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Introduction 
Eye tracking (ET) has proven to be a powerful tool for 

analyzing behavioral patterns, both in laboratory and in 
real-world environments (Bulling, Weichel, & Gellersen, 
2013; Causse et al., 2019). It has demonstrated the ability 

to reveal and quantify cognitive strategies during goal-ori-
ented tasks (Hou, Chang, & Sung, 2009). Due to easier ac-
cessibility of the technology in recent years, it has been 
increasingly used for the investigation of visual expertise 
in medicine (Castner et al., 2020; Fox, 2017),  in order to 
increase the effectiveness and diagnostic accuracy of phy-
sicians-in-training (van der Gijp et al., 2017). 

One of the most established ET methods is the Area of 
Interest (AOI), sometimes referred to as regions of interest, 
analysis, where the gaze point is mapped to predefined ar-
eas that are of interest to the evaluator (Holmqvist et al., 
2011). How AOIs are defined and the way in which the 
data is subsequently used to draw conclusions, varies from 
case to case (Blascheck, 2017). For manual tasks, AOIs 
can be hand-held objects, interface buttons, or screens - 
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Eye tracking (ET) has shown to reveal the wearer’s cognitive processes using the measure-
ment of the central point of foveal vision. However, traditional ET evaluation methods have 
not been able to take into account the wearers’ use of the peripheral field of vision. We 
propose an algorithmic enhancement to a state-of-the-art ET analysis method, the Object-
Gaze Distance (OGD), which additionally allows the quantification of near-peripheral gaze 
behavior in complex real-world environments. The algorithm uses machine learning for area 
of interest (AOI) detection and computes the minimal 2D Euclidean pixel distance to the 
gaze point, creating a continuous gaze-based time-series. Based on an evaluation of two 
AOIs in a real surgical procedure, the results show that a considerable increase of interpret-
able fixation data from 23.8 % to 78.3 % of AOI screw and from 4.5 % to 67.2 % of AOI 
screwdriver was achieved, when incorporating the near-peripheral field of vision. Addition-
ally, the evaluation of a multi-OGD time series representation has shown the potential to 
reveal novel gaze patterns, which may provide a more accurate depiction of human gaze 
behavior in multi-object environments.  
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generally, any visible parts of the physical environment. 
By mapping AOI Hits, where each fixation is assigned to 
the looked-at AOI, the gaze data is given semantic mean-
ing (Raschke et al., 2014). The resulting fixation count can 
be subsequently used to calculate a variety of AOI metrics, 
dwell times (Al-Moteri, Symmons, Plummer, & Cooper, 
2017) or AOI revisits (Guo et al., 2016), which in turn en-
able more in-depth behavioral analysis.  

Even though it has been shown that individuals can 
perceive targets without looking at them directly 
(Goldberg & Helfman, 2010), current gaze matching 
methods are restricted to the use of a mere fraction of the 
human eyes' visual field, neglecting the use of peripheral 
vision. Starting from the center of the gaze, the human 
fields of vision consist of: foveal vision (< 2° diameter), 
colloquially called sharp vision, and peripheral vision (> 
2°), including parafoveal (~ 5°-9°) and perifoveal (~ 9°-
17°) vision (Strasburger, Rentschler, & Jüttner, 2011; 
Wandell, 1995).  

For mobile or wearable ET systems, AOI Hit analysis 
has always been more challenging due to the relative 
movements between the head and the AOIs (e.g. hand-held 
objects) in the recorded scene. The mapping of the gaze 
point to AOIs is therefore predominantly carried out man-
ually, making the measurement of the use of peripheral vi-
sion unfeasible. During manual gaze mapping, an analyst’s 
decision is limited to whether the gaze point, representing 
the foveal vision, lies within the constraints of the pre-de-
fined AOIs, or not. Contrary to findings from previous 
studies, this evaluation method limits our attentional ca-
pacities to register one object at a time.  

Recent applications of deep convolutional neural net-
works have used image segmentation to detect objects in 
mobile ET recordings and provided a way to automate the 
mapping of the gaze onto these detected AOIs (Wolf, 
Hess, Bachmann, Lohmeyer, & Meboldt, 2018). The auto-
mated gaze-object mapping algorithm processes each fix-
ation as a pair of x- and y coordinates. Until now, this 
method has reduced foveal vision to a single pixel within 
the recorded scene, which has been shown to lead to an 
omission of a majority of fixations, even though minimum 
calibration requirements were fulfilled (Gomolka, Kordos, 
& Zeslawska, 2020).  

