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Abstract

Diffuse correlation spectroscopy (DCS) has been widely explored for its ability to measure

cerebral blood flow (CBF), however, mostly under the assumption that the human head is

homogenous. In addition to CBF, knowledge of extracerebral layers, such as skull thick-

ness, can be informative and crucial for patient with brain complications such as traumatic

brain injuries. To bridge the gap, this study explored the feasibility of simultaneously extract-

ing skull thickness and flow in the cortex layer using DCS. We validated a two-layer analyti-

cal model that assumed the skull as top layer with a finite thickness and the brain cortex as

bottom layer with semi-infinite geometry. The model fitted for thickness of the top layer and

flow of the bottom layer, while assumed other parameters as constant. The accuracy of the

two-layer model was tested against the conventional single-layer model using measure-

ments from custom made two-layer phantoms mimicking skull and brain. We found that the

fitted top layer thickness at each source detector (SD) distance is correlated with the

expected thickness. For the fitted bottom layer flow, the two-layer model fits relatively con-

sistent flow across all top layer thicknesses. In comparison, the conventional one-layer

model increasingly underestimates the bottom layer flow as top layer thickness increases.

The overall accuracy of estimating first layer thickness and flow depends on the SD distance

in relationship to first layer thickness. Lastly, we quantified the influence of uncertainties in

the optical properties of each layer. We found that uncertainties in the optical properties only

mildly influence the fitted thickness and flow. In this work we demonstrate the feasibility of

simultaneously extracting of layer thickness and flow using a two-layer DCS model. Findings

from this work may introduce a robust and cost-effective approach towards simultaneous

bedside assessment of skull thickness and cerebral blood flow.

Introduction

Microvascular blood flow ensures delivery of oxygen and nutrients to the tissue and subse-

quent removal of metabolic by-products from the tissue, hence crucial for healthy functionality
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of tissue and organs. On the other hand, abnormal blood flow in the vasculature were shown

to be associated with critical pathologies such as cardiovascular diseases, stroke, head trauma,

peripheral arterial disease, cancer, and other conditions where the impaired blood flow

impacts surrounding tissue [1–3]. As a result, continuous monitoring of blood flow is crucial,

and depending on the clinical need, physicians currently use a variety of non-invasive tech-

niques to monitor microvascular blood flow such as Magnetic Resonance Imaging (MRI), Pos-

itron Emission Tomography (PET), Computed Tomography (CT), etc [4–7]. However, the

currently available tools aren’t suitable for continuous blood flow monitoring as they entail

major disadvantages including discomfort to the patient, harm from the use of ionizing radia-

tion and contrast agents, poor portability and high cost [8–10]. In essence, what is needed in

healthcare is a non-invasive alternative which is safe, low cost, and easy to operate for long

periods of time at the patient bedside.

Diffuse correlation spectroscopy (DCS) is a diffuse optical technique that utilizes harmless

near-infrared light to measure deep tissue microvascular flow with the penetration depth in

centimeters [2, 11–16]. Like other diffuse optical methods such as Near Infrared Spectroscopy

(NIRS) and Diffuse Optical Spectroscopy (DOS), DCS is non-invasive and can be made to

have a high temporal resolution [2, 17]. DCS is relatively low-cost, easily portable, and is more

suitable for continuous bedside monitoring compared to other more well-known non-invasive

vascular imaging techniques such as MRI and US [4–6, 8–10]. Moreover, DCS is more sensi-

tive to the blood flow in capillaries and small vessels, making it potentially a better indicator of

tissue perfusion than methods which measure blood flow velocity in large vessels such as US

[18].

Conventionally, in continuous-wave DCS (CW-DCS), a long-coherence-length laser is

used to acquire local blood flow information by fitting the normalized electric field temporal

autocorrelation function (g1) to the measured temporal intensity fluctuations [2]. In the sim-

plest case, it is assumed that the tissue being measured is a homogeneous semi-infinite

medium. However, most biological tissues are layered with each layer encompassing different

physiological and optical properties–for DCS to measure the human brain, light must propa-

gate through multiple layers including scalp and skull [19].

Recent studies with DCS have accounted for the layered structure in head by exploring vari-

ous multi-layer analytical models. For example, Gagnon et al. proposed a two-layer analytical

model which was derived from a time-domain diffusion equation developed by Kienle et al.

specific to two-layered geometry [20, 21]. Using Monte Carlo (MC) simulations of the human

brain and experimental validation in a two-layer phantom, Gagnon and his colleagues demon-

strated that the two-layer model could distinguish between changes in the superficial layers

and the brain cortex. Alternatively, for the CW domain, Li et al. proposed a three-layer analyti-

cal model and demonstrated accurate separation of cortical hemodynamics from variations in

extracerebral layers such as scalp and skull in response to motor stimulations in human [22].

Few other studies with DCS have revealed the feasibility and reliability of the multi-layer ana-

lytical model [19, 23, 24]. Recent studies using MC simulations also showed that using a three-

layer model can improved the accuracy of the CBF extraction [25–27].

