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Importance: Risk prediction models for patients with suspected sep-
sis have been derived on and applied to various outcomes, including 
readily available outcomes such as hospital mortality and ICU admis-
sion as well as longer-term mortality outcomes that may be more 
important to patients. It is unknown how selecting different outcomes 
influences model performance in patients at risk for sepsis.

Objectives: Evaluate the impact of outcome selection on risk model 
performance and weighting of individual predictor variables.
Design, Setting, and Participants: We retrospectively analyzed 
adults hospitalized with suspected infection from January 2014 to 
September 2017 at 12 hospitals.
Main Outcomes and Measures: We used routinely collected clinical 
data to derive logistic regression models for four outcomes: hospital 
mortality, composite ICU length of stay greater than 72 hours or hos-
pital mortality, 30-day mortality, and 90-day mortality. We compared 
the performance of the models using area under the receiver operat-
ing characteristic curve and calibration plots.
Results: Among 52,184 admissions, 2,030 (4%) experienced hospital 
mortality, 6,659 (13%) experienced the composite of hospital mortality 
or ICU length of stay greater than 72 hours, 3,417 (7%) experienced 
30-day mortality, and 5,655 (11%) experienced 90-day mortality. Area 
under the receiver operating characteristic curves decreased when hos-
pital-based models were applied to predict 30-day (hospital mortality = 
0.88–0.85; –0.03, composite ICU length of stay greater than 72 hours 
or hospital mortality = 0.90–0.81; –0.09) and 90-day mortality (hospi-
tal mortality = 0.88–0.81; –0.07, composite ICU length of stay greater 
than 72 hours or hospital mortality = 0.90–0.76; –0.14; all p < 0.01).  
Models were well calibrated for derived (root-mean-square error = 
5–15) but not alternate outcomes (root-mean-square error = 8–35).
Conclusions and Relevance: Risk models trained to predict readily 
available hospital-based outcomes in suspected sepsis show poorer 
discrimination and calibration when applied to 30- and 90-day mortal-
ity. Interpretation and application of risk models for patients at risk of 
sepsis should consider these findings.
Key Words: calibration plot; infection; mortality; risk model; sepsis

Accurately predicting risk of poor outcomes for patients 
with suspected sepsis is critical to ensure high-risk 
patients receive appropriate aggressive therapy, timely 

allocation of intensive resources, and longer-term support. 
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Attempts to develop predictive tools that identify adverse out-
comes have been limited by lackluster performance in heteroge-
neous settings. The variability in predictive accuracy of prediction 
tools may be partly due to different outcomes used in derivation 
and validation studies. For example, the original validation of the 
quick Sepsis-Associated Organ Failure Assessment (qSOFA) tool 
used hospital mortality as its primary outcome and a composite of 
hospital mortality and ICU stay greater than or equal to 3 days as 
a secondary outcome (1). Subsequent studies have used qSOFA to 
predict other outcomes, including acute organ dysfunction, ICU 
admission, hospital-, 28-day, 30-day, 90-day, 6-month, and 1-year 
mortality, or a composite outcome (2–4).

Different potential outcomes have advantages and disadvan-
tages. Overall, mortality is an objective and patient-centered out-
come. Hospital mortality is commonly chosen for risk prediction 
because it is the most reliably obtained mortality endpoint from 
hospital administrative data. However, the use of hospital mortal-
ity as an outcome may be subject to discharge bias that reflects 
discharge practices (e.g., to skilled nursing facilities, hospice) 
rather than true estimates of mortality (5, 6). Use of 30- or 90-day 
mortality can reduce discharge bias and have the advantage of 
reflecting consequences of the sepsis trajectory such as cognitive 
and functional decline (7), but these advantages are offset by the 
challenges healthcare systems face to reliably obtain outcomes 
data beyond the acute episode (e.g., data identification, linkage, 
and integration from disparate sources) (8). Finally, a common 
outcome used in predictive models for sepsis is ICU stay, which is 
readily measured (9). However, ICU admission is often discretion-
ary and influenced by external factors such as hospital or provider 
practice patterns and bed availability (10, 11). In addition, using 
ICU admission as an outcome assumes that there are no unneces-
sary or false-positive ICU admission events. Finally, the advantage 
of a composite outcome including ICU admission and mortality is 
increased statistical power, but this outcome will likely be driven 
by more frequent ICU admission events. Although each of these 
outcomes have been used in different studies to assess sepsis risk 
models, it is not known whether the choice of outcome affects the 
performance of the models or the influence of predictor variables.

