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Abstract

Objective: Three models were used to evaluate prostate cancer after androgen deprivation

therapy (ADT) and to determine the value of detecting residual lesions after treatment.

Methods: We retrospectively analysed patients with prostate cancer who received ADT from

January 2018 to June 2019. Patients were divided into ADT responder and ADT non-responder

groups, and clinical risk factors were determined. Regions of interest were manually contoured

on each slice on fat-saturated-T2-weighted imaging, and radiomic features were extracted. Uni-

and multivariate logistic regression were used to establish radiomics, clinical and combined

models.

Results: There were 23 ADT non-responders and 20 ADT responders. In the clinical model,

total prostate-specific antigen concentration and T stage were independent predictors of efficacy

(area under the curve (AUC)¼ 0.774). The characteristics, MinIntensity and Correlation_

angle135_offset4 indicated an effective clinical model (AUC¼ 0.807). GLCMEntropy_

AllDirection_offset1_SD was the best feature to differentiate residual lesions from the central

gland (CG) (Lesion-CG model, AUC¼ 0.955). Correlation_angle135_offset4, GLCMEntropy_

AllDirection_offset4_SD and GLCMEntropy_AllDirection_offset7_SD differentiated residual

lesions from the peripheral zone (PZ) (Lesion-PZ model, AUC¼ 0.855). The AUC for the com-

bined model was 0.904.
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Conclusions: Our models can guide the clinical treatment of patients with different ADT

responses. Furthermore, the radiomics model can detect prostate cancer that is non-responsive

to ADT.
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Introduction

Prostate cancer is the second most common
malignancy in men after lung cancer,1 with
large individual differences and a long nat-
ural course. Androgen deprivation therapy
(ADT) is an effective treatment for
advanced prostate cancer.2 However,
although chemical castration can slow the
progression of prostate cancer, relieve
symptoms and prolong life, some patients
are non-responsive to ADT and will have
residual lesions after treatment. Clinically,
the prostate-specific antigen (PSA) concen-
tration and Gleason score are commonly
used to evaluate the efficacy of ADT,3,4

but these fail to provide guidance for the
next treatment. Multi-parameter magnetic
resonance imaging (Mp-MRI) has high sen-
sitivity in detecting and locating prostate
cancer lesions.5 However, ADT causes sig-
nificant changes in prostate appearance and
signals on MRI, which may overestimate or
misdiagnose residual tumours.6 Therefore,
a more accurate and suitable method is
needed to monitor the progression of pros-
tate cancer after ADT, and intensive treat-
ment for more invasive lesions is helpful in
disease management.

Radiomics is a new technology that uses
mathematical methods to evaluate the grey-
scale intensity and pixel position in an
image. This method can be used to extract
quantitative data from standard medical
images and can help improve clinical

diagnosis and decision making.7 Recently,

radiomics has been used in patients with

prostate cancer to differentiate between

prostate cancer and benign hyperplasia,8

monitor risk stratification9 and predict bio-

chemical recurrence.10,11 However, radio-

mics has not been commonly used to detect

and describe prostate cancer in patients after

undergoing ADT. Therefore, our hypothesis

was that the extracted radiomics features

from MR images can reflect the tissue path-

ological changes after ADT and that the fea-

tures can be used to guide clinical treatment

(adding antiandrogen intensive therapy or

intensifying focal therapy).12

In this study, first, we evaluated the

value of a clinical model, radiomics model

and combined model after ADT in the

ADT non-responder group to provide clin-

ical guidance and to differentiate residual

lesions from the peripheral zone (PZ) and

central gland (CG) to lay the foundation for

focal therapy. Second, we attempted to

verify whether a combined model is more

helpful to determine the next treatment.

Methods and Materials

Patients

Patients who met the inclusion criteria from

January 2018 to June 2019 were retrospec-

tively analysed. The study was approved by

the ethics committee of our hospital, and
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written informed consent was obtained from

all subjects. The inclusion criteria were as

follows: (1) Patients were confirmed to

have clinical �stage 2 prostate cancer

before ADT. (2) Patients received ADT for

7 months, and all patients were receiving the

last ADT at the time of imaging. (3) The

inclusion criteria for the ADT non-

responder group were that the PSA concen-

tration was still increased after 7 months of

treatment (of three consecutive PSA tests per-

formed once a week, if two test results were

equivalent to a 50% increase in the lowest

value or one test revealed PSA > 2ng/dL).