The noise-robustness of eye tracking systems (Kenneth 
Holmqvist, Nyström, & Mulvey, 2012) and the choice of 
the size and shape of AOIs (Hessels et al., 2016) for opti-
mal AOI mapping has long preoccupied researchers. Dur-

ing gaze mapping, AOIs that are drawn closely around ob-
jects of interest can cause false negatives (fixations that 
belongs to the object but is not mapped), while objects 
with large AOI paddings can equally cause false positives 
(fixations that belong to other objects) (Orquin, Ashby, & 
Clarke, 2016). Researchers have explored various ways to 
optimize AOI sizes to increase noise-robustness during 
AOI mapping, most popularly by increasing the area 
around objects by specific margins (Hessels et al., 2016). 
However, to our knowledge, no known method exists that 
enhances data mapping by measuring the distance of the 
gaze point to AOIs and the object’s position within an op-
erator’s field of vision.  

In the case of multi-object environments, an operator 
can manipulate several small tangible objects simultane-
ously. Consequently, experienced operators have been 
shown to expand their visual field to incorporate areas us-
ing their peripheral vision (Krupinski et al., 2006). As a 
result, the gaze point can often lie between several of these 
objects without fixating on a specific one. Using the binary 
matching of a one-fixation-to-one-AOI approach, as tradi-
tional methods do, the central foveal attention to single ob-
jects can be mapped, while neither the information of the 
attention nor the position of other objects that lie within 
the close vicinity of the gaze point can be recorded. It is 
therefore unknown whether, in these environments, and 
without the consideration of the near-peripheral field of vi-
sion, is sufficient to represent the operator's actual gaze be-
havior. To include the fields of near-peripheral vision in 
the data evaluation and to make AOI analysis applicable in 
multi-object environments, we hereby propose a new gaze 
metric: the Object-Gaze Distance (OGD). The OGD cre-
ates a positional relationship between the gaze point and 
the AOIs, by calculating a 2D Euclidean pixel distance be-
tween the gaze point and the segmented mask of each ob-
ject of interest, provided through an image segmentation 
algorithm. This shall allow us to evaluate the position of 
an object within the operator’s field of vision, while ena-
bling the spatial mapping of all fixations to each AOI, in-
creasing the amount of information that we can leverage 
for human behavior analysis.  

In this article, we compared the proposed method to a 
state-of-the-art automated AOI Hit method and quantita-
tive assessments on the number of fixation after semantic 
mapping are made, using mobile eye tracking recordings 
from a real surgical case as an exemplary case. Further-
more, we conducted a qualitative investigation on novel 
OGD based behavioral patterns to evaluate the operators’ 
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gaze behavior in the given task. The goal was to examine 
and discuss the potential benefits and limitations of the 
proposed gaze metric with respect to the use of peripheral 
vision in multi-object environments and its suitability for 
wearable support systems. 

Methods 
In this section, the details of how the data was recorded in 
the surgical environment, the functionality of the presented 
algorithm, and the analysis performed for the evaluation of 
the OGD metric, are described. 

Participants 
Eye movements from two experienced spine surgeons 

(male, aged 37 and 39, respectively), from a (withheld for 
blind review) hospital, were recorded during spondylosis 
on real patients. Each surgeon had participated in more 
than 1200 spondylosis procedures prior to data recording.  

Stimulus 

Spondylosis is a common surgical intervention for spi-
nal stabilization in patients with debilitating back pain and 
neurogenic symptoms. In this procedure, medical screws 
are commonly placed in at least two vertebrae and con-
nected by a rod to decompress the neuronal structures. In 
this article, each evaluated procedure of the data set in-
cludes the placement of one screw using a specialized 
screwdriver. Data recording started from the moment the 
surgeon first grabbed the screwdriver and ended when the 

placement of the screw was concluded by the removal of 
the tool. Figure 1 shows a medical screw and screwdriver 
used during spinal screw placement, which was defined as 
the two primary AOIs used for the subsequent investiga-
tions, in the procedural context. As the surgeons’ visual 
attention is mostly located within the wound during surgi-
cal execution, we expect that choosing the open wound as 
an additional AOI provides only limited informational 
value, similar to the background. Splitting the wound into 
several sub-AOIs would allow a more fine-grained AOI 
Hit analysis, but cannot be done reliably and comparably 
due to the complexity of the surgical scene and was there-
fore omitted. 