In this study, we derived predictive models for three mortal-
ity outcomes and one composite outcome of mortality and ICU 
admission and evaluated the impact of outcome selection on 
model performance and weighting of individual predictor vari-
ables. We hypothesized that predictors of these events will dif-
fer and that models derived for outcomes that are appealing to 
researchers (i.e., hospital mortality and the composite outcome 
of > 72-hr ICU stay and hospital mortality) will less accurately 
predict outcomes that are important to patients (i.e., 30- and 90-d 
mortality).

MATERIALS AND METHODS

Study Setting and Population
We conducted a retrospective cohort study by selecting adult 
(≥ 18 yr old) patients who presented to the emergency depart-
ment (ED) and were hospitalized with clinically suspected infec-
tion between January 2014 and September 2017 at 12 acute care 

hospitals within a large Southeast U.S. healthcare system. We 
adapted the definition of infection from the third international 
Consensus Definitions for Sepsis and Septic Shock (12), that is, 
an oral/parenteral antibiotic or bacterial culture ordered within 
24 hours from ED admission and either: 1) a culture drawn first, 
antibiotics ordered within 48 hours or 2) antibiotics ordered first, 
culture ordered within 48 hours. We excluded hospital admissions 
for patients with antibiotics only ordered as preoperative infection 
prophylaxis, and patients with “do-not-resuscitate” or “do-not-
intubate” orders within 24 hours from ED admission because of 
the higher potential for shifts in goals of care that might indepen-
dently alter the risk of in-hospital mortality. The patient selection 
flow diagram is shown in Figure 1.

Data Collection
We extracted data from the healthcare system’s enterprise data 
warehouse, including sociodemographic and clinical character-
istics (e.g., age, gender, race, insurance, diagnoses, prior health-
care utilization, clinical orders, laboratory values, and vital signs 
within the first 24 hr from ED admission). We applied standard 
definitions to combine laboratory values and vital signs to gen-
erate qSOFA (1). We used International Classification of Diseases 
codes from healthcare encounters during the previous 12 months 
to categorize comorbidities and calculate weighted Charlson 
Comorbidity Index (CCI) scores (13).

Outcomes
We investigated four study outcomes: 1) hospital mortality, 2) 
a composite of greater than 72-hour ICU stay or hospital mor-
tality, 3) 30-day mortality, and 4) 90-day mortality (e-Fig. 1, 
Supplemental Digital Content 1, http://links.lww.com/CCX/
A128). Hospital mortality was determined using hospital admin-
istrative discharge disposition data and vital status records in the 
electronic health record (EHR). Mortality outcomes at 30 and 90 
days were captured from the social security death index.

