various subcellular locations.
PKCε can bind to specific substrates and affect downstream
signaling events (Newton, 2001) through interaction with
specific scaffolding or anchoring proteins known as RACKs to
mediate ethanol-induced neurobehavioral changes (Ron et al.,
1999).

ETHANOL-INDUCED CHANGES IN
EXPRESSION OF PKCε

Ethanol could affect PKCε activities through the regulation of its
expression. By increasing PKCε expression, a higher reserve pool
of PKCε is available to be phosphorylated and activated.

TRANSCRIPTION OF PKCε

PKCε is encoded by PRKCE, which is localized in chromosome
2p21 in humans (Basta et al., 1992), 6q12 in rats, and 17E4
in mice. The human version consists of 32 exons, whereas
the rodent version contains 17 exons. In an animal model of
cocaine addiction, methylation of CpG dinucleotides in the
Blhb2-, Pparg-, E2f -, Egr1-, and Sp1-binding sites in the PRKCE
promoter region was reported following the chronic use of
cocaine (Zhang et al., 2009). Methylation of these binding sites
significantly decreased PRKCEmRNA levels (Zhang et al., 2009).
One of the aforementioned transcription factors, Sp1, has been
shown to be downregulated following chronic ethanol exposure
(Rulten et al., 2006). However, findings regarding PKCε gene
expression have been rather inconclusive, with no definitive
changes in PRKCEmRNA levels reported after long-term ethanol
exposure (Kaiser et al., 2014; Kumar et al., 2016).

ETHANOL-INDUCED CHANGES IN
PHOSPHORYLATION OF PKCε: THE ROLE
OF UPSTREAM KINASES

Maturity of PKCε relies on a series of phosphorylation events
that it has to undergo at Thr566 (activation loop), Thr710
(turn motif), and Ser729 (hydrophobic motif) (Newton, 2003;
Parker and Murray-Rust, 2004). PDK-1 is known to catalyze the
phosphorylation of PKCε at Thr566, which subsequently triggers
autophosphorylations of PKCε at both the turn and hydrophobic
motifs (TM and HM, respectively) (Newton, 2001). PDK-1 is
activated by the upstream kinase PI3K (Parekh et al., 2000; Cenni
et al., 2002), a family of signal-transducing enzymes that are
directly activated by G-protein-coupled receptors and tyrosine
kinase receptors (Leevers et al., 1999). PI3K activation triggers
a series of cellular reactions that recruit numerous downstream
kinases, such as PDK-1 and mTOR (Yang et al., 2008). PI3K
along with glutamate receptors has been reported to regulate
synaptic plasticity (Daw et al., 2002; Perkinton et al., 2002),
highlighting the important role of this kinase in the development
of sensitivity toward many addictive substances (Izzo et al., 2002;
Corl et al., 2005). Along these lines, binge drinking has been
shown to significantly upregulate the phosphorylation state of
p85α (a PI3K-binding motif) in the nucleus accumbens (Cozzoli
et al., 2009). In humans, genetic variations in PIK3R1 (the gene
encoding the regulatory subunit of PI3K) are associated with
risky ethanol drinking behavior in adolescents (Desrivières et al.,
2008).

The mammalian target of rapamycin complex 2 (mTORC2)
has been shown to facilitate the phosphorylation of PKCε at TM
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and HM. mTORC2 components, such as rapamycin-insensitive
companion of mTOR (rictor) and SAPK-interacting protein
1 (Sin-1), are important for TM and HM phosphorylation
of PKCε (Ikenoue et al., 2008). In C2C12 mouse myoblasts,
ethanol exposure significantly increases the mRNA and
protein expression of mTORC2 components, such as rictor
and Sin-1, as well as their associations with mTOR, resulting
in increased mTORC2 kinase activity (Hong-Brown et al.,
2012). However, no empirical evidence showing a relationship
between mTORC2 and PKCε phosphorylation in the human
brain is yet available. mTORC1, another multi-protein complex
of mTOR, has been associated with abuse of various classes
of drugs (Puighermanal et al., 2009; Neasta et al., 2010;
Bailey et al., 2012). As for ethanol, mTORC1 was shown to
mediate ethanol-related memory reconsolidation (Barak et al.,
2013) and neuroadaptations underlying binge drinking
behaviors (Liu et al., 2017). However, no biochemical
link between mTORC1 and PKCε has been reported to
date.