In a recent study that implemented a MC based multi-layer model using multi-distance

DCS measurements to extract changes in CBF, Carp et al. concluded that to recover accurate

cortical blood flow, a precise knowledge of scalp/skull thickness is essential [28]. In addition,

skull thickness is essential in determining skull deformation especially in the case of traumatic

brain injury (TBI) [29]. As a result, one can assume that the information of CBF added with

the knowledge of skull thickness may facilitate diagnosis and treatment strategies in care of

TBI and other brain complications. In this regard, current state of the art methods for quanti-

fying skull intactness are typically imaging modalities such as CT or US which offer many
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disadvantages including poor safety profile as mentioned above [8–10, 29]. In summary, con-

tinuous bedside monitoring to quantify both skull thickness and CBF is presently not available

for clinical use.

Towards this goal, we adapted a two-layer analytical model from the multi-layer model

described by Li et al. [22]. In this model, we assumed the skull as top layer with finite thickness

and the brain cortex as bottom layer with semi-infinite geometry; we then use it to fit for thick-

ness in the top layer thickness and flow in the bottom layer. The flow extracted from the pro-

posed model was tested against the conventional single-layer model using measurements from

custom made two-layer phantoms mimicking skull and the brain for various source-detector

(SD) separations. Lastly, since layer optical properties (absorption coefficient (μa) and reduced

scattering coefficient (m0s)) of the phantoms were assumed in the model, an error analysis was

conducted to explore how much an incorrect assumption of layer optical properties might

alter the model performance. This work explores the feasibility of simultaneous extraction of

layer thickness and flow, which may introduce a robust and cost-effective approach towards

simultaneous bedside assessment of skull thickness and CBF.

Methods

In this section, the theory of the single-layer and two-layer analytical models for CW-DCS are

explained. In addition, details on device instrumentation, data acquisition and processing

strategies are described. Lastly, details on fabrication of the two-layer phantoms and measure-

ment are outlined.

Single-layer analytical model

In DCS, the near-infrared (NIR) light is directed into a diffusive medium. Photons then

undergo dynamic phase shifts from the moving scatterers, i.e., red blood cells (RBC) [2]. Such

phase shifts give rise to temporally varying speckle patterns which contains dynamic informa-

tion of the scatterers. DCS measures the temporal fluctuation of the reflected light, from which

a metric for CBF can be computed. The temporal electric field autocorrelation function (G1) of

the scattered electric field (E(t)), which carries the dynamic properties of the scatterer, can be

written as [30]:

G1ðtÞ ¼ hEðtÞ � E
�ðt þ tÞi ð1Þ

where the brackets hi denote the average over time t, and τ is the delay time.

In semi-infinite homogeneous media, G1 can be described by the correlation diffusion

equation:

G1ðr; tÞ ¼
3m0s
4p

expð� KðtÞr1Þ

r1

�
expð� KðtÞr2Þ

r2

� �

ð2Þ

where

KðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3mam
0
s þ m

02
s k2

0
hDr2ðtÞi

q

ð3Þ

and

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z0

2
p

r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðz0 þ 2zbÞ
2

q ð4Þ

ρ is the source-detector distance,
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z0 ¼ 1=m0s; zb ¼
2

3m0s

1þReff
1� Reff

; Reff ¼ � 1:44n� 2 þ 0:71n� 1 þ 0:064nþ 0:668, n is the refractive

index, α describes the fraction of photon scattering events from moving scatterers such as red

blood cells in the tissue, k0 is the wave-number of the light in tissue, and hΔr2(τ)i is the mean

square displacement of the moving scatterers. In most DCS experiments in living tissues, the

hΔr2(τ)i has been found to be reasonably well approximated as an effective Brownian motion,

i.e., hΔr2(τ)i = 6DBτ, where DB is the Brownian diffusion coefficient of the moving scatterers

and thus the flow dependent parameter in the correlation-diffusion equation [30].

In practice, DCS measures the fluctuations of the scattered light intensity. The normalized

temporal intensity autocorrelation function is calculated as g2ðtÞ ¼ hIðtÞIðt þ tÞi=hIðtÞi
2
,

where I is the measured intensity. The normalized temporal electric field autocorrelation func-

tion g1 is related to g2 by the Siegert relationship [2, 11].

g2ðtÞ ¼ 1þ bjg1ðtÞj
2

ð5Þ

where g1ðtÞ ¼ hEðtÞ � E
�ðt þ tÞi=hEðtÞ � E�ðtÞi, and β is the autocorrelation correction factor

which depends on the experimental setup.

Another single-layer analytical model described by Li et al. will be introduced in the next

session.

Multi-layer analytical model

Li et al. proposed a temporal field autocorrelation function with respect to a multi-layered tis-

sue geometry [22]. In this manuscript, we adapted the model described by Li et al. and formu-

lated it for a two-layer geometry to simulate the skull and the brain, as shown in Fig 1. The

optical properties for each layer are represented by the transport mean free path l�n ¼ 1=m0sðnÞ
[31] and absorption mean free path lðaÞn ¼ 1=mðnÞa , where mðnÞa and m0sðnÞ are absorption and

reduced scattering coefficients for each layer with n = 1–2. The dn represents thicknesses for

respective layers.