Mp-MRI was used to biopsy the suspected

residual lesions, and the detailed pathological

results (12-point transrectal ultrasound-

guided puncture including the insertion angle

and depth) were combined with Mp-MRI to

locate the residual lesions. (4) The inclusion

criteria for the group with good efficacy

were PSA concentrations within the normal

range, no Mp-MRI suspicious lesions and

negative pathological results after treatment.

(5) The serum testosterone concentrations of

the patients reached castration level after

treatment (< 1nmol/L)). (6) All enrolled

patients had complete imaging data (MRI,
positron emission tomography-computed
tomography (PET-CT)). The exclusion crite-
ria were as follows: (1) patients with poor
image quality that did not meet the require-
ments; (2) patients who received other treat-
ments, such as radiation or surgery and (3)
patients with the largest diameter of the resid-
ual lesions in the identified model < 1.0 cm
and a total tumour area volume of interest
(VOI) that could not be accurately delineated.
The inclusion and grouping of cases are
shown in Figure 1. Androgen deprivation
was achieved with androgen receptor antago-
nists for treatment, namely bicalutamide
(orally, 50 mg once a day) or cyproterone ace-
tate (orally, 100 mg three times a day) for
7 consecutive days followed by subcutaneous
injection of 10.8 mg of luteinising hormone-
releasing analogue (LHRHA), which is
known to achieve castration within 14 days,
as determined by serum testosterone
concentrations.13

MRI acquisition

We used an American GE 3.0-T Discovery
750 MR scanner (General Electric

Figure 1. Patient allocation.
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Healthcare, Milwaukee, WI, USA) with an

eight-channel phased array coil as the

receiving coil. Before the scan, the patient

had a moderately full bladder and was

placed in the supine position. The scan

centre was located 2 cm above the pubic

symphysis. Scanning sequences constituted

axial, sagittal and coronal T2-weighted

images (T2WI), axial T1-weighted images

(T1WI) and diffusion-weighted image

(DWI) sequences. The main imaging

sequences were axial (AX) fat-suppressed

(FS) T2WI and DWI, AX FS T2WI spin-

echo sequences (repetition time/echo time

(TR/TE), 3522/85; slice thickness, 4.0 mm;

slice gap, 1 mm; number of excitations

(NEX), 4; matrix, 320� 192 and field of

view (FOV), 240� 240 mm). DWI acquisi-

tion constituted a single-shot echo-planar

imaging sequence (TR/TE, 3600/64.1; slice

thickness, 4.0 mm; slice gap, 1 mm; NEX, 8;

matrix, 128� 128; FOV, 300� 300 mm; b
value, 0 s/mm2 and 1500 s/mm2).

Radiomics model

All patients’ MRI images were exported
and stored in digital imaging and commu-
nications in medicine (DICOM) format on
a picture archiving and communication
system (PACS) workstation. The process
was as follows: image standardisation,
manual image segmentation, feature extrac-
tion and feature selection, model building
and model performance, as shown in
Figure 2. On FS-T2WI (T2WI residual
lesions could be visualised more clearly
after fat suppression) images, two experi-
enced pelvic MRI radiologists performed
the delineation and synthesis of a three-
dimensional (3D) VOI using itK-Snap (ver-
sion 3.6.0, www.itksnap.org) software.
The sketching criteria were as follows: (1)