Eye Tracking System 
Data was collected using SMI’s ETG 2 eye tracking 

glasses with a frontal camera sampling rate of 60 Hz and a 
scene resolution of 1280 x 960 px (viewing angle: 60° hor-
izontal, 46° vertical). Gaze point measurement accuracy is 
0.5° over all distances.  

During data recording, ET glasses were tightened by 
the moderator, using the device’s headband to prevent de-
vice slippage. We conducted the calibration using the SMI 
recording unit and a three-point calibration, where the 
wearer was asked to fixate three specific markers (top-left 
corner, top-right corner, and the middle of the bottom 
edge). During each marker fixation, the experimenter man-
ually confirmed these marker locations on a live-view of 
the scene camera on the recording device. Afterward, the 
experimenter made sure that both eyes were clearly visible 

Figure 2. Stimuli of the surgical procedure, showing the task re-
lated AOIs screw (blue) and screwdriver (red) and a visualization 
of the foveal, parafoveal and perifoveal field of vision around the 
gaze point (red dot).	

Figure 1. The main surgical tools used during the spondylosis 
screw placement. A specialized operational screwdriver 
(DePuy Synthes) is connected to the medical screw during 
placement and disconnected after the successful placement	
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on the eye camera recordings and calibration was validated 
using a three-point validation of specific points within the 
task environment. If calibration accuracy was not suffi-
cient, calibration and validation were repeated.  

The eye tracking accuracy of  all procedures was 96.68 
± 0.93 %. However, even though tracking accuracy was 
sufficiently high, the lighting conditions in the operating 
room environment proved to be challenging for the eye 
tracking equipment. Due to the placement of the bright op-
eration lights above the surgeons, we observed that incom-
ing IR light occasionally caused a gaze point offset. To 
counter this problem, an infrared shield was attached to the 
top of the ET glasses halfway through data recording, 
which successfully increased gaze point accuracy. Conse-
quently, in order to allow the most accurate gaze analysis, 
we only included those trials that showed no gaze shifts in 
the recordings. Thus, for the final analysis 11 of 18 record-
ings were used, while 7 recordings had to be excluded. 

Computation of the Object-Gaze Distance 
(OGD) 

The semantic mapping of fixations for the AOI Hit 
method was implemented using the automated AOI map-
ping algorithm cGOM (Wolf et al., 2018). The algorithm 
detects and segments pre-trained objects, here the screw 
and the screwdriver, using the Mask R-CNN network (He, 
Gkioxari, Dollár, & Girshick, 2017) and, subsequently, de-
termines whether the gaze of each fixation lies within the 
constraints of the 2D pixel (px) coordinate matrix of the 
segmented object masks. If gaze coordinates do not coin-
cide with any AOI matrices, fixations are assigned the la-
bel ‘background’ and omitted from further gaze behavior 
analysis. Figure 2 shows the AOIs screw (highlighted in 
blue) and screwdriver (highlighted in red), and the gaze 
point (red dot) as detected by the cGOM algorithm within 
the scenery.  

For each fixation, the OGD extends AOI mapping by 
calculating a positional relationship between the gaze co-
ordinate and an AOI in the image plane. The distance is 
expressed through the minimal 2D Euclidean px value be-
tween each AOI mask and the gaze coordinate of a fixa-
tion. Thus, in contrast to the traditional AOI Hit mapping 
method, all fixations are now mapped to each pre-trained 
object of interest, continuously throughout the whole trial. 
The value of each OGD can range between 0 px, represent-
ing an AOI Hit, and 1600 px, which equals the length of 
the diagonal of the SMI ET camera resolution. In the case 
that one object was not detected by the algorithm in the 

video frame at all, the OGD was set to take on the value of 
1600 px, which is the upper threshold for the subsequent 
analysis.  