The temporal field autocorrelation function Gðr; tÞ ¼ hEðtÞ � E�ðt þ tÞi can be described

by the correlation diffusion equation [12] as

½r2 � a2

nðtÞ�Gðr; tÞ ¼ � s0dðr � r0Þ ð6Þ

where s0 is a point-like monochromatic light source located at r0 = {ρ0 = 0, z0} inside the first

layer; ρ represents the transverse coordinate, and z0 ¼ 1=m0sð1Þ. The decorrelation due to the

moving scatterers, αn, can be written as

anðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

l�nl
ðaÞ
n
þ

6t

t
ð0Þ
n l�n2

s

ð7Þ

where for each layer, tð0Þn ¼ ðk
2
nDBnÞ

� 1
is the correlation time for a single scattering event. Here,

kn is the wavenumber of the light at wavelength λ and DBn is the Brownian diffusion coefficient

for the n-th layer, a parameter that describes the scatterer dynamics inside each layer and thus

can quantify the motion of RBC in thick/deep tissue [2, 11]. The field autocorrelation at the

surface, G0(r, τ), can be obtained by solving Eq (6) in the Fourier domain with respect to the

transverse coordinate ρ as

Ĝðq; z; tÞ ¼
Z

d2rGðr; tÞexp ðiqrÞ ð8Þ

where q is the radial spatial frequency. By applying the boundary conditions as described in Li
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et al., the Fourier transform of the field autocorrelation function of diffuse reflected light, G0(r,
τ), measured at the surface can be written as

Ĝ0ðq; z ¼ 0; tÞ ¼
numerator
denominator

ð9Þ

In this work, the human head was modeled as a two-layer medium, as shown in Fig 1. The

first layer accounts for skull as well as the static (i.e., no moving scatterers) scalp and the sec-

ond layer has a semi-infinite geometry that accounts for the brain cortex. For n = 2, d2!1:

hence, the numerator and denominator for Ĝ0ðq; z ¼ 0; tÞ can be written as

numerator ¼ s0z0fb1D1 cosh½b1ðd1� z
0Þ� þ b2D2 sinh½b1ðd1� z

0Þ�g ð10Þ

denominator ¼ b1ðD1 þ b2D2z0Þcoshðb1d1Þ þ ðb2D2 þ b
2

1
D1z0Þsinhðb1d1Þ ð11Þ

where z0
0
¼ 1=m0sð1Þ, and for each layer, bnðq; tÞ ¼ ½a2

nðtÞ þ q2�
1=2
; Dn ¼ cl�n=3 is the photon

diffusion coefficient, and c is the speed of light.

Fig 1. Schematic of the two-layer scattering medium including locations of the source and the detector. Here, mðnÞa

and m0
ðnÞ
s are the absorption and reduced scattering coefficients, l�n is the transport mean free path, and lan is the

absorption mean free path, for the respective layers where n = 1–2. The top layer is the solid layer with finite thickness

(d1), the bottom layer is the liquid layer with semi-infinite geometry (d2).

https://doi.org/10.1371/journal.pone.0274258.g001
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For n = 1, a homogenous layer, the numerator and denominator for Eq (9) are

numerator ¼ s0z0expð� b1z
0Þ ð12Þ

denominator ¼ 1þ b1z0 ð13Þ

Lastly, by performing the inverse Fourier transform of Eq (9) with respect to q, the autocor-

relation function for the electric field measured at the surface can be obtained as

G0ðr; tÞ ¼
1

ð2pÞ
2

Z

d2q Ĝ0ðq; z ¼ 0; tÞ expð� iqrÞ

¼
1

2p

Z

dq Ĝ0ðq; z ¼ 0; tÞqJ0ðrqÞ
ð14Þ

where J0 is the zero-order Bessel function of the first kind.

DCS instrumentation and data analysis

A custom built DCS system was used in this work. Fig 2 presents a simple schematic of the

DCS system. Briefly, a single long-coherence length laser at wavelength λ = 785 nm (DL785-

70-3O, CrystaLaser, Reno, NV) was used for illumination through a multi-mode fiber (core

dimeter 400 μm, N.A. = 0.39). On the detection side, four single-mode fibers (core dimeter

3.5 μm, N.A. = 0.13), at four different SD distances (SD1 = 10 mm, SD2 = 15 mm, SD3 = 20

mm, SD4 = 25 mm) from the source fiber, were led into a single-photon counting module

(SPCM-AQ4C, Excellitas, Canada) comprised of 4 individual detectors. Following that, an

8-channel hardware correlator (Flex05-8ch, Correlator.com, NJ), with 4 channels being avail-

able for each SD distance, was used to auto-correlate the detected intensities with the sampling

frequency of 2 Hz, from which the intensity autocorrelation (g2) was obtained. Time span for a

single measurement was 100 s. Each phantom measurement was repeated ten times, between

which the probe was taken off the phantom and put back in place. The photon count rate

wasn’t adjusted by tuning the laser power during the measurement.