ETHANOL-INDUCED CHANGES IN
SUBCELLULAR LOCALIZATION OF PKCε

As PKCε is a key regulator of various signal-transducing events,
its demand to be present in several subcellular locations is met
by translocation of the kinase by isozyme-specific chauffeur
proteins. Aberrant translocation of the kinase could miscue the
signaling outputs and hence be detrimental to cellular physiology.

CHAUFFEUR FOR PKCε

RACK is a 30–36-kDAprotein that belongs to a class of anchoring
proteins that mediate the localization of PKCs (Mochly-Rosen
et al., 1991). RACK1 is the selective RACK that anchors to
PKC beta II (βIIPKC) (Ron et al., 1994), whereas RACK2 or
εRACK is the selective RACK for PKCε (Csukai et al., 1997).
Both proteins consist of seven WD40-motif repeat structures
(Coyle et al., 2009), which are thought to be involved in
scaffolding function and protein–protein interactions (Adams
et al., 2011). It is noteworthy that RACK is not a substrate of
PKC, but its binding with PKC isoforms increases its substrate
phosphorylation (Robles-Flores et al., 2002). Disturbance in this
RACK-PKC isoform interaction results in destabilization of the
PKC and disruption of the substrate phosphorylation (Mochly-
Rosen et al., 1991). The expression of RACK appears to be tightly
regulated, with εRACK expression increasing by 70% when PKCε

is overexpressed by 10-fold (Pass et al., 2001).
PKCε binds to RACKε via its C2 domain (Csukai

et al., 1997). The competition between the RACK protein
and an autoinhibitory sequence within the PKC releases
the autoinhibitory binding. This in turn exposes the
substrate-binding site (Ron and Mochly-Rosen, 1995). The
interaction of PKCε and RACKε is vital for translocation
of the complex to the Golgi apparatus (GA), where PKCε

gets phosphorylated at HM (Ser729) (Csukai et al., 1997).
β′-COP, a subunit of a coatomer abundantly present in the

GA or Golgi/endoplasmic reticular intermediate compartment,
has been reported to bind to the C2 domain of PKCε in
RACKε-β′-COP form (Budas, 2012; Caino et al., 2012). A recent
study reported the PKCε-RACKε-β′-COP complex to travel to
the GA via a small GTP-binding protein ADP-ribosylation factor
(ARF-1)-mediated pathway in NIH3T3 cells in an unstimulated
state. The same study also reported that phorbol ester-dependent
transport of PKCε-RACKε to the membrane surface is coatomer
independent (Peterson and Stamnes, 2013), suggesting that the
role of the coatomer in PKCε transportation pertains to the Golgi
alone.

ETHANOL-INDUCED TRANSLOCATION OF
PKCε

Under normal physiological conditions, PKCε is found in the
perinuclear area. PKCε activation by phorbol ester has been
shown to cause translocation of the isozyme from the perinuclear
area to the nucleus. Ethanol exposure (50mM for 48 h and
25mM for 4 days) triggered PKCε to translocate from the
perinuclear area to the cytoplasm, remain there as long as ethanol
was present, and stay for 48 h after ethanol exposure, whereupon
PKCε relocated to the perinuclear region. In vivo experiments
corroborated this translocation of PKCε to cytosol after the
brief introduction (10min following administration) of ethanol
(2 g/kg, 20% v/v) (Kumar et al., 2006). Further, Yao et al. (2008)
showed that ethanol induces translocation of PKCε by εRACK
to the cytosol and found that pseudoεRACK (selective PKCε

agonist) activates PKCε; however, it does not cause translocation
of PKCε to the cytosol. The amount of εRACK in the cytosolic
compartment also increased concomitantly with the amount
of PKCε, suggesting that PKCε and εRACK moved together
after being treated with ethanol. The cotranslocation of the
complex requires PKCε to be activated before binding with
εRACK. Ethanol exposure causes translocation of PKCε and
εRACK to the cytoplasm from the nucleus/perinucleus and Golgi
apparatus/perinucleus, respectively (Yao et al., 2008).