The training of the convolutional neural network 
started with the initial weights of the already pre-trained 
MS COCO data set (Lin et al., 2014). This so-called trans-
fer learning approach has been the state-of-the-art in image 
segmentation in cases with limited data sizes (Han, Liu, & 
Fan, 2018). Pre-trained CNNs have been shown to outper-
form fully trained networks in image classification (Shallu 
& Mehra, 2018) because it allows researchers to make use 
of the extracted features that have already been learned on 
a large data set (Fei-Fei, Fergus, & Perona, 2006), while 
building the classification layer in a more accurate time-
saving way (Rawat & Wang, 2017). For our surgical case, 
we used 420 images of the screw insertion, 82 % of which 
were used for training and 18 % for the validation of the 
algorithm. We selected these images from screw place-
ment recordings using a random frame extraction algo-
rithm and revised them to assure that each distinct scene of 
the process was represented in the image data set. After 
training was completed, the new weights were used to 
evaluate the target data set. The target data set consisted of 
11 spinal screw placement procedures and a total of 290 
fixations (average fixation duration = 0.65 ± 0.86 s). To 
assess the quality of the object segmentation 100 frames 
were randomly selected, labeled manually with masks, 
and, finally, compared with the predictions. The evaluation 
of the mask quality was based on the Intersection over Un-
ion (IoU) metric, which is calculated by dividing the area 
of overlap between the predicted and the manually labeled 
mask by their area of union. The IoU was calculated based 
on 100 ground truth images. 

The Peripheral Field of Vision 
For the different fields of vision the following termi-

nology is used in the subsequent analysis: Foveal vision (< 
2 °) and peripheral vision, including parafoveal (<  9 °) and 
perifoveal (< 18°) vision (Strasburger et al., 2011; 
Wandell, 1995). Figure 2 shows a visualization of the dif-
ferent fields of vision, each displayed as a ring around the 
gaze point. With the given ratio between viewing angle 
and scene resolution of the ET glasses, we transformed the 
fields of peripheral vision into the px ranges shown in Ta-
ble 1. Here, the near-peripheral vision is restricted to a 60° 
degrees visual angle, which was given by the maximum 
measurable viewing angle of the SMI ET glasses.  
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Fields of vision Degree of Diam-
eter [°] 

Pixel Threshold 
OGD [px] 

Foveal < 2 ~20 
Parafoveal < 9 ~90 
Perifoveal < 18 ~180 
Near-Peripheral <	60 ~640 

 
 

Data Analysis 

In this article, the benefits of OGD as an improved 
extension of traditional AOI Hit mapping analysis are 
evaluated in three parts. First, the computed AOI Hits and 
OGDs for AOIs screw and screwdriver are visualized for 
two exemplary screw placements, in order to evaluate the 
number of mapped fixations in each method.  Second, a 
parameter study was conducted to investigate the number 
of fixations that can be exploited for behavioral analysis, 
for both the AOI Hit and OGD methods. We calculate the 
fixation rate (FR) using AOI Hits and the rate of fixations 
found within the foveal and near-peripheral field of vision, 
to compare the number of interpretable fixations and to 
thereby infer the gained informational value. The FR is 
calculated using Equation 1 (Sharafi, Shaffer, Sharif, & 
Gueheneuc, 2016).  

 
𝐹𝑅 =	 !"#$%	'()*+,	"-	./0$#/"12	$22/31+4	#"	567

!"#$%	'()*+,	"-	./0$#/"12
     (1) 

The px distance parameter was varied between 0 and 
1600 px, using 10 px steps. Different fields of vision, such 
as foveal, parafoveal and perifoveal vision were utilized as 
points of reference in the analysis. For reasons of 
readability, only results between 0 and 200 px, which 
corresponds to the perifoveal field of vision, are discussed 
in this article. Third, we explore the benefits of a multi-
object Object-Gaze Distance (multi-OGD) visualization 
for AOIs screw and screwdriver by qualitatively 
examining possible novel gaze patterns. Characteristic 
trends of the multi-OGD curves – for example, the 
simultaneous increase of gaze object distances – are shown 
and discussed in the given data set. 

 

 

Results 
Figure 3 shows the distribution of the calculated IoUs 

of AOI screw (70.65 ± 23.91 %) and AOI screwdriver 
(62.93 ± 23.48 %).  