During data processing, the autocorrelation correction factor, β, was estimated from the

first few data points (τ = 0.5×10−6 s to τ = 0.8×10−6 s) of the average of measured g2 over time.

The averaged g2 was then converted to g1 using Eq (5). Additionally, the SNR for each delay

time over the 100 s measurement was calculated using SNR = (g2(τ)−1)/σ(g2(τ)) [17]. For the

two-layer model, the g1 curve from τ = 1×10−6 s to τ = 3×10−3 s for each measurement was

then fitted to the solution of the correlation diffusion equation using Eq (14) with n = 2 to

extract top layer thickness (d1) and bottom layer Brownian diffusion coefficient (DB2) [2]. In

addition, ground-truth DB2 was extracted using Eq (14) with n = 1 on the bottom-layer-only

(homogenous) measurements. For comparison purpose, the g1 curve above 0.7 was fitted to

the conventional single-layer model (Eq (2)) to extract the Brownian diffusion coefficient

times α (αDB) [32].

For both one-parameter single-layer models–Eq (2) and Eq (14) with n = 1 –we used

MATLAB (Mathworks, Inc., Natick, MA) “fminsearch” function to perform least-square fit-

ting. For the two-parameter two-layer model (Eq (14) with n = 2), MATLAB “fmincon” func-

tion was used with SNR as a weighting function for each delay time. The weighting was

implemented to reduce noise on the fitted curve. The lower and upper bound for d1 and DB2

were set to be in the range of 0 to 20 mm and 0 to 10−6 cm2/s respectively with the initialization

set to 0 for both parameters. The DB1 was set to zero for the use of a solid and thus a static layer

[22]. The photon diffusion coefficients, D1 and D2, were calculated using measured optical

properties and were held constant. These assumptions reduced the free parameters only to d1
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and DB2 during fitting. The average and standard deviation from the 10 repeated measure-

ments were calculated for fitted d1 and fitted DB2.

To confirm the fitting quality of the two-layer model, we computed the residual sum of

squares (RSS = ∑[g1,fitted(τ)−g1,measured(τ)]2) between the fitted and measured g1 and generated

the corresponding contour plots with various d1 and DB2 values. In addition, if the global mini-

mum of RSS(d1, DB2) indicates a different d1 and DB2 pair than the fitted values by MATLAB

“fmincon”, the d1 and DB2 pair from the contour plot would be used as the fitted values,

because “fmincon” does not guarantee convergence to the global minimum.

Fig 2. Schematic of the custom DCS system and setup for the two-layer phantom experiment with a single source

fiber and four detection fibers at 10 mm, 15 mm, 20 mm and 25 mm from the source fiber. The top and bottom

layers are solid and liquid phantom layers respectively.

https://doi.org/10.1371/journal.pone.0274258.g002
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To test how the uncertainty in optical properties will affect the two-layer model (Eq (14)

with n = 2), we modified each of the μa and m0s of each layer used in the fitting by ± 20%, and

then performed the same two-parameter fitting procedure as described previously. Percent

changes of the fitted d1 from true d1 were computed by 100%�(d1,fitted−d1,true)/d1,true; percent

changes of the fitted DB2 from true DB2 (fitted by the true μa and m0s using the Eq (14) with

n = 1) were computed by 100%�(DB2,fitted−DB2,true)/DB2,true.

Two-layer phantom experiment

The top layer of the two-layer optical phantoms, as shown in Fig 2, was a solid, static phantom.

The solid phantom was made using silicone: 800 mL of part A, 80 mL of part B from SORTA-

clear 40 (Smooth-on, Macungie, PA), and 240 mL of silicone thinner (Smooth-on, Macungie,

PA). To mimic tissue μa and m0s, 1.5 g of titanium dioxide (Atlantic Equipment Engineers,

Upper Saddle River, NJ) and 400 μL of Higgins black India ink (Chartpak, Inc., Leeds, MA)

were added to the silicone base, mixed with a handheld electrical mixer, and then poured onto

a petri dish. This recipe follows the standard mixing ratios as reported in the literature [33, 34].

The thickness of the mixture inside the petri dish was varied to mimic different skull thick-

nesses. Following that, the mixture was degassed for ~1 hour in a vacuum chamber to remove

air bubbles and left to solidify for ~24 hours. Lastly, the solid phantom was peeled out of the

petri dish and the thickness (referred to as true thickness in later sections) was measured using

a slide caliper. Human skull thickness varies with sex, age, etc., but it was reported to be within

1–10 mm [35, 36]. As a result, in this work, seven different thickness values ranging from 2.01

mm to 8.08 mm were tested (P1 = 2.01, P2 = 3.28, P3 = 3.87, P4 = 4.65, P5 = 4.99, P6 = 5.96,

and P7 = 8.08 mm) for the top layer.