Statistical Analysis and Model Development
We used logistic regression to construct separate risk prediction 
models for each of the four outcomes adhering to the Transparent 
Reporting of a multivariable prediction model for Individual 
Prognosis or Diagnosis statement on reporting predictive mod-
els (e-Appendix 2, Supplemental Digital Content 1, http://links.
lww.com/CCX/A128) (14). All models were trained using hospital 
admissions from January 1, 2014, to December 31, 2016 (training 
dataset) and tested using hospital admissions between January 1, 
2017, and September 30, 2017 (testing dataset). We included an 
initial set of 183 candidate variables. Prior to variable selection, 
laboratory values and vital signs captured as continuous variables 
were converted to categories based on quartiles and mean esti-
mates in separate groups of hospital deaths and hospital survivors. 
Additionally, clinical thresholds for abnormal laboratory values 
(e.g., lactate > 2 mmol/L) and vital signs (e.g., respiratory rate  
> 20 breaths/min) were used to calculate the ratio of abnormal 
measurements to the total number of measurements for each vari-
able within the first 24 hours of ED presentation. For selected con-
tinuous variables with less than 1% missing data, we also imputed 
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the mean value adjusted for age at admission, gender, race, CCI 
score, and body mass index. We tested the associations between 
variables with greater than 40% missing data and each outcome 
variable via chi-square tests. We then used a backward elimina-
tion approach and a prespecified threshold of p value of greater 
than 0.1 to exclude variables from the final risk models for each 
outcome. Additional details about model development, variable 
transformation and selection, and handling of missing values are 
included in e-Appendix 1 and e-Table 1 (Supplemental Digital 
Content 1, http://links.lww.com/CCX/A128).

We applied each risk prediction model to the four differ-
ent mortality or composite outcomes derived from the training 
dataset and evaluated model performance on the independent 
testing dataset using discrimination statistics and calibration 

plots. We measured the ability of each model to accurately 
differentiate between patients who did and did not have the 
indicated outcome using area under the receiver operating 
characteristic curve (AUC). All derived models were evalu-
ated through k-fold cross-validation (k = 10) using the training 
dataset to resample and iteratively reestimate how accurately 
the prediction models perform using different, randomly 
assigned training and validation samples, a technique rou-
tinely applied to limit overfitting and selection bias (15). For 
fair comparison, the same random number seed was used when 
running the k-fold cross-validation. All models were applied to 
the testing dataset for final model performance assessment. We 
evaluated differences in model discrimination across outcomes 
by DeLong method (16).

Figure 1. Selection of hospitalized patients with clinically suspected infection. There were 52,184 eligible admissions with suspected infection admitted through 
the emergency department (ED) to 12 study hospitals from January 2014 to September 2017. Suspected infection was defined by the following clinical criteria: 
oral/parenteral antibiotic or bacterial culture order within 24 hr of ED presentation and 1) culture drawn first, antibiotics ordered within 48 hr or 2) antibiotics 
ordered first, culture ordered within 48 hr. Patients with code status changes (i.e., orders placed for do not resuscitate [DNR] or do not intubate [DNI]) within 24 hr 
after ED presentation were excluded.

http://links.lww.com/CCX/A128
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We also generated calibration plots for both training and test-
ing datasets to examine differences in the observed versus pre-
dicted event rates. The root-mean-square error (RMSE) was used 
to evaluate the differences between each of the derived models 
and the perfectly calibrated model. We compared observed 
90-day mortality rates to predicted estimates from hospital mor-
tality (died-hosp), composite ICU length of stay greater than 
72 hours or hospital mortality (ICU72/died-hosp), and 30-day 
mortality (died30) models. All analyses were performed using 
SAS Enterprise Guide v7.1 (SAS Institute, Cary, NC) and R v3.5 
(R Foundation for Statistical Computing, Vienna, Austria).

The study protocol was approved by the Atrium Health 
Institutional Review Board. A waiver of consent was granted 
based on minimal harm and general impracticability.

RESULTS
Table 1 shows demographic and clinical characteristics to illus-
trate the cohort. Among the 52,184 total admissions (41,856 
unique patients) included in the study, 2,030 (4%) experienced 
hospital mortality, 6,659 (13%) experienced the composite of hos-
pital mortality or ICU length of stay greater than 72 hours, 3,417 
(7%) experienced 30-day mortality, and 5,655 (11%) experienced 
90-day mortality. There were no statistically significant differences 
in the characteristics or outcomes for patients in the training  
(n = 41,757, 80%) and validation (n = 10,427, 20%) cohorts (all 
p > 0.05). Characteristics of patients experiencing each outcome 
and information on distribution of missingness are presented in 
e-Table 1 (Supplemental Digital Content 1, http://links.lww.com/
CCX/A128) and the variables selected for each model by back-
ward elimination are shown in e-Table 2 (Supplemental Digital 
Content 1, http://links.lww.com/CCX/A128).