 

Comparison of AOI Hits and Object-Gaze 
Distance 

Figure 4 shows the OGDs of AOIs screw and screw-
driver during one screw placement procedure in blue and 
red, respectively. Fixations that were mapped as AOI Hits 
by the cGOM algorithm are marked as green bars and the 
near-peripheral fields of vision are shown as horizontal 
lines. Additionally, five scene images from the procedure 
recordings are provided with dotted vertical lines, where 
the gaze point is visualized by a red dot and detected AOIs 
screw with a blue and screwdriver with a red mask.  

The OGD of AOI screw shows that the screw was 
within a close distance, mostly within the foveal field of 
vision, throughout the majority of the procedure. In com-
parison, the AOI Hit bars (i.e. OGD = 0 px) show that the 
cGOM algorithm has detected only 7 fixations, two of 
which are visualized in images A and E. The distance be-
tween the AOI screw mask and gaze coordinate in images 
B and D are shown to be still within the foveal field. How-
ever, since these fixations were not intersecting the AOI 
mask area, no AOI Hit could be mapped. In image C, AOI 
screw was not detected by the neural network within the 
image, leading to a distance value outside of the frame of 
reference (1600 px). The progression of the OGD curve of 
AOI screwdriver indicates that the tool was further away 

Table 1. Calculated thresholds for different fields of vision in 
pixel, based on the resolution of the recording device. 

Figure 3. Boxplot showing the distribution of the calculated in-
tersection over union (IoU) of the segmented masks for AOIs 
screw and screwdriver.	
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Figure 4. The Object-Gaze Distance (OGD) over the course of one exemplary procedure in pixels (px), for AOIs screw (blue solid 
line) and screwdriver (red dotted line). AOI Hits (OGD = 0 px) are highlighted using green bars and show that no AOI Hits were 
detected for screwdriver. A, B, C, D and E show snapshots from the recordings with the segmented AOI masks and the gaze point 
(vertical dotted lines). Horizontal lines indicate the threshold pixel distance for foveal (< 20px), parafoveal (< 90px) and perifoveal 
vision (< 180px).  

Figure 5. The OGD of a second exemplary spondylosis procedure, showing that only one overall fixation was detected as an AOI Hit 
(OGD = 0 px) for AOI screwdriver, while no AOI Hits could be detected for AOI screw. Again, the OGD for AOIs screw (blue solid 
line) and screwdriver (red dotted line) are provided and A, B, C, D and E show snapshots from the recordings with the segmented 
AOI masks and the gaze point (vertical dotted lines). 
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from the gaze point, mostly within the perifoveal and par-
afoveal field of vision. Moreover, no direct AOI Hits were 
detected by the automated mapping tool on AOI screw-
driver throughout the entire screw placement procedure. 
The distance between AOI screwdriver and the gaze point 
can be seen to decrease continuously as the screw place-
ment progresses.  

Figure 5 shows the OGDs of AOIs screw and screw-
driver for the second exemplary screw placement proce-
dure. Compared to the previous case, no AOI Hits were 
detected for AOI screw. The AOI was found within the 
parafoveal field of vision for the majority of the fixations. 
Images B and E show AOI screw inside the foveal field of 
view, while in images A and C it is located further away. 
In image D, the screw could not be detected by the neural 
network, which is reflected by a distance value of 1600 px.  

For AOI screwdriver, cGOM was able to map a single 
fixation as an AOI Hit, towards the end of the procedure 
(image E). The progression of the OGD curve closely re-
sembles that of the first screw placement, where the dis-
tance between screwdriver and gaze indicates the tool 
placement within the near-peripheral field of view. The 
distance reduced gradually with increasing trial duration. 
For images A, B, and C, the screwdriver was located fur-
ther away than the screw, which is explained by the fixed 
relative position between the entry wound, the screw, and 

the screwdriver. Similar to AOI screw, the screwdriver ob-
ject could not be detected in image D, leading to no AOI 
mask and a distance value of 1600 px. 