Figure 2. Workflow of the radiomics analysis. Prostate fat-saturated T2-weighted imaging (FS-T2WI) was
used to extract the features, and apparent diffusion coefficient (ADC) imaging was used as the reference. In
the image segmentation, from top to bottom, the total prostatic volume was segmented in the ADT non-
responders, and the lesions were located in the central gland (CG) of the prostate (red arrow). Regarding
total prostate volume segmentation in the ADT responders, the lesions were divided by volume (red area),
peripheral zone (PZ) (blue area) and central gland (green area). An example of feature extraction shows the
features covered by T2WI radiomics and a modelling example in the effect groups (clinical model, radiomics
model and combined model) and identification groups (Lesion-CG, Lesion-PZ). Finally, the model was
evaluated.
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The total prostate volume of the two groups
was delineated inward at 3 mm, excluding
the interference of surrounding soft tissue.
(2) PZ delineation criteria for the ADT
non-responders: The delineated areas were
pathologically confirmed to be free of resid-
ual lesions, with 8 cases of the unilateral left
lobe outlined, 10 cases of the unilateral
right lobe outlined, and 3 cases of bilateral
lobes outlined. (3) CG delineation criteria
of the ADT non-responders: Except for 3
patients whose lesions were pathologically
confirmed to be located in the central
gland, the remaining 18 patients underwent
full central gland delineation with the edge
turning inward by 3 mm. (4) Criteria for
delineation of residual lesions: For sus-
pected lesions examined by Mp-MRI,
rectal ultrasound-guided biopsy was per-
formed for region of interest (ROI) local-
isation of residual lesions. Three cases
were located in the CG, and 18 cases were
located in the unilateral PZ (left or right
lobe). The apparent diffusion coefficient
(ADC) images were then compared.

Radiomics software that uses Artificial
Intelligence Kit (AK) (GE healthcare) soft-
ware was applied to extract all quantitative
radiomics features from VOIs labelled on
T2WI, with 396 radiomics features (histo-
gram features, grey level co-occurrence
matrix (GLCM), run-length matrix (RLM),
grey-level size zone matrix (GLSZM) and
form factors. Feature extraction and radio-
mics analyses were performed as follows: 1.
For data preprocessing, the outliers were
replaced by the median, and the data were
standardised by z-scores to unify the scales
of all characteristics. 2. Dimension reduction
of feature numbers and univariate logistic
regression were used to screen out features
with P< 0.05. 3. Multivariate logistic regres-
sion was used to model the selected features,
and the Akaike information criterion (AIC)
was used as the stopping principle to select
the optimal feature subset, step by step.
Finally, the remaining features were used

to identify and establish three logistic regres-

sion models, namely one effect model (radio-

mics model) and two identification models

(Lesion-CG model and Lesion-PZ model),

as shown in Figure 2.

Clinical and combined model

Age, family history, symptoms (asymptom-

atic and symptomatic frequency of urina-

tion, urinary pain, lumbosacral pain, sexual

dysfunction and bone pain)), PSA concen-

tration, Gleason grade, T stage, lymph

node metastasis and distant metastasis

before treatment were included in the clinical

data. All patients underwent transrectal

ultrasound-guided needle prostatic biopsy

before and after ADT. All patients also

underwent PET-CT imaging to identify

regional lymph node metastasis and distant

metastasis. After univariate logistic regres-

sion analysis of the clinical data, multivari-

ate logistic regression was used to identify

the feature combinations with the highest

diagnostic efficacy for indicators with statis-

tically significant differences. Logistic regres-

sion analysis was also used to establish a

combined model by combining the selected

radiomics and clinical characteristics.

Clinical application value

Nomogram analysis was used to assess the

potential clinical application of the best

model. A calibration curve was drawn to

assess the degree of deviation between the

predicted results of the test and the actual

results. The deviation between the calibra-

tion curve and a 45� line in each model

reflected the prediction performance of

each model. To determine the clinical prac-

ticability of each model to evaluate the ther-

apeutic efficacy of ADT, decision curve

analysis (DCA) was applied. We developed

three decision curves: a clinical model, a

radiomics model and a combined model.

The clinical usefulness of each model was

Yu et al. 5



evaluated by calculating the net benefits of

a series of threshold probabilities.

Histopathological analysis

Two pathologists with, respectively, 10- and

20 years’ experience in urology examined

the specimens separately. According to the

Gleason grading system, tumours are

graded according to the type of tissue struc-

ture (grade 1–5), and the final score was

obtained by selecting the two most impor-

tant component grades.14 The two patholo-

gists scored each tissue sample from 12

puncture specimens and provided a total

score, which was the reference standard

for our model.

Statistical analysis

Using R software (version 3.6.1 track,

www.r-project.org) to analyse the data,

the intraclass correlation coefficient

(ICC) was used to evaluate the consistency

of the two radiologists in extracting the

radiomics characteristics, and an ICC

>0.80 indicated good consistency.15,16 The

Kolmogorov–Smirnov test was used to

evaluate whether the included features con-

formed to a normal distribution, and

Levene’s test was used to test the variance

homogeneity. Clinical characteristics with a

normal distribution and homogeneous var-

iances (age, TPSA) were compared by two

independent samples t-tests. The Chi-

square test was used for numerical data

(family history, symptoms, Gleason grade,

T stage, lymph node metastasis and distant

metastasis). After univariate analysis, mul-

tivariate logistic regression was used to

select the most effective feature combina-

tion to establish the clinical model. We per-

formed 200 bootstrap resamples for model

repeatability evaluation. Receiver operating

characteristic (ROC) curves and calibration

curves were used to evaluate the diagnostic

performance of the clinical, radiomics and

combined models. DCA was used to calcu-
late the net benefit of the model under dif-
ferent clinical thresholds. All tests were
two-sided, and P< 0.05 was considered
significant.

Results

Patients

There were 23 ADT non-responders (mean
age: 69.4� 8.56 years) and 20 ADT res-
ponders (mean age, 68.87� 7.19 years).
After treatment, all patients were grouped
according to the puncture pathology.
Patients who still had lesions after treat-
ment constituted the ADT non-responders
group, while those without lesions after
treatment constituted the ADT responders
group.

Clinical model

The results of univariate and multivariate
logistic regression analyses are shown in
Table 1 and Table 2. The Gleason grade,
TPSA, T stage and lymph node metastasis
before treatment differed significantly
between the two groups (all P< 0.05).
There were no significant differences in
age, symptoms, family history or distant
metastasis. After backward stepwise multi-
variate logistic regression analysis, TPSA
(odds ratio (OR): 1.036, 95% confidence
interval (CI): 1.008–1.069; P< 0.05) and T
stage (OR: 4.710, 95% CI: 1.212–21.532;
P< 0.05) were independent predictive vari-
ables of efficacy. We then established the
clinical model based on the independent
variables, which had an area under the
curve (AUC) of 0.774 (95% CI: 0.634–
0.914), as shown in Table 3 and Figure 3a.

Radiomics model

Features with an ICC> 0.80 were retained,
and 59 texture features with an ICC � 0.8
were deleted from the radiomics model; 36
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texture features with an ICC � 0.8 were

removed from the Lesion-CG model, and

54 texture features with an ICC � 0.8

were removed from the Lesion-PZ model.

The remaining two characteristics in the

uni- and multivariate logistic regression

radiomics models were used to establish

the efficacy evaluation model, namely,

MinIntensity and Correlation_angle135_

offset4 (AUC ¼ 0.807; 95% CI: 0.675–

0.939). The Lesion-PZ model included the

three remaining features of Correlation_

angle135_offset4,GLCMEntropy_All

Direction_offset4_SD and GLCMEntropy_

AllDirection_offset7_SD (AUC ¼ 0.855;

95% CI: 0.742–0.968). The Lesion-CG

model characteristics included the

remaining feature, GLCMEntropy_

AllDirection_offset1_SD, after selection

(AUC ¼ 0.955; 95% CI: 0.900–1.000), as

shown in Table 3 and Figure 3a, 3b.

Combined model

The clinical and radiomics model features

were regressed step by step to find the

minimum AIC value to establish the com-

bined model. Among the features, T stage

Table 2. Multivariate logistic regression analysis results.

Variable Clinical model Combined model

OR (95% CI) P OR (95% CI) P

TPSA 1.036 (1.008–1.069) 0.01 1.023 (0.988–1.064) 0.20

T stage 4.710 (1.212–21.532) 0.03 16.423 (2.497–225.938) 0.01

OR, odds ratio; CI, confidence interval; TPSA, total prostate-specific antigen; T stage, tumour stage.

Table 1. Patients’ clinical data.

Feature Good effect (n¼ 23) Poor effect (n¼ 20) P

Age (Mean� SD, years) 68.87� 7.19 69.4� 8.56 0.826

Symptoms (%) 0.853

Present 12 (52.2%) 11(55%)

Absent 114 (7.8%) 9 (45%)

Family history (%) 0.158

Present 13 (56.5%) 7 (35%)

Absent 10 (43.5%) 13 (65%)

Distant metastasis(%) 0.298

Present 14 (60.9%) 9 (45%)

Absent 9 (39.1%) 11 (55%)

Gleason score (%) 0.023

�7 16 (69.6%) 7 (35%)

<7 7 (30.4%) 13 (65%)

Lymph node metastasis (%) 0.043

Yes 14 (60.9%) 6 (30%)

No 9 (39.1%) 14 (70%)

TPSA (Mean� SD, ng/m:) 80.96� 24.61 61.25� 23.30 0.01

T stage(%) 0.023

T2 7 (30.4%) 13 (65%)

T3 16 (69.6%) 7 (35%)

SD, standard deviation; TPSA, total prostate-specific antigen; T stage, tumour stage.
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(OR: 16.423, 95% CI: 2.497–225.938;
P¼ 0.011), TPSA (OR: 1.023, 95% CI:
0.988–1.064) and radiomics indications
(OR: 758.612, 95% CI: 14.536–
201,509.930; P¼ 0.004) were the final diag-
nostic factors to evaluate the efficacy of
ADT. Although TPSA had a non-
significant p-value, it was better to add
TPSA without considering the P value
when the stepwise regression was stopped
with the AIC. The ROC analysis confirmed
that the combined model was more effective
than the clinical model or the radiomics
model, with an AUC of 90.4% (95% CI:
0.811–0.997), accuracy of 88.4%, sensitivity
of 87.0% and specificity of 90.0% (Table 3
and Figure 3a).

Predictive model evaluation. The AUC, accura-
cy, sensitivity, specificity, positive predictive
value and negative predictive value of the
five models are listed in Table 3. The
ROC curve model comparing the three effi-
cacy models and the two identification
models is shown in Figure 3a, 3b. The boot-
strap method showed that the combined
model and Lesion-CG model had high
AUC, sensitivity and specificity (Figure 3c).

When the clinical model, radiomics
model and combined model were used to
assess the efficacy of ADT, in the radiomics
score waterfall plots (Figure 4), a score> 0
represented predicted survival or lesion
recurrence after ADT, and a score < 0 rep-
resented good efficacy of ADT and no
residual or recurrent lesions. Compared
with the clinical model (Figure 4a) and the
radiomics model (Figure 4b), the combined
model (Figure 4c) significantly improved
the false-negative and false-positive rates.

We chose a nomogram as a graphical rep-
resentation of the combined model (Figure
5a). For example, a patient with 144 points
would have a radiomics score of 0.91 (91
points), a pretreatment TPSA of 50 ng/m:
(11 points), pretreatment tumour stage of
T3 (42 points) and a 97% risk of poorT

a
b
le

3
.
P
re
d
ic
ti
ve

p
e
rf
o
rm

an
ce

o
f
th
e
d
iff
e
re
n
t
m
o
d
e
ls
.

A
U
C

(9
5
%

C
I)

A
C
C

(9
5
%

C
I)

SE
N

(9
5
%

C
I)

SP
E
(9
5
%

C
I)

P
P
V
(9
5
%

C
I)

N
P
V
(9
5
%

C
I)

C
lin
ic
al
m
o
d
e
l

0
.7
7
4
(0
.6
3
4
–
0
.9
1
4
)

0
.7
2
1
(0
.5
6
3
–
0
.8
4
7
)

0
.5
2
2
(0
.2
6
1
–
0
.7
3
9
)

0
.9
5
0
(0
.5
9
9
–
1
.0
0
0
)

0
.9
2
3
(0
.8
5
7
–
0
.9
4
4
)

0
.6
3
3
(0
.5
2
1
–
0
.6
4
5
)

R
ad
io
m
ic
s
m
o
d
e
l

0
.8
0
7
(0
.6
7
5
–
0
.9
3
9
)

0
.7
9
1
(0
.6
4
0
–
0
.9
0
0
)

0
.8
2
6
(0
.3
9
1
–
0
.9
5
7
)

0
.7
5
0
(0
.3
5
0
–
0
.9
0
0
)

0
.7
9
2
(0
.6
4
3
–
0
.8
1
5
)

0
.7
8
9
(0
.6
3
6
–
0
.8
1
8
)

C
o
m
b
in
e
d
m
o
d
e
l

0
.9
0
4
(0
.8
1
1
–
0
.9
9
7
)

0
.8
8
4
(0
.7
4
9
–
0
.9
6
1
)

0
.8
7
0
(0
.3
4
8
–
1
.0
0
0
)

0
.9
0
0
(0
.5
0
0
–
1
.0
0
0
)

0
.9
0
9
(0
.8
0
0
–
0
.9
2
0
)

0
.8
5
7
(0
.7
6
9
–
0
.8
7
0
)

L
e
si
o
n
-C

G
m
o
d
e
l

0
.9
5
5
(0
.9
0
0
–
1
.0
0
0
)

0
.8
9
7
(0
.7
5
8
–
0
.9
7
1
)

1
.0
0
0
(0
.6
6
7
–
1
.0
0
0
)

0
.7
7
8
(0
.5
5
6
–
0
.9
4
4
)

0
.8
4
0
(0
.7
7
8
–
0
.8
4
0
)

1
.0
0
0
(1
.0
0
0
–
1
.0
0
0
)

L
e
si
o
n
-P
Z
m
o
d
e
l

0
.8
5
5
(0
.7
4
2
–
0
.9
6
8
)

0
.8
1
0
(0
.6
5
9
–
0
.9
1
4
)

1
.0
0
0
(0
.6
1
9
–
1
.0
0
0
)

0
.6
1
9
(0
.4
2
7
–
0
.8
1
0
)

0
.7
2
4
(0
.6
1
9
–
0
.7
2
4
)

1
.0
0
0
(1
.0
0
0
–
1
.0
0
0
)

A
U
C
,
ar
e
a
u
n
d
e
r
th
e
cu
rv
e
;
C
I,
co
n
fid
e
n
ce

in
te
rv
al
;
A
C
C
,
ac
cu
ra
cy
;
SE
N
,
se
n
si
ti
vi
ty
;
SP
E
,
sp
e
ci
fic
it
y;
P
P
V
,
p
o
si
ti
ve

p
re
d
ic
ti
ve

va
lu
e;
N
P
V
n
e
ga
ti
ve

p
re
d
ic
ti
ve

va
lu
e;
C
G
,
ce
n
tr
al

gl
an
d
;
P
Z
,
p
er
ip
h
e
ra
l
zo
n
e
.

8 Journal of International Medical Research



effect after ADT. After DCA, the clinical,

radiomics and combined models (Figure

5b) had net benefits under different risk

thresholds. When the risk threshold value

was 10% to 99%, the combined model for

evaluating the clinical effect of ADT was

better than that of the clinical or radiomics

model alone. Additionally, the net benefit of

the three models was greater than the net

benefit of all interventions and no interven-

tion. The calibration curve in Figure 5c

shows that the clinical model had a small

Figure 4. Radiomics score waterfall plots. Clinical model (a), radiomics model (b), and combined model (c).

Figure 3. Receiver operating characteristic curves for the five models. (a) Receiver operating characteristic
(ROC) curves for the radiomics model, clinical model and combined model. (b) ROC curves of the Lesion-
peripheral zone (PZ) model and Lesion-central gland (CG) model. (c) A resampling method was adopted for
the five models, and the distribution of the area under the curve (AUC), sensitivity and specificity of each
model are shown on the horizontal axes.
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fluctuation in the evaluation of ADT effica-

cy, while the combined model showed good

stability compared with the other models;

the Hosmer–Lemeshow (HL) test demon-

strated a non-significant value.

Discussion

In this study, we developed three models to

monitor the efficacy of ADT and two identi-

fication models to differentiate residual

lesions from peripheral benign tissue after

ADT. Regarding monitoring ADT responses,

the combined model constructed by combin-

ing the radiomics score with clinical factors
showed better performance with DCA and

had a better AUC than the clinical model.
This indicated that adding the radiographic
radiomics score improved the diagnostic effi-
ciency of the clinical factors. The radiograph-
ic nomogram successfully stratified patients
with prostate cancer according to their risk
of different treatment responses, which may
contribute to individualised treatment deci-
sions. The two identification models had
higher accuracy and sensitivity for distin-
guishing between cancer foci and the sur-
rounding tissues after ADT, which could
improve the detection of residual cancer foci
after ADT and guide further treatment.

Individualised treatment responses to
ADT can be achieved by close monitoring

Figure 5. Development of a combined model nomogram (a) and decision curve analysis for the clinical,
radiomics and combined models (b) and calibration curves of the clinical, radiomics and combined models. In
(b), the decision curves for the three models to evaluate the efficacy of androgen deprivation therapy (ADT)
are shown. In (c), the calibration curve describes the consistency of model prediction probability and
observation probability. The 45� grey line represents the ideal prediction performance, while the solid
coloured lines represent the diagnostic prediction performance of each model.
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of serum PSA and testosterone concen-
trations, and with MRI. With close mon-
itoring, clinical guidance can be provided
at an early stage (with the addition of
antiandrogens for intensive or focal ther-
apy), to achieve the maximum benefit.17

Groenendaal et al.18 studied the effect of
ADT on prostate cancer MR images as
early as 2012 and found that ADT
resulted in significant tumour reduction,
impaired the detection of prostate cancer
and limited the MRI guidance in clinical
treatment. Therefore, we must improve
the monitoring of ADT efficacy using dif-
ferent methods. The clinical, radiomics
and combined models that we established
can be used to monitor different thera-
peutic effects to guide the next clinical
treatment. Although there were three
false-negative cases and two false-
positive cases in the radiomics score
waterfall figure for the combined model,
the cases’ common characteristic was that
the lesions could not be recognised owing
to decreased T2WI signals caused by
peripheral acinar atrophy after treatment.

ADT leads to atrophy of prostatic
acinar cells, fibrosis and basal cell prolif-
eration, thereby reducing the total glan-
dular stroma and leading to a recognised
decrease in total glandular volume. At the
same time, T2 signals in the normal
peripheral region are decreased, which
affects the differentiation of tumour
edges and limited diffusion in DWI,
resulting in an increase in the overall pros-
tatic signal.19 Currently, prostate cancer
after ADT determined by conventional
MRI is not ideal, and radiomics features
can provide abundant quantitative char-
acteristics that have good application
prospects in the differentiation of
tumours and benign tissues. In this
study, the Lesion-CG model and the
Lesion-PZ model differentiated tumour
tissue from benign tissue with a diagnostic
efficacy was 0.855 and 0.955, respectively.

Daniel et al.20 studied the differentiation

of tumour tissues from benign tissues

using MRI texture analysis after ADT

and found that texture characteristics dif-

fered between tumours and surrounding

healthy tissues, consistent with the results

of this study.

Limitations

This study had the following limitations: (1)

The study design was retrospective, which

may have led to selection bias. Ideally, the

study design should be prospective, with

MRI performed before and after ADT. (2)

Owing to the limited sample size, it was

impossible to build a verification set to

verify the model. However, we used uni-

and multivariate logistic regression analysis

to select the parameters, which ensures the

authenticity of the model, to a certain extent.

(3) The total number of patients in our study

was small (n ¼ 43). In future research, we

will link radiomics features with prostate his-

topathology by increasing the data volume.

(4) We used only T2WI to extract the

features because this modality provides

high-resolution images for accurate ROI

delineation, which directly affects the

results. However, owing to the low signal-

to-noise ratio and insufficient DWI resolu-

tion, this approach could not be used as

an analysis model because the process of

delineating lesions has an important

impact on the analysis, which must be

addressed carefully.21,22

Conclusions

In this study, we found that MRI radio-

mics can be used to monitor ADT

responses and to distinguish benign and

tumour tissues after ADT. The results are

of great value for determining the next step

in prostate cancer diagnosis and treatment

after ADT.
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