Model discrimination estimates for the four models are shown in 
Table 2 and e-Table 3 (Supplemental Digital Content 1, http://links.
lww.com/CCX/A128). In general, model discrimination was highest 
for predicting the composite ICU72/died-hosp (AUCs = 0.86–0.90), 
followed by died-hosp (AUC = 0.88), 30-day mortality (AUCs = 
0.81–0.87), and 90-day mortality (AUCs = 0.76–0.85) in the testing 
dataset. Model discrimination decreased significantly when hospital-
based outcome models (died-hosp, ICU72/died-hosp) were applied 
to predict 30- and 90-day mortality (p < 0.01). We observed the larg-
est decline in performance when the ICU72/died-hosp model was 
used to predict 90-day mortality (–0.14; p < 0.01).

Calibration plots comparing observed versus predicted 
risks of each outcome are shown in Figure 2 and e-Figure 1 
(Supplemental Digital Content 1, http://links.lww.com/CCX/
A128). The identity line is indicative of a perfect model, in 
which the observed number of events is equal to the predicted 
risk across the range of estimated values (i.e., 0–100). Visual 
inspection of observed-to-expected (OE) risk estimates indi-
cates that all risk models were well calibrated for their own out-
comes (RMSE = 5–9) except died-hosp model (RMSE = 15) on 
the testing dataset. However, models were miscalibrated when 
predicting other outcomes (RMSE = 8–35). For example, the 
composite ICU72/died-hosp model overpredicted 90-day mor-
tality (OE risk: 18% vs 25%). Conversely, the died-hosp (OE 

risk: 42% vs 25%) and died30 (OE risk: 37% vs 25%) models 
underpredicted 90-day mortality.

DISCUSSION
In this study of patients at risk for sepsis, we illustrate several con-
siderations for applying predictive models to outcomes other than 
those from which the models were initially derived. As hypoth-
esized, models derived using readily available outcomes (i.e., 
hospital morality and/or 72-hr ICU stay) showed incremental 
decrease in discrimination when applied to more patient-centered 
outcomes (i.e., 30- and 90-d mortality), although the absolute dif-
ference in AUC was small and of unknown clinical significance.

Second, our results highlight the potential for miscalibration 
when applying models to alternate outcomes. Often model evalu-
ations focus on measures of discrimination (i.e., Do patients with 
the outcome have higher risk predictions than those without?) as 
measured by concordance statistics (e.g., AUC) more than calibra-
tion (i.e., Do x of 100 patients, with a risk prediction of x% expe-
rience the outcome?), which is assessed graphically and with OE 
ratios. A model with poor calibration could have important impli-
cations when applied in clinical situations. For example, the ICU 
72/died-hosp model overpredicted 30-day mortality, which could 
lead to unnecessarily providing additional resources to patients 
deemed high risk or inappropriately counseling to deescalate care. 
Conversely, the died-hosp model underpredicted 30- and 90-day 
mortality. Thus, models derived using this outcome might not 
accurately identify high-risk patients who survive hospitalization 
but ultimately succumb to sepsis following longer-term sequalae. 
We note that in certain situations, clinical care has been improved 
by simply categorizing patients into broad risk categories (e.g., 
low, medium, and high), which would diminish the importance 
of precision in calibration (17). As such, the decision to apply risk 
models to outcomes other than what was studied will be nuanced.