Consideration of Fixations inside the Near-
Peripheral Fields of Vision 

From the 11 analyzed procedures of the data set, 290 
fixations were registered with a recording time of 243.63 s 
(average per procedure: 22.15 ± 6.79) for all procedures. 
Figure 6 shows the fixation rate (FR) in 10 px steps, vary-
ing from 0 to 200 px and averaged over all trials. At dis-
tance 0 px, the equivalent to the FR of AOI Hits, the FR of 
AOI screw was 23.8 %, while the FR of AOI screwdriver 
was 4.5 %, leaving more than 70 % of unaccounted fixa-
tions. For fixations within a range of distance 0 < 20 px, 
the approximate field of foveal vision, the FR of mapped 
fixations increased to 51.4 % and 11.4 %, respectively. 
Consequently, for half of all fixations, AOI screw were 
found inside the surgeon’s main area of sharp vision and 
thus, in the area of visual attention. Moreover, even though 
the surgical screwdriver was the surgeon’s main tool of 
manual manipulation, for only a small number of fixations, 
the AOI screwdriver was found within the area of foveal 
vision. For distances within the range of 0 < 90 px, the 
parafoveal field of vision, the FR of mapped fixations in-
creased to 78.3 % and 67.2 %, respectively.  

Figure 6. Fixation rate (FR) of the OGD for AOIs screw and screwdriver, averaged over the whole data set in 10 pixel (px) steps. 
Vertical lines indicate the threshold distances for foveal (<20px), parafoveal (< 90px) and perifoveal vision (< 180px). A colored bar 
over the curve indicates different fields of vision.  
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Expanding the analysis to inside the perifoveal field of 
vision (0 < 180 px), the FR of AOI screw was 82.1 % and 
the FR of AOI screwdriver was 86.9 %.  

Categorization of Novel Visual Patterns for 
Multi-Object Environments 

A qualitative analysis of the operators’ gaze behavior 
using the multi-OGD was conducted, which combines the 
distance of the gaze to both AOIs into a single figure. We 
discovered that recurring trends might exist for multi-
OGDs inside the perifoveal field of vision. Figure 7 pre-
sents an excerpt of the multi-OGD for one spinal screw 
placement. The qualitative analysis of the graphs yielded 
two gaze patterns in both the near-peripheral and the pe-
ripheral field of vision. Gaze patterns in the near-periph-
eral field of vision are shown in Figure 7A:  

1. The two task relevant objects have a different relative 
positions to the gaze point, AOI screw being closer 
and AOI screwdriver further away. An AOI Hit on 
AOI screw is made, moving the distance to 0 px, while 
the distance to AOI screwdriver increases. The gaze 
then reverts back to a similar position as before the 
AOI Hit. The distance curve behavior resembles a 

quick glance onto one object, possibly for status 
checking purposes. The pattern is shown twice in Fig-
ure 7 and was found 16 times (mean: 1.45 ± 0.89) over 
all procedures.  

2. The gaze distance to both AOIs decreases simultane-
ously, until both lie within the foveal field of vision, 
with an AOI Hit on one AOI, screwdriver. The gaze 
point has moved to the point of interconnection be-
tween these two objects. The pattern was found an 
overall of 16 times (mean: 1.09 ± 1.38) over all pro-
cedures.  

Gaze patterns in the peripheral field of vision are 
shown in Figure 7B: 

3. The gaze point distance to both objects increases sim-
ultaneously from the inside the perifoveal field of vi-
sion into the peripheral field of vision. After a few fix-
ations the OGDs decrease back to within the perifo-
veal field of view, showing an equal distance to both 
AOI screw and screwdriver. This gaze pattern was 
found 3 times (mean: 0.27 ± 0.45) in all procedures.
  

Figure 7. Multi-Object-Gaze Distance (multi-OGD) graph for simultaneous analysis of OGDs of AOIs screw and screwdriver. Arrows 
in the color of the corresponding Area-of-Interest indicate the characteristic direction of movement for each object. Panel A shows two 
examples of gaze pattern 1), a characteristic movement of the OGDs of screw and screwdriver in opposite directions and one example 
of gaze pattern 2, a simultaneous decrease of both OGDs, including the AOI Hit (0 px) on one of the AOIs. Panel B shows one example 
of pattern 3, simultaneous increase and decrease of both OGDs outside of the near-peripheral field and one example of pattern 4, where 
the OGD of only one AOI increases to outside of the field of view, while the other stays close to the gaze point.  
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4. Both objects are located close to the gaze, within the 
perifoveal field of vision. The OGD of AOI screw in-
creases to a value beyond the defined pixel threshold, 
while the OGD of the object screwdriver remains 
within the same relative distance. This trend shows the 
disappearance of one object from the operator’s field 
of view. In Figure 7B, this pattern occurs at the end of 
the trial, potentially indicating the end of the proce-
dure, when the screw is driven into the spine and con-
cealed by the surrounding flesh. This gaze pattern was 
found in all but one of the 11 procedures (mean: 1.00 
± 0.43). 