The bottom layer in the two-layer phantoms was a liquid phantom which represented the

human brain cortex, as shown in Fig 2. The phantom was made with 300 mL of milk at room

temperature (2% reduced, Giant Eagle, Pittsburgh, PA), 400 mL of water, and 25 μL of Higgins

black India ink (Chartpak, Inc., Leeds, MA). The India ink was used as the absorber and the

milk was used for mimicking moving scatterers in the tissue [33]. Apart from the two-layer

phantoms, no first layer added to the liquid phantom, referred to as P0, corresponds to a

homogenous phantom, which in later sections will be referred to as the single-layer phantom.

Because the top layer solid phantoms were too thin for accurate measurements of optical

properties with diffuse imaging techniques, thicker homogeneous phantoms were also made

from the same batch of material. These top layer phantoms were cylindrical in shape, with a

diameter of 8.2 cm and a height of 5.4 cm. For bottom layer, the same liquid phantom was

used for measurement of optical properties as used in the two-layer phantom.

The optical properties of the both solid and liquid phantoms were measured at 690 nm and

830 nm using a frequency-domain NIRS system (OxiplexTS, ISS, Champaign, IL) and then

converted to the DCS operating wavelength of 785 nm. First, ink absorption was assumed to

be spectrally flat, hence the μa at 690 nm and 830 nm from NIRS were averaged to obtain μa at

785 nm for DCS. On the other hand, the m0s at 690 nm and 830 nm were fitted to a power law

to extract m0s at 785 nm [37]. These optical properties’ values (top layer: μa = 0.11 cm−1 and m0s =

8.50 cm−1, bottom layer: μa = 0.12 cm−1 and m0s = 10.46 cm−1) were used to obtain Dn during

fitting of g1, and will be referred to as baseline optical properties in later sections. The optical

properties’ values for each layer were close to the range for human skull and brain tissue as

reported in the literature (skull: μa = 0.21–0.36 cm−1 and m0s = 11.90–7.70 cm−1 for λ = 674–956

nm, brain tissue: μa = 0.17–0.21 cm−1 and m0s = 8–11.20 cm−1 for λ = 674–956 nm) [38, 39].

During measurement, a solid phantom was placed on the liquid homogeneous phantom

inside a glass beaker to mimic a two-layer geometry, as shown in Fig 2. The solid top layer was
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suspended by a wire scaffold (not shown in Fig 2) such that it was just touching the surface of

the liquid layer at the bottom. The source and detector fibers were placed in contact with the

top layer with the fibers being perpendicular to the surface. A black cloth was used to cover the

beaker, blocking ambient light during measurement acquisition.

Results

Influence of top layer thickness on correlation curves

The two-layer phantoms were measured with DCS, where the bottom layer liquid phantom

stayed the same, but the top layer solid phantom was varied between different thicknesses,

referred to as P0-P7 (P0 = no first layer, P1 = 2.01 mm, P2 = 3.28 mm, P3 = 3.87 mm,

P4 = 4.65 mm, and P5 = 4.99 mm, P6 = 5.96 mm, P7 = 8.08 mm). Fig 3A shows a single trial of

the measured g1 (averaged over 100s) for all phantoms at a SD3 = 20 mm. Fig 3B shows the

corresponding g1. In addition, photon count rates for each SD (SD1 = 10 mm, SD2 = 15 mm,

SD3 = 20 mm, SD4 = 25 mm) across P0-P7 are shown in Fig 4A–4D. We can see that both g2

and g1 curves have distinct shape changes with various top layer thickness. This observation

thus works as the basis for the feasibility of extracting the top layer thickness.

Two-layer vs. the single-layer model

For the homogenous phantom P0, Eq (14) with n = 1 was used to extract the ground-truth

DB2; Eq (2) was used to extract the αDB. Fig 5 shows an example of the measured and fitted g1

from a single trial of measurement for P0 at SD3 = 20 mm. The purple line and shaded region

stem from the average and standard deviation of g1 over 100 s per delay time. The green line

with circle and orange line represents fitted g1 using Eq (14) with n = 1 and Eq (2) respectively.

The two homogenous fits (green and yellow lines) closely match each other, with the residual

(measured g1 minus fitted g1) mostly centered around zero.

The measured g1 curves from two-layer phantoms P1 to P7 were fitted to the two-layer ana-

lytical model to extract d1 and bottom layer flow (DB2), and the conventional single-layer ana-

lytical model (Eq (2)) to extract single-layer flow (αDB). Fig 6A–6D shows examples of the

measured and fitted g1 for the two-layer phantoms P1 = 2.01 mm, P3 = 3.87 mm, P5 = 4.99

Fig 3. (a) g2 from homogenous phantom P0 to two-layer phantom P7, where d1 is the thickness of the top layer

phantom, shown for SD = 20 mm. (b) Corresponding g1 curves calculated from g2 in (a).

https://doi.org/10.1371/journal.pone.0274258.g003
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mm, and P7 = 8.08 mm at SD3 = 20 mm. The purple solid lines with shaded regions represent

the mean and standard deviation of the measured g1; the green lines with circle and orange

lines represent the fitted g1 using two-layer and single-layer model (Eq (2)) respectively. We

can see that although the fitted g1 by the two-layer model did not describe the entire measured

g1 accurately, it still performed better than the one-layer model by its ability to change the

slope with different d1. This is further quantified in terms of residuals as seen in Fig 6, where

the two-layer fit shows smaller residuals at longer delay times compared to the single layer fit.