Our study has several key strengths. First, it included over 
50,000 admissions and a heterogeneous patient population. 
Second, our study investigated predictors obtained within the first 
24 hours of presentation, integrating both clinical and administra-
tive data in contrast to other studies that include only physiologic 
variables or only variables available too late for an intervention 
to alter the clinical trajectory. This near-real-time risk modeling 
strategy can optimize value by matching resources to high-risk 
patients early in the hospitalization. It can also be valuable to 
inform patient selection for future pragmatic trials. This is the first 
study to our knowledge to investigate the differences in predic-
tors of hospital mortality, 30- and 90-day mortality, and composite 
hospital mortality and ICU length of stay and the implications the 
selected outcome has on model performance. This study uniquely 
evaluates model calibration across outcomes, an important model 
parameter that is frequently overlooked.

There are important limitations to this study. Notably, our study 
was conducted within one large integrated healthcare system, 
which may limit external generalizability. However, the population 
was selected from 12 hospitals with diverse characteristics. Our 
cohort may reflect an overall less severely ill population due to our 
selection strategy. We deliberately applied broad clinical data to 
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define a population of patients with suspected infection to mirror 
data that would be available at the time of clinical decision-mak-
ing. Despite this, observed mortality rates were similar to the pop-
ulation used to originally derive and validate the qSOFA tool (1).  
Further, although we evaluated risk models developed from 

routinely collected data elements that are available in the EHR, the 
complexity of the models derived to predict the study outcomes 
requires computational bandwidth and may not be readily recreated 
in other settings. Finally, we used the Social Security Death Master 
File to track 30- and 90-day mortality, which may underestimate 

TABLE 1. Characteristics of Clinically Suspected Infection Study Cohort

Characteristics Overall
Training Dataset (January 1,  
2014~December 31, 2016)

Testing Dataset (January 1,  
2017~September 30, 2017)

n 52,184 41,757 10,427

Age at admission, median (IQR) 60 (46–71) 60 (46–72) 60 (46–71)

Male gender, n (%) 23,868 (45.7) 18,906 (45.3) 4,962 (47.6)

Race, n (%)

  Black 13,485 (25.8) 10,778 (25.8) 2,707 (26.0)

  White 35,661 (68.3) 28,639 (68.6) 7,022 (67.3)

  Other 3,038 (5.8) 2,340 (5.6) 698 (6.7)

Insurance, n (%)

  Medicaid 8,820 (16.9) 7,348 (17.6) 1,472 (14.1)

  Medicare 27,125 (52.0) 21,645 (51.8) 5,480 (52.6)

  Commercial 11,242 (21.5) 8,938 (21.4) 2,304 (22.1)

  Self-pay 4,331 (8.3) 3,218 (7.7) 1,113 (10.7)

  Other/unknown 666 (1.3) 608 (1.5) 58 (0.6)

CCI, median (IQR) 4 (2–7) 4 (2–7) 4 (2–7)

  CCI ≥ 5, n (%) 25,262 (48.4) 20,130 (48.2) 5,132 (49.2)

qSOFAa, median (IQR) 1 (0–1) 1 (0–1) 1 (0–1)

  qSOFA ≥ 2, n (%) 9,829 (18.8) 7,756 (18.6) 2,073 (19.9)

GCSa, median (IQR) 15 (14–15) 15 (14–15) 15 (14–15)

  GCS < 15, n (%) 15,008 (28.8) 11,822 (28.3) 3,186 (30.6)

SBPa, median (IQR) 102 (90–115) 102 (90–115) 102 (90–115)

  SBP > 90 mm Hg, n (%) 39,058 (74.8) 31,283 (74.9) 7,775 (75.6)

Respiratory ratea, median (IQR) 23 (20–28) 23 (20–28) 23 (20–29)

  Respiratory rate > 20 breaths/min, n (%) 32,629 (62.5) 26,106 (62.5) 6,523 (62.6)

Lactatea, median (IQR) 1.7 (1.2–2.8) 1.7 (1.2–2.8) 1.7 (1.1–2.8)

  Lactate > 2 mmol/L, n (%) 13,370 (25.6) 10,714 (25.7) 2,656 (25.5)

Clinical outcomes, n (%)

  ICU admitted 15,083 (28.9) 12,117 (29.0) 2,966 (28.4)

  ICU LOS > 72 hr 5,716 (11.0) 4,584 (11.0) 1,132 (10.9)

  Hospital mortality 2,030 (3.9) 1,638 (3.9) 392 (3.6)

  Hospital mortality or ICU LOS > 72 hr 6,659 (12.8) 5,347 (12.8) 1,312 (12.6)

  30-d mortality from admission 3,417 (6.5) 2,756 (6.6) 661 (6.3)

  90-d mortality from admission 5,655 (10.8) 4,532 (10.9) 1,123 (10.8)

CCI = Charlson Comorbidity Index Score, GCS = Glasgow Coma Scale, IQR = interquartile range, LOS = length of stay, qSOFA = quick Sepsis-Associated Organ 
Failure Assessment, SBP = systolic blood pressure.
aPhysiologic measures and laboratory values captured within 24 hr from emergency department presentation.
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mortality in some populations (18). Our hybrid approach that com-
bines internal health system and national mortality data attempts to 
overcome previously described limitations, but it is possible that our 
data still underestimate the different mortality rates.

CONCLUSIONS
Previous studies on risk stratification of suspected sepsis patients 
have developed prediction models using different outcomes. This 
variability in the outcome of interest, along with differences in 
patient populations, definitions of model performance, and study 
design makes it challenging to compare model performance across 

studies. Our work provides clarity by demonstrating how model 
performance and predictors can differ depending on the outcome 
studied. We illustrate the trade-off in using models built on readily 
available hospital outcomes data to predict longer-term events that 
may be more important to patients. Clinical application of sepsis 
risk models and future studies should consider these findings.
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TABLE 2. Model Performance Across Different Selection of Outcomes on Testing Dataset

Model

Outcome

Died-Hosp ICU72/Died-Hosp Died30 Died90

Died-hosp 0.88 (0.87–0.90) 0.86 (0.85–0.87) 0.85 (0.84–0.87) 0.81 (0.80–0.83)

ICU72/died-hosp — 0.90 (0.90–0.91) 0.81 (0.80–0.83) 0.76 (0.75–0.77)

Died30 — — 0.87 (0.85–0.88) 0.84 (0.83–0.85)

Died90 — — — 0.85 (0.84–0.86)

Died30 = 30-d mortality, died90 = 90-d mortality, died-hosp = hospital mortality, ICU72/died-hosp = composite of > 72-hr ICU stay or hospital mortality.
Model discrimination presented as area under receiver operating characteristic curve (AUC) and 95% CIs.
AUC and 95% CI generated by DeLong method.

Figure 2. Calibration plots for died-hosp, ICU72/died-hosp, died30, and died90 model against outcomes of interest on testing dataset. Calibration plots are 
depicted for each model and outcome pair. The x-axis of all inner plots is the expected risk (%) for each of the outcomes of interest, whereas the y-axis represents 
observed risk (%) for each of the outcomes. The identity line is indicated with a dashed line and represents a perfectly calibrated model, in which the observed 
number of events are equal to the predicted number of events. The solid line indicates the actual number of observed events across the range of predicted risk 
values (i.e., 0–100). The area within the 95% confidence band around each of the observed estimates is shaded gray. Root-mean-square error (RMSE) between 
prediction models (solid line) and the perfectly calibrated model (dashed line). The circles illustrate examples comparing observed 90-d mortality versus expected 
risk predicted by 1) died-hosp, 2) ICU72/died-hosp, and 3) died30 models. At expected risks of 25%, died-hosp and died30 models underpredicted the 90-d 
mortality risk (observed risk = 42% and 37%, respectively), while the ICU72/died-hosp model overpredicted the 90-d mortality risk (observed risk = 18%).  
Died30 = 30-d mortality, died90 = 90-d mortality, died-hosp = hospital mortality, ICU72/died-hosp = composite of > 72-hr ICU stay or hospital mortality.
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