Discussion 
The goal of this article was to investigate the benefits 

of the newly introduced eye tracking data mapping method 
Object-Gaze Distance. Possible enhancements over tradi-
tional AOI mapping methods were explored and the suita-
bility for an in-depth understanding of human behavior in 
multi-object environments was assessed.  

Our results have shown that in cases where the majority 
of fixations cannot be mapped as an AOI Hit onto any ob-
ject of interest used by the surgeon, an alternative method 
is required to acquire sufficient gaze data. In our case, 
choosing the wound area as an additional AOI could ac-
count for most of the fixations that would otherwise be 
mapped to AOI background. Contrary to the OGDs, the 
newly achieved high number of mapped fixations does not 
provide additional informative value about the surgeons’ 
gaze behavior within the wound. 

When working with AOI methods, noise robustness 
and choice of AOI size for optimal mapping is an im-
portant topic. In their work, Hessels et al. (2016) have 
shown that by increasing the area around objects, using 
padding of 1.5 degrees, more fixations can be mapped to 
the chosen AOIs. Thus, for similar types of stimuli, they 
concluded that, by adopting larger AOIs, the most objec-
tive noise-robust results could be achieved. While in re-
mote eye tracking studies of sparse static stimuli, the de-
gree, size, and positioning of AOIs can be effortlessly ad-
justed by the analysts, in mobile eye tracking object shapes 
are highly dynamic and objects of interest can be small and 
closely positioned to one another. Therefore, increasing 
the AOI size around objects of interest can result in areas 
that exceed the size of the actual objects by several orders 

of magnitude. In our study, we assume that the most accu-
rate depiction of an operator’s gaze behavior can only be 
achieved using a close contour AOI production method, 
such as Mask R-CNN and cGOM (Wolf et al., 2018), that 
continuously adjusts AOI sizes to the actual object size 
within the dynamic scene. One advantage of our presented 
method is that it can be equally used for the analysis of 
AOI Hits, if traditional metrics are of interest to the re-
searchers. Here, we would propose that the gaze point co-
ordinate is extended to include the area of foveal vision 
using an OGD < 20 px, or an OGD = 0 px with additional 
AOI padding.   

If multiple objects are close to one another, as were 
screw and screwdriver in our case, AOI overlaps can oc-
cur, leaving the analysts to predefine which of these AOIs 
the fixations will be assigned to (Orquin et al., 2016). In 
remote eye tracking, multiple options have been suggested 
to deal with these overlapping AOIs. Holmqvist et al. 
(2011) advise including a free space of 1.5 degrees size 
between AOIs to decrease the number of false-positive fix-
ation assignments. Clarke et al. (2013) have dealt with the 
overlap problem by assigning these fixations to the small-
est AOI containing it, while Yun et al. (2013) have allowed 
these fixations to be assigned to more than one AOI. Here, 
our OGD method removes the necessity of predefining an 
assignment logic, by enabling a simultaneous mapping of 
fixations to multiple AOIs. We are therefore able to gain 
the information of each object’s position within the 
wearer’s field of vision while evading the AOI overlap 
problem.  

As each AOI evaluation relies heavily on the accuracy 
of the eye tracker, even small offsets and device slippage 
(Niehorster et al., 2020) can lead to a loss of data. While 
the binary assignment of each fixation to only one-AOI-at-
a-time can limit the amount of information that can be 
gained from the operator’s visual behavior, the OGD can 
produce a substantial amount of processable (note that this 
is not equal to accurate) data even in the case of accuracy 
losses. Our proposed method, therefore, provides an en-
hancement to the current state-of-the-art, while it should 
by no means serve as a replacement to the acquisition of 
high-quality data. In the future, data accuracy losses could 
be simulated by adding Gaussian noise to the acquired 
data, to assess the robustness of OGDs and the resulting 
time series in these circumstances (Hessels et al., 2016).  