Simultaneous fitting for thickness and flow using a two-layer model

Two parameters–top layer thickness (d1) and bottom layer Brownian diffusion coefficient

(DB2)–were extracted by fitting the two-layer model to the measured g1, while only the Brown-

ian diffusion coefficient times α (αDB) was extracted by the conventional single-layer model

(Eq (2)). The S1 Table summarizes the results of these fitted d1, DB2 and αDB value for P0-P7

phantoms, where the average and standard deviation were derived from the ten repeated mea-

surements. For visualization, Fig 7A shows correlations between the true and fitted d1 at each

SD distances for P1-P7. Linear fitting (MATLAB “fitlm”) between fitted and true d1 for all

Fig 4. (a-d) Photon count rate vs. top layer thickness (P0-P7) for SD1-SD4 respectively.

https://doi.org/10.1371/journal.pone.0274258.g004
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P1-P7 did not show a significant correlation. However, we found a significant positive linear

correlation for all SD distances when fitting up to P5 = 4.99 mm (SD1 = 10 mm:

p = 0.043< 0.050, SD2 = 15 mm: p = 0.033< 0.050, SD3 = 20 mm: p = 0.028< 0.050,

SD4 = 25 mm: p = 0.022< 0.050). We observed that the fitted d1 values at larger SD distances

were overestimated more, but they follow a linear trend when d1 < 5 mm. This could indicate

that for a set d1, the fitting accuracy depends on the SD distance and top layer thickness.

Since the two-layer fitting yielded DB2 and the single-layer fit αDB, a direct comparison

between the values was not possible. To compare the two models, we thus obtained the ground

truth DB2 and αDB from measurements on P0 (homogeneous liquid phantom that provides

the most accurate prediction of flow), and then calculated the percent differences between val-

ues extracted from each layered phantom (P1-P7) to their ground truths. For P0, the ground

truth DB2 and αDB were calculated using single-layer models Eq (14) with n = 1 and Eq (2)

respectively.

As shown in Fig 7B, for the single-layer model (triangles), fitted αDB at all SD distances

quickly deviates from the baseline flow of P0 as d1 increases (around 65% difference at the

thinnest P1 = 2.01 mm), confirming its inaccuracy for flow estimation at non-negligible top

layer thicknesses. On the other hand, from the results of the two-layer model (circles), we

observed that the estimation of DB2 changes with SD distances: At shorter SD distances

(SD1 = 10 mm and SD2 = 15 mm) fitted DB2 decreases in a similar way to the single-layer

Fig 5. Measured and fitted g1 at SD3 (20 mm) for homogenous phantoms P0. Purple: measured g1 with standard

deviation. Green with circle: Eq (14) with n = 1. Orange: conventional single-layer model (Eq (2)).

https://doi.org/10.1371/journal.pone.0274258.g005
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model but with smaller discrepancies compared to the reference. At longer SD distances, how-

ever, fitted DB2 only decreases to less than or around 15% from baseline until d1 = 4.65 mm for

SD3 = 20 mm and d1 = 4.99 mm for SD4 = 25 mm. For even the thickness P7 = 8.08 mm, DB2

estimated from SD4 decrease to around 65% from baseline, which is a similar discrepancy to

single-layer model at the thinnest P0 = 2.01 mm. Longer SD distances (yellow and green circles

in Fig 7B for SD3 and SD4 respectively), which are more sensitive to the bottom layer, did pro-

vide better fit for DB2 with the two-layer model. These findings suggest that the two-layer

model can estimate the bottom layer flow more accurately than the single-layer model when a

top static layer is present.

To further demonstrate the feasibility of simultaneously extracting the top layer thickness

and flow and the fitting quality, the contour plots of RSS (residual sum of squares) between the

measured and fitted g1 were generated by varying the values of d1 and DB2 pair. Fig 8A–8D

shows the example RSS for P1 (2.01 mm), P3 (3.28 mm), P5 (4.99 mm), and P7 (8.08 mm) at

SD3 (20 mm). We can see that RSS in all cases converged to a single minimum as shown by

the red cross. As discussed in the previous session, the accuracy of fitted d1 and DB2 depend on

Fig 6. (a-d) Measured and fitted g1 at SD3 (20 mm) for two-layer phantoms P1 (2.01 mm), P3 (3.87 mm), P5 (4.99 mm), P7 (8.08

mm). Purple: measured g1 with standard deviation. Green with circle: two-layer model. Orange: single-layer model (Eq (2)).

https://doi.org/10.1371/journal.pone.0274258.g006
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the SD distance. Thus, examples in Fig 8A–8D aim to show the convergence of RSS instead of

the fitting accuracy. The convergent patterns of RSS suggest that it is possible to fit for of d1

and DB2 simultaneously.