STEERING PKCε AWAY FROM
PHOSPHATASES?

Phosphatases also regulate the phosphorylation status of kinases
and subsequently, its activities. Active PKCs are recruited to the
membrane, which causes PKCs to adopt an open conformation
prone to dephosphorylation and downregulation (Leontieva and
Black, 2004). Phosphatases such as PH domain and leucine-rich
repeat protein phosphatases (PHLPP) dephosphorylate
PKCs at HM, which destabilizes the kinase, causing further
dephosphorylation at AL and TM by PP2A-type phosphatases.
Then, dephosphorylated PKCs are degraded (Gao et al., 2008).
Increased dephosphorylation of PKCε at HM (Ser729) in 3T3
and 3T6 cell lines upon cell passage was reported. These findings
suggest that cell passage induces changes in the localization
of PKCε, making it prone to dephosphorylation by a Ser729
phosphatase (England et al., 2001). The plausibility of chronic
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ethanol-induced translocation of PKCε away from “PHLPP sites”
offers an interesting hypothesis to test.

PKCε IN ETHANOL-INDUCED
NEUROBEHAVIORAL CHANGES

Ethanol addiction is a progressive brain disorder that is
characterized by a pathological pattern of ethanol use that
progresses through initial, habitual, and compulsive stages. Early
stages of ethanol addiction are defined by changes in initial
sensitivity and the development of acute functional tolerance
toward the effects of ethanol, which can lead to loss of the
righting reflex (showing ethanol-induced sedation) and ataxia
(the motor-impairing effects of ethanol). The absence of PKCε

in knockout mice increases both the duration of loss of the
righting reflex and the extent of ataxia (Hodge et al., 1999;
Wallace et al., 2007). It stands to reason, therefore, that PKCε

facilitates the development of acute functional tolerance to
ethanol. Tolerance facilitates binge ethanol drinking as drinkers
experience diminished symptoms of intoxication despite higher
blood ethanol levels. Studies employing PKCε-null mutant mice
reported these mice to consume significantly less ethanol (Hodge
et al., 1999) and even to exhibit an increased aversion to ethanol
(Newton and Messing, 2007). More recently, selective chemical
genetic inhibition of PKCε catalytic activity has proven successful
in decreasing ethanol consumption in mice (Maiya et al., 2016).
Biochemical studies have revealed PKCε to modulate ethanol
consumption behavior by decreasing inhibitory GABAergic
neurotransmission through the phosphorylation of the GABAA

g2 subunit at S327 (Qi et al., 2007) and phosphorylation of
the N-ethylmaleimide sensitive factor at S460 and T461 (Chou
et al., 2010). PKCε-null mice also showed decreased operant self-
administration, with no escalation of dopamine at NAc, following
brief exposure to ethanol (1 and 2 mg/kg, i.p.), suggesting a
crucial role of PKCε in reinforcing the effects of ethanol (Olive
et al., 2000).

In addition to GABA, PKCε has also been implicated
in group-I mGlu subtype 1/5-associated signaling to
mediate binge ethanol intake, as the mGlu5 antagonist
2-methyl-6-(phenylethynyl)pyridine (MPEP) was found to
decrease ethanol consumption in mice via a PKCε-dependent
mechanism (Olive et al., 2005). A brain region-specific approach
revealed that metabotropic glutamate subtype receptor 1 or 5
(mGlu1/5)-PKCε signaling at NAc and central amygdala (CeA)
is crucial for the manifestation of binge drinking (Cozzoli
et al., 2016). Molecular studies have found PKCε to regulate the
trafficking of mGlu5 at NAc via direct phosphorylation of the
receptor (Ko et al., 2012; Schwendt and Olive, 2017). The kinase
decreases mGlu5 surface expression by causing its internalization
(Schwendt and Olive, 2017). In parallel to this finding, PKC was
shown to phosphorylate mGlu5 at S901 in the C-terminus of
the receptor, disrupting calmodulin (CaM) binding to mGlu5
(because CaM stabilizes the surface expression of mGlu5) and
enhancing binding of the E3 ligase seven in abstentia homolog
(Siah-1A) to the receptor, which decreases the surface levels of
mGlu5 (Moriyoshi et al., 2004; Ko et al., 2012). Because of this