We want to mention here that the OGD does not per se 
increase the collected data (the number of fixations will 
not change), but in essence, multiplies the amount of data 
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that can be used for further behavioral analysis, creating 
time-series data for each pre-trained object. In future in-
vestigations, these time-series shall be analyzed using 
more data to verify the current findings and to automate 
behavior recognition. Mussgnug, Singer, Lohmeyer and 
Meboldt (2017) have shown in their work that a calculated 
2D distance between gaze and hands, using an RGB ap-
proach, can be utilized for the automated detection of cog-
nitive demanding phases. Using time-series classifiers 
(TSC), such as Dynamic Time Warping (Dau et al., 2018; 
Susto, Cenedese, & Terzi, 2018), support vector machines 
(Ramasubramanian & Singh, 2019), or image encoding 
based classifiers (Jastrzebska, 2020), algorithms could be 
trained for the detection of behavioral patterns in human 
tasks, using these gaze distances as an input parameter. 

In conclusion, we showed that the existing state-of-the-
art AOI evaluation method can reach its limits when used 
in a challenging real-world multi-object application. Our 
results imply that through the use of close contour object 
masks and the subsequent introduction of a measurable 
distance between gaze point and objects, the extend of a 
surgeon’s use of his foveal and peripheral field of vision 
can be visualized more accurately. Consequently, the in-
formation on the location of an object within the surgeon’s 
near-periphery can now be automatically quantified for an 
adequate behavioral analysis in multi-object environ-
ments.  

 In the analyzed surgical procedure, the analysis of 
multi-OGDs indicated novel gaze patterns, which have al-
lowed deeper insights into the operator’s behavior during 
tool handling. Even though the implications from the anal-
ysis resulted from a limited sample size of medical experts, 
the automated measurement of the object gaze distance 
nonetheless provides a novelty in the field of expert visual 
behavior analysis. Previously, several studies comparing 
experts and novices have shown that experts make more 
use of their near-peripheral vision as their experience 
grows, registering information from AOIs they are not di-
rectly looking at (Krupinski et al., 2006; Reingold & 
Sheridan, 2011). Consequently, for expertise research, the 
OGD algorithm enhances state-of-the-art behavioral anal-
ysis by enabling continuous automated measurement of 
experts’ use of peripheral vision.  

In the near future, it is expected that technological ad-
vancements in processing speeds and cloud computing 
will make it possible for wearable devices to incorporate 
the automated evaluation of these behavioral patterns. This 

will forge the way for reliable real-time step detecting sup-
port systems for more effective training and analysis of 
physicians-in-training, increasing the support in complex 
multi-object environments. 

Limitations 
Due to limited availability of spondylosis expert sur-

geons, along with often challenging lighting conditions, 
the analysis contains the data of only two experts. The 
analysis of more expert eye movements could help to con-
firm the quantitative findings of the multi-OGD. Further-
more, the object detection algorithm might be susceptible 
to fluctuations of segmented object masks due to the size 
of our used training set. While this creates a concern to a 
certain extent, we firmly believe that additional time in-
vested into image labeling, as well as advances in the neu-
ral network training methodologies, will further increase 
algorithm accuracy. The authors are aware that the OGDs 
presented in this article are based on a 2D calculation of 
the pixel distance between object mask and gaze point, 
which can lead to a parallax in the operator’s actual point 
of attention. With modern wearable systems available on 
the market, such as the Microsoft HoloLens 2, which in-
clude depth perception, two-dimensional inaccuracies will 
soon be accounted for. 

Conclusion 
Our introduction of the object-gaze distance has shown 

to substantially enhance conventional AOI evaluation in a 
real-world application in several ways. Quantification of 
near-peripheral gaze behavior not only allowed for more 
robust and in-depth analysis of gaze data, but also the in-
crease of obtained data quantity by several factors. Simul-
taneous representation of multi-object distances has led to 
the discovery of possible novel recurring gaze behaviors. 
Thus, we are convinced that the presented method for the 
measurement of near-peripheral vision can significantly 
improve the application of mobile ET in complex, cogni-
tively demanding scenarios and allow a more accurate de-
piction of operators’ visual behavior, such as during med-
ical procedures.  
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