Model sensitivity on layer optical properties

The two-layer model assumes optical properties of the top and bottom layers during fitting of

d1 and DB2. Precise knowledge of the optical properties in each layer, however, can be hard to

obtain for some applications [40]. To evaluate the influence of layer optical properties on the

reconstruction of d1 and DB2, we separately varied the μa and m0s in each layer by ± 20% and

performed the same two-parameter fitting procedure as described previously. The fitted d1

and DB2 were then compared to their expected values by 100%�(d1,fitted−d1,true)/d1,true and

100%�(DB2,fitted−DB2,true)/DB2,true respectively. The ground truth DB2 were fitted by the baseline

μa and m0s using the Eq (14) with n = 1 from P0 (liquid layer only, no top layer).

For d1, Fig 9A–9D and 9E–9H show how changes in μa and m0s affect the fitted d1 respec-

tively at each top layer thickness from SD1 to SD4. The overlapping curves in the figure indi-

cate that changes in μa and m0s by ± 20% in each layer minimally affect the fitted d1.

Fig 10A–10D shows how changes in μa affect the fitted DB2 at each top layer thickness from

SD1 to SD4. We observed that changes in the first layer μa by ± 20% (red and blue) only mini-

mally affect the fitted DB2. Changes in the second layer μa, however, show that overestimation

of μa (yellow) increases the fitted DB2 by around 15%; underestimation of μa (green) decreases

the fitted DB2 by around 15%.

Fig 10E–10H shows how changes in m0s by ± 20% affect the fitted DB2 at each top layer thick-

ness from SD1 to SD4. We can see that for m0s in both layers, overestimation of m0s (blue and yel-

low) decreases the fitted DB2; underestimation of m0s (red and green) increases the fitted DB2. In

Fig 7. (a) Comparison between fitted and true d1 for various top layer thicknesses at each SD distance. Bule: SD1 = 10 mm. Red:

SD2 = 15 mm. Orange: SD3 = 20 mm. Green: SD4 = 25 mm. Mean and standard deviation of fitted d1 were derived from ten

repeated measurements. (b) Percent differences between layered phantom (P1-P7) and P0 in αDB using the single-layer model

(triangle), and DB2 using the two-layer model (circle) vs. true d1 values. Mean and standard deviation of fitted flow were derived

from ten repeated measurements.

https://doi.org/10.1371/journal.pone.0274258.g007
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addition, changes in the second layer m0s affect fitted DB2 more than the first layer m0s (around

20% compared to around 10%).

Using the two-layer model, we found that the uncertainties in optical properties affect fitted

DB2 more than fitted d1. Uncertainties in optical properties of ± 20% minimally affected the fit-

ted d1, but those in each layer affected the fitted DB2 differently as discussed above.

Discussion and conclusion

In this manuscript, a two-layer analytical model for CW-DCS adapted from Li et al. was

adapted and validated for its feasibility in estimating layer thickness in addition to flow [22].

Two-layer phantoms were fabricated to mimic the brain geometry–with the top layer repre-

senting skull with finite thickness (up to ~8 mm) and the bottom layer representing brain cor-

tex with semi-infinite geometry. DCS measurements were performed on phantoms with

different thicknesses (from P0 = 0 mm to P7 = 8.08 mm). We found that, the shapes of g2 and

g1 change with d1, indicating the possibility of extracting layer thickness beside flow from the

Fig 8. RSS between the fitted and measured g1 by varying d1 from 1 mm to 9 mm, and DB2 from 0.5×10−9 cm2/s to

7.5×10−9 cm2/s. (a-d) Example RSS of one out of ten repeated measurements for P1 = 2.01 mm, P3 = 3.28 mm,

P5 = 4.99 mm, and P7 = 8.08 mm respectively at SD3 = 20 mm. Red cross: Global minimum.

https://doi.org/10.1371/journal.pone.0274258.g008
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Fig 9. Influence of uncertainties in layer optical properties on fitted d1. Purple: baseline. Blue: first layer increased by 20%. Red: first layer decreased by 20%.

Yellow: second layer increased by 20%. Green: second layer decreased by 20%. (a-d) Influence of layer μa, SD1-SD4. (e-h) Influence of layer m0s, SD1-SD4.

https://doi.org/10.1371/journal.pone.0274258.g009

Fig 10. Influence of uncertainties in layer optical properties on fitted DB2. Purple: baseline. Blue: first layer increased by 20%. Red: first layer decreased by

20%. Yellow: second layer increased by 20%. Green: second layer decreased by 20%. (a-d) Influence of layer μa, SD1-SD4. (e-h) Influence of layer m0s, SD1-SD4.

https://doi.org/10.1371/journal.pone.0274258.g010
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DCS measurements. This finding was in compliance with Boas et al. who observed, while sim-

ulating burned tissue, a slower rate of decay in g1 as the thickness of the teflon layer increased

resting above an intralipid liquid layer [11].

The two-layer model was then used to fit for d1 and DB2 simultaneously from the g1 curves.

For a fixed two-layer phantom, the accuracy of fitted d1 and DB2 depends on the SD distance

and the top layer thickness. For example, as shown in Fig 7A, fitted and true d1 showed signifi-

cant positive linear relationship up to P5 = 4.99 mm. In addition, when the SD is not sensitive

enough to the bottom layer, as shown in the case of SD1 = 10 mm for P7 = 8.08 mm, fitted d1

will largely deviate from its expected value. In another word, P7 = 8.08 mm is almost equiva-

lent to a semi-infinite phantom to SD1 = 10 mm, causing inaccuracy in fitted d1 from the two-

layer model.

For the flow in the bottom layer (αDB and DB2), we first calculated their expected values by

fitting the single-layer models (Eq (2) and Eq (14) with n = 1) to the measurements from the

homogenous phantom P0 (no top layer). Then, as shown in Fig 7A for the conventional sin-

gle-layer model, the percent difference between the fitted αDB quickly deviates from its

expected value when solid layers were added. On the other hand, as shown in Fig 7B, fitted DB2

from the two-layer model are more stable. Especially for the longer SD that are more sensitive

to the bottom layer. The longest SD4 = 25 mm produced consistently accurate fitted DB2 (less

than or around 10% difference from the expected value) for P1 = 2.01 mm to P5 = 4.99 mm.

DB2 deviated more from the baseline at P6 = 5.96 mm and P7 = 8.08 mm, which we attribute

partially due to low photon count rate as shown in Fig 4D.

To test the quality of two-parameter fitting, similar to Li et al. and Dong et al., contour plots

of RSS between the fitted and measured g1 (Fig 8A–8D) were generated as a function of the fit-

ted parameters d1 and DB2; the convergence to a single minimum demonstrated the feasibility

of fitting d1 and DB2 simultaneously [22, 41].

Uncertainties in μa and m0s were shown by Irwin et al. to have influence on the fitted blood

flow using the conventional single-layer model [42]. To investigate how these uncertainties

would influence the two-layer model, we varied the optical properties in each layer during the

fitting by ± 20%. Our results (Figs 9 and 10) show that the fitted d1 was only mildly affected

within ± 20% uncertainties. In addition, μa in the first layer only mildly affected the fitted DB2,

but overestimated and underestimated μa in the second layer caused increased and decreased

fitted DB2 respectively. On the other hand, overestimated and underestimated m0s in both layers

decreased and increased fitted DB2 respectively. This finding is consistent with that from Li

et al., Zhao et al., and Irwin et al. [22, 27, 42].

It is to note that, there are a few limitations of the proposed model at the current setting.

For example, although d1 and DB2 were fitted parameters, they were constrained to be within

an expected range during fitting. If the first layer thickness is not within the expected range,

the fitting results might be influenced. Further testing with even larger first layer thicknesses

would shed light on this. Also, the accuracy of fitted d1 and DB2 was shown to be dependent on

the SD distance or the sensitivity to each layer. Thus, investigation of incorporating multiple

SD during the fitting could make fitting across a variety of layer thicknesses more robust. In

addition, uncertainties in layer optical properties add inaccuracy to the fitted parameters. This

could be overcome by measuring optical properties with frequency domain or time domain

near-infrared spectroscopy [43–45].

Most importantly, the two-layer model proposed in this work is undoubtedly a simplified

version of human head and neglected any flow dynamics or effects of optical properties in the

scalp layer. This could potentially be overcome by implementing a three-layered model as

shown by Wu et al. and Zhao et al. [25, 27]. However, a negligible scalp flow could also be
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achieved experimentally, as demonstrated by Baker et al., where an inflated cuff was placed

around the head of the subject to eliminate scalp blood flow [46, 47]. In such a scenario, the

model proposed in this work would be applicable due to the static first layer consisting of scalp

and the skull.

In conclusion, over the past decade, CW-DCS has been established as a promising new

technique for continuous brain monitoring and tracking brain perfusion changes [2, 13].

However, precise knowledge of extracerebral layers, such as skull, is also necessary and the rea-

sons are twofold. First, if left uncorrected, the contribution from the skull can contaminate

and underestimate cortical blood flow [28]. Second, the knowledge of continuous skull thick-

ness could benefit detecting and monitoring skull deformation, something that is often found

in patients with TBI [29]. To bridge the gap, this study adapted and validated a two-layer ana-

lytical model for CW-DCS that has the potential to sense skull thickness in addition to blood

flow in the cortex layer in a continuous manner. Further studies will help improve model accu-

racy and widen the scope of the model for clinical applications. Upon successful implementa-

tion, this method could provide a robust and cost-effective tool for noninvasive quantification

of skull thickness along with blood flow at the bedside for continuous monitoring of brain

function at the clinic.
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