degradation of mGlu5 (Moriyoshi et al., 2004; Ko et al., 2012),
PKCε is thought to maintain an intracellular pool of mGlu5
(Schwendt and Olive, 2017). To date, the exact ethanol-induced
PKCε consensus site at the mGlu5 C-terminal is not well defined.
Ethanol enhances the PKC phosphorylation of mGlu5 at Ser 890
(Minami et al., 1998). PKCε has been shown to phosphorylate
mGlu5 at Ser 839 in astrocytes (Bradley and Challiss, 2011).
Recently, decreased mGlu5 availability was reported in the limbic
system of abstinent ethanol-dependent patients (Leurquin-Sterk
et al., 2016). Given the role of PKCε in the trafficking of rodent
limbic mGlu5, the investigation of PKCε-mediated trafficking of
mGlu5 should perhaps be extended to humans.

Recently, we reported a significant escalation in the protein
expression of native and phosphorylated PKCε (S729) in the
amygdala of rats during ethanol withdrawal (EW)-induced
anxiety. Acute administration of ethanol (2.5 g/kg, 20% v/v)
attenuated the abstinence-induced anxiety without affecting the
expression of phosphorylated (S729) and total PKCε in the
amygdala. We hypothesized that PKCε in the amygdala does
not play a direct role in the manifestation of EW-induced
anxiety (Kumar et al., 2016). In agreement with our findings,
Olive et al. reported no changes in c-fos expression following
EW-induced seizure in the amygdala of PKCε-null mice (Olive
et al., 2000). Intriguingly, a growing body of literature has
reported amygdala PKCε to play a central role in the modulation
of ethanol consumption (Olive et al., 2000; Lesscher et al., 2009;
Cozzoli et al., 2016). Thus, it stands to reason that, at least
in the amygdala, ethanol-induced neuroadaptation may have
modulated PKCε to act differently during the various stages of
alcohol addiction.

ROLE OF DAG IN ETHANOL-PKCε

MEDIATED CHANGES

The interaction of ethanol with G-protein-coupled receptors
results in the generation of second messenger molecules, such
as inositol triphosphate (IP3) and DAG (Yao et al., 2008).
Consequently, PKCε is activated after DAG binds to the
DAG-sensitive C1 domain of the kinase (Stahelin et al., 2005).
However, prolonged exposure to activators (e.g., DAG/phorbol
ester) could downregulate PKCε through dephosphorylation and
proteolysis (Cameron et al., 2009). This provokes the question:
could ethanol regulate PKCε activities via DAG-independent
mechanisms? Recently, Cozzoli et al. (2016) showed that in
the CeA, PKCε may operate via a mGlu1-dependent pathway
without involving Gαq/11-mediated stimulation of phospholipase
C (PLC) (which generates DAG) in regulating binge ethanol
intake. Hence, the authors went on to suggest that PKCε

in certain brain regions mediates binge drinking behavior
through a DAG-independent signaling pathway (Cozzoli et al.,
2016). To date, studies investigating chronic ethanol exposure
have reported decreased phosphatidylinositol 4,5-biphosphate
(PIP2)/PLC activities (Katsura et al., 1994; Pandey, 1996) and
increased total and phosphorylated PKCε expression (S729)
(Kaiser et al., 2014; Kumar et al., 2016). As per these findings,
a host of studies conducted in ethanol-free environments have
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suggested that a baseline DAG level is sufficient to support PKC
activation despite the upregulation of PKC levels (Hu et al., 1987;
Housey et al., 1988; Obeid et al., 1990).

Another vital research question is as follows: in a
DAG-independent environment, how would PKCε be activated?
Apart from being activated by DAG, PKCε could be activated
by other compounds, such as phorbol esters or lipids like
arachidonic acid and PtdInsP2 (Liu and Heckman, 1998;
Shirai et al., 2007). The C2 domain of PKCε has been shown
to bind to phospholipids, such as phosphatidic acid (PA),
and this binding plays an important role in the membranal
translocation of PKCε (Corbalan-Garcia et al., 2003; Jose
Lopez-Andreo et al., 2003). PA is formed in several ways, one of
which is through the phosphorylation of DAG by DAG kinase.
Intriguingly, DAG kinase iota, which is found exclusively in
the brain, was reported to be expressed 55% more in the cortex
of alcohol-accepting rats than in non-alcohol-accepting rats

(Sommer et al., 2001). Hence, the potential role of PA or other
unknown compounds in PKCε activation should be explored
further (Figure 1).

Findings related to DAG/phorbol ester affinities for the C1A
and C1B domains of PKCε have also been somewhat inconsistent.
Although some researchers have reported the affinity of phorbol
ester to be three times higher for the C1B domain than for the
C1A domain of PKCε (Stahelin et al., 2005), others have reported
the affinity to be seven times higher (Irie et al., 1998, 2002).
DiC18, a DAG analog, was shown to bind more readily to the
C1A domain than to the C1B domain of the kinase (Stahelin
et al., 2005). These inconsistencies have led to efforts directed
toward discovering alternative effects of alcohol on the C1A and
C1B domains of PKCε. In 2009, an allosteric alcohol-binding
site in PKCε at the second cysteine-rich domain of C1B, which
consists of His 236 and Tyr238, was identified (Das et al., 2009).
More recently, multiple alcohol-binding sites on the C1A and

FIGURE 1 | Signaling pathway of ethanol-mediated changes in PKCε activities (expression and translocation). Interaction of ethanol with GPCR results in generation

of second messengers such as DAG and IP3. Long-term ethanol consumption upregulates cellular levels of basal PKCε and upstream kinases such as PI3K and

mTORC2 which collectively increases phosohorylation of PKCε at S729. In DAG-dependent pathway, binding of DAG and RACK to mature PKCε translocates the

kinase to distinct subcellular target sites to mediate downstream signaling pathways. In DAG-independent pathway, increase in DAG kinase activities causes

generation of PA which could affect PKCε translocation via novel pathways. Once translocated, PKCε could affect downstream signaling through phosphorylation of

numerous molecular targets which include GABAA, N-ethylmaleimide sensitif factor and mGlu5 which influence binge ethanol consumption. PKCε also causes

internalization of mGlu5 surface receptors that could potentially reduce mGlu5 availability during abstinence.
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C1B domains of PKCε were discovered (Pany and Das, 2015).
These findings suggest an alternate mechanism for regulating
PKCε activity by ethanol by the direct binding of ethanol to
PKCε.

CONCLUSION AND FUTURE
PERSPECTIVES

Several intriguing insights have emerged from PKCε research:
Ethanol-PKCε interactions might be DAG-free in some brain
regions. Traditionally, ethanol has been thought to modulate
PKCε activities either by increasing the production of lipid
second messengers or by increasing the basal level of PKCε

available to achieve catalytic maturity through alternate signaling
pathways. The very notion that PKCε could operate in
a DAG-independent environment suggests potential novel
mechanisms in its activation and localization which should
be further investigated. Except for the Xenopus laevis oocytes
at Ser890, to date, we do not have knowledge of other
ethanol-induced PKCε phosphorylation consensus sites on
the C-terminal of mGlu5. Given the centrality of mGlu5 in

modulating ethanol-induced neurobehavioral changes, future
studies should be directed to identify the biochemistry and
physiology of putative phosphorylation sites of PKCε at the
mGlu5 C-terminal. The existing literature strongly suggests that
PKCε modulates the binge drinking trait by mediating the
development of acute functional tolerance. However, studies
using chronic models suggest that PKCε is not directly involved
in chronic ethanol-induced behavioral changes, at least in the rat
amygdala. It will be interesting to observe and compare PKCε

changes in both acute and chronic ethanol models.
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