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Calcium imaging reveals depressive- and manic-phase-specific
brain neural activity patterns in a murine model of bipolar
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Brain pathological features during manic/hypomanic and depressive episodes in the same patients with bipolar disorder (BPD) have
not been described precisely. The study aimed to investigate depressive and manic-phase-specific brain neural activity patterns of
BPD in the same murine model to provide information guiding investigation of the mechanism of phase switching and tailored
prevention and treatment for patients with BPD. In vivo two-photon imaging was used to observe brain activity alterations in the
depressive and manic phases in the same murine model of BPD. Two-photon imaging showed significantly reduced Ca2+ activity in
temporal cortex pyramidal neurons in the depression phase in mice exposed to chronic unpredictable mild stress (CUMS), but not
in the manic phase in mice exposed to CUMS and ketamine. Total integrated calcium values correlated significantly with immobility
times. Brain Ca2+ hypoactivity was observed in the depression and manic phases in the same mice exposed to CUMS and ketamine
relative to naïve controls. The novel object recognition preference ratio correlated negatively with the immobility time in the
depression phase and the total distance traveled in the manic phase. With recognition of its limitations, this study revealed brain
neural activity impairment indicating that intrinsic emotional network disturbance is a mechanism of BPD and that brain neural
activity is associated with cognitive impairment in the depressive and manic phases of this disorder. These findings are consistent
with those from macro-imaging studies of patients with BPD. The observed correlation of brain neural activity with the severity of
depressive, but not manic, symptoms need to be investigated further.
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INTRODUCTION
Bipolar disorder (BPD) is a chronic psychiatric disorder affecting
1–4% of the global population [1]. With advances in multiple
research techniques, the pathological features of BPD have been
increasingly examined from different perspectives [2–10]. Based
mainly on magnetic resonance imaging (MRI) and electroence-
phalographic (EEG) findings, the macro-brain connectivity hypoth-
esis holds that brain circuit connectivity disturbance in the
emotion and reward networks in bipolar illness can guide
larger-scale efforts to understand how the human brain archi-
tecture impacts mood regulation in patients with BPD [11–18].
Micro-brain connectivity evidence, provided mainly by molecular
studies based on the brain development hypothesis and
performed with animal models, suggests that homeostatic
structural plasticity is disturbed in BPD [19–31]. Moreover,
accumulating studies based on the monoamine theory suggest
that the dopamine transporter, oxytocin, and dopamine systems

act in tandem to regulate corticostriatal circuitry, and that this
synergistic interaction is perturbed in patients with BPD [17–50].
Thus, the current evidence suggests that disturbances of macro-
and micro-brain connectivity and monoamine transmitters are the
pathological features of BPD, and that these features are caused
by neuronal axon, dendrite, brain transmitter, and brain electrical
activity dysfunction, as well as genetics and epigenetics (reciprocal
gene–environment interactions) [20–55]. More importantly,
macro- and micro-brain connectivity is correlated due to the
disturbance of neural synapse connections in BPD [32–50].
Few studies, however, have examined manic/hypomanic or

depressive phase-specific pathological features of BPD [37, 38].
Moreover, dynamic alterations in brain functional activity, cogni-
tion, and behavior during the switching phase of BPD have rarely
been examined in the same patient or animal model. Such
research can provide important information about the mechanism
underlying phase switching, ultimately guiding the targeting of
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treatment for patients with BPD and prevention high-risk
individuals with family histories of the BPD [48–56]. In recent
years, in vivo two-photon calcium imaging has been used to
investigate brain pathological features in animal models of
neocortical processing disorder and neurological and mental
diseases [46–54]. In addition, brain alteration patterns have been
found to differ among the stages of BPD progression [45–56].
Hence, in the present pilot study, we used in vivo two-photon

imaging to observe brain activity alterations during the depressive
and manic/hypomanic phases in a murine model of BPD. As
clinical studies have shown that depressive episodes usually
precede manic episodes in patients with BPD, we established the
model with induction of the depressive phase by chronic
unpredictable mild stress (CUMS) application [57], followed by
manic-phase induction by ketamine injection [58–60]. We
hypothesized that: (1) in vivo calcium imaging would demonstrate
impaired neural activity in the temporal cortex (TPC) and
prefrontal cortex (PFC), (2) this impairment would have phase-
specific patterns, (3) these patterns would be associated with
differences in cognitive and behavioral performance between BPD
phases, and (4) the patterns would be related to macro- and
micro-brain connectivity features.

MATERIALS AND METHODS
Animals and experimental design
Male C57BL/6 mice aged 4–5 weeks were housed in groups in a standard
animal facility with free access to food and water. An adeno-associated
viral (AAV) vector expressing GCaMP6s, a fluorescent calcium indicator, was
injected stereotaxically into the TPC and PFC of each mouse. We
investigated neural transmission in the TPC and PFC because these loci
are the seats of higher emotional and cognitive function and have been
implicated in the pathogeneses of depression and mania [47–71]. After
recovering from this procedure, the mice were divided randomly into two
groups: negative controls with no exposure or treatment and BPD mice.
The investigators were blinded to the groups during experiments. The
ethics committees of Wenzhou Seventh and Tianjin Fourth Center
hospitals approved this study (IRB-2020-animal-BPD-001 and IRB-2020-
TJFCH-004, respectively), and all procedures were performed in accordance
with the hospitals’ ethical standards.
The BPD model was designed to mimic a protocol for mania prevention

[55–60]. Following our previous work, we established it by exposing the
mice to CUMS using a standard protocol to provoke depressive behavior;
1 day later, we initiated a course of daily intraperitoneal injection of
ketamine (25mg/kg) to provoke manic behavior [68–71]. Assessments
were performed after the establishment of each phase.

Stereotaxic injection
Anesthesia was induced with 1.25% avertin, the scalp was incised and
locally sterilized, and the periosteal tissue was removed. A stereotaxic
instrument (RWD, China) was used to identify the hindlimb region of the
primary somatosensory cortex (S1HL; about 0.5 mm anterior to bregma
and 1.5 mm lateral). An injection hole was created on the cranium with a
high-speed microdrill (OmniDrill35; WPI, Jerusalem, IL, USA), and a glass
microelectrode connected to an ultra-micro-injection pump (Nanoliter
2010; WPI) was used to inject 80 nl AAV2/1-hSyn-GCaMP6s or 150 nl AAV2/
1-hSyn-DIO-GCaMP6s (>1 × 1013 gene copies/ml; University of Pennsylva-
nia Gene Therapy Program Vector Core) into the fifth cortical layer at a 60°
angle to avoid imaging site damage. The glass electrode was kept in the
brain tissue for a total of 5 min [72, 73].

In vivo two-photon calcium imaging
Three weeks after stereotaxic injection, the mice were anesthetized with
1.25% avertin, the skull was exposed, and two metal bars were attached to
the rostral and caudal portions of the skull, respectively, with glue (Loctite
401) and dental cement to ensure head restraint during imaging. One day
later, a high-speed microdrill was used to create an imaging window above
S1HL. A glass coverslip was applied to the window using Vetbond tissue
adhesive (3M, USA).
In vivo calcium imaging was performed on awake mice under head

restraint using a 920-nm excitation laser with a water-immersed objective

(× 20, 1.1 numerical aperture; Zeiss, Germany). Under an LSM780 two-
photon microscope (Zeiss), calcium activity was recorded at 2 Hz for
2.5 min at the apical tufts (0–80 μm from pia), vasoactive intestinal
polypeptide somas and axons (200–300 μm from pia), somatostatin somas
and axons (400–500 μm from pia), and layer 5 pyramidal neuron somas
(600–650 μm from pia). These regions of interest were defined manually.
Calcium-signal time series were corrected using the TurboReg plugin for
ImageJ software (National Institutes of Health, Bethesda, MD, USA). Mean
pixel values were averaged to obtain fluorescent (F) values, normalized as
(ΔF – F0)/F0, where F0 (the baseline value) was the average obtained during
the first 10% of recording. Total integrated calcium values were calculated
by summing ΔF/F0 values for the entire time series. Calcium spikes were
defined as ≥3 standard deviation increases [74, 75].

Behavioral assays
The animals were subjected to a sucrose preference test as described
previously [76–79], followed by a prepulse inhibition (PPI) test adapted for
the quantification of sensory gating function [80, 81]. After acclimation of
the mice in a sound-isolating chamber with 65 dB background noise, a 75-
dB prepulse (PP) was applied for 20ms, followed 100ms later by a 40-ms
120-dB startle stimulus (PA). The mice completed three trials with
intervening intervals of 30 s. Scores were averaged and the PPI ratio was
calculated as (PA – PP)/PA × 100% [76–81].

Statistical analysis
Sample size was determined based on previous published data as
sufficient to obtain statistical significance. No randomization was
performed. Data are presented as means ± standard errors of the mean,
unless specified otherwise. Data were compared using one-way analysis of
variance and post hoc Tukey tests. Data analysis and figure plotting were
performed with the GraphPad Prism software (version 8.0) [65, 66]. No
animals were excluded from the present study.

RESULTS
CUMS and ketamine exposure evoked abnormal cortical
transmission and behavior
Compared with controls, mice exposed to CUMS and ketamine had
significantly longer immobility times in the depression phase (P <
0.001; Fig. 1c) and significantly greater total distances traveled in
the manic phase (P < 0.001; Fig. 2c). Two-photon calcium imaging
demonstrated significantly less Ca2+ activity in TPC pyramidal
neurons in the depression phase, but no significant abnormality in
the manic phase, in these mice (Figs. 1a, b and 2a, b). Compared
with the controls, Ca2+ hypoactivity was observed in the PFC in the
depression and manic phases in mice exposed to CUMS and
ketamine (Figs. 1e, f and 2e, f). Total integrated calcium values
correlated significantly with immobility times in the depression
phase, but not the manic phase (P < 0.001, Fig. 1d; P < 0.001, Fig.
2b), due primarily to decreased calcium spike frequencies (P <
0.001, Fig. 2c, d). In both phases, exposed mice had smaller novel
object recognition preference ratios than did controls (P < 0.001;
Figs. 1g and 2g). This ratio correlated negatively with the immobility
time in the depression phase and with the total distance traveled in
the manic phase (Figs. 1h and 2h). Thus, mice exposed to CUMS
and ketamine showed dual phenotypes of depression and manic
behavior largely consistent with the behavioral expression of
patients with BPD, reflecting successful BPD model establishment.
They exhibited impaired cognitive ability in the depressive and
manic phases, which was more severe in the depressive phase.

Relationships among brain Ca2+ activity, symptom severity,
and cognitive impairment
Brain Ca2+ activity was related negatively to the severity of
depression (Fig. 1d). A similar, but nonsignificant, trend was
observed for the severity of mania (Fig. 2d). The relationships
between symptoms and cognitive impairment were consistent in
the depressive and manic phases. Cognitive impairment was more
severe and more strongly correlated with symptom severity in the
manic phase than in the depressive phase.
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Fig. 1 Brain neural activity and the correlation of Brain neural activity and depressive symptoms in the depressive phase of the murine
model of bipolar disorder. a Brain Ca2+ activity in naive murine model; b Brain Ca2+ activity in the depressive phase in the bipolar disorder
murine model; b" Normalized total integrated Ca in the depressive phase in the bipolar disorder murine model; c Immobility time in the manci
phase in the bipolar disorder murine model; d The correlation between normalized total integrated Ca and immobility time in the depressive
phase in the bipolar disorder murine model. e Comparison of the Ca between naïve murine model and the depressive phase of bipolar
disorder in the depressive phase of the murine model of Bipolar disorder; f Normalized total integrated Ca in the depressive phase in the
bipolar disorder murine model; g Percentage of preference ratio of the depressive phase in the bipolar disorder murine model; f Normalized
integrated Ca activity comparison between the naive murine model and depressive phased in the murine model of bipolar disorder; and
h The correlation between normalized total integrated Ca and immobility time in the depressive phase in the bipolar disorder murine model.
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Fig. 2 Brain neural activity and the correlation of Brain neural activity and depressive symptoms in the depressive phase of the murine
model of bipolar disorder. a Brain Ca activity in naive murine model; b Bain Ca activity in the manic phase in the bipolar disorder murine
model; b" Normalized total integrated Ca in the manic phase in the bipolar disorder murine model; c Immobility time in the manci phase in
the bipolar disorder murine model; d The correlation between normalized total integrated Ca and immobility time in the manic phase in the
bipolar disorder murine model. e Comparison of the Ca between naïve murine model and the manic phase of bipolar disorder in the manic
phase of the murine model of Bipolar disorder; f Normalized total integrated Ca in the manic phase in the bipolar disorder murine model;
g Percentage of preference ratio of the manic phase in the bipolar disorder murine model; f Normalized integrated Ca activity comparison
between the naive murine model and manic phased in the murine model of bipolar disorder; and h The correlation between normalized total
integrated Ca and immobility time in the manic phase in the bipolar disorder murine model.
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DISCUSSION
In this pilot microimaging study conducted with a murine model
of BPD, we observed significantly reduced brain Ca2+ activity in
the depressive and manic phases, which is consistent with macro-
imaging findings suggesting that the disruption of the emotional
network contributes to mood dysregulation in patients with BPD
[20–23]. We also observed cognitive impairment in the depressive
and manic phases, which was related to the severity of depressive
and manic symptoms. In addition, it was more severe and
correlated more strongly with symptom severity in the manic
phase. Neural activity impairment did not correlate with manic
symptom severity in our BPD model.
Numerous reports, especially those on macro-imaging (func-

tional MRI and EEG) studies, describe decreased brain activity in
the TPC in the depressive and manic phases of BPD. For example,
Cerullo et al. [82]. reported decreased middle temporal gyrus
activation during depressive episodes in patients with BPD and
those with unipolar depression. Xiao et al. [83]. reported reduced
cortical regional homogeneity (ReHo) in the superior temporal
gyrus and increased ReHo in the cerebellum in the manic phase in
patients with BPD relative to a euthymic group. The ENIGMA
Bipolar Disorder Working Group observed widespread bilateral
patterns of reduced cortical thickness in the frontal, temporal, and
parietal regions among 6503 adults with BPD [32]. These findings,
along with our microimaging findings, indicate a reduced ability
to adjust the intrinsic emotional network in animal models of BPD
and patients with this disorder.
Our observation that brain Ca2+ activity was related negatively

to the severity of depressive, but not manic, symptoms may be
related to the pathological mechanism of BPD. Macro-imaging
studies have documented clear correlations of symptom severity
with brain functional and structural impairment [84–89]. In
addition, macro-imaging techniques may not be able to capture
brain features in a timely manner during manic or depressive
episodes; in other words, a time lag may affect the results. We
could not explore this possibility in this study because we did not
use EEG or MRI. A few EEG studies have revealed correlations
between brain impairment and symptom severity, and a few
animal models of BPD have investigated the relationship between
depressive or manic symptom severity and brain impairment.
Research involving the simultaneous application of multiple
technologies is needed to clarify this relationship.
Clinical and macro-imaging studies have shown that cognitive

impairment is a pivotal symptom in patients with BPD; similar
findings have been obtained with animal models of depression or
mania [90–94]. Our finding that cognitive impairment was more
severe in the manic phase provides a new clue for investigation of
this difficult-to-improve symptom in patients with BPD, although it
may have been influenced by confounding factors. We also found
that the mice had more difficulty maintaining attention to
complete cognitive tasks during the manic phase in this study.
This finding is similar to those from macro-imaging studies of
patients with BPD [95–99]. A multiple-arm study is needed to
clarify this question.
The lack of a relationship between brain activity and behavioral

expression in the manic phase in this study may be related to the
regional neurological differences observed in murine models of
BPD. For example, Hindley et al. [100] reported that GABAergic
system-related genes influence neuronal structure and function in
the frontostriatal reward system; we did not examine the striatal
region in the present study. Moreover, a recent BPD model
revealed the involvement of cerebrospinal fluid proteins in
neuronal cell–cell and cell–matrix interactions, particularly in the
developing brain, and in pathways of importance for lithium’s
mechanism of action [101]. These findings demonstrate the need
for more exploration of the central nervous system processes
implicated in BPD, and the relationship between the neurological
bases of this disorder and behavioral expression [102].

Limitations
This study has several limitations. First, our findings may be
attributable to our induction of the manic phase immediately after
the depressive phase in this study, which most closely models the
rapid-cycling or mixed-episode form of BPD [61, 62]. An
intervening interval of time may have allowed for brain recovery,
avoiding a “double hit” effect of the CUMS and ketamine
treatments. However, this dual-modeling approach has not been
attempted in previous studies, and experience from clinical
practice suggests that most patients with BPD switch phases
rapidly; some patients even have mixed manic/depressive
episodes. Patients with rapid-cycling or mixed-episode BPD show
more serious brain activity and cognitive impairments, with no
relationship between the two [91, 103–105]; this evidence seems
to support our postulation that our model design caused a floor
effect, but multiple-arm studies are needed to clarify this issue. In
future research of this type, we will seek to identify a better
method for BPD modeling to allow the investigation of neural
mechanisms underlying other subtypes of this disorder. Second,
we used only a few behavioral and cognitive indices, although
these indices are classic for animal models. The development of
additional tests for the assessment of cognitive alterations might
aid more detailed description of the pathological mechanisms of
BPD. Third, with this pilot study we could not gain a precise and
full understanding of the neural mechanisms underlying BPD, or
identify a potential biomarker for the investigation of this disorder
in patients. The brain is a highly sophisticated network related to
genes and composed of many sub-networks under dynamic
development from infancy to advanced age. Our observation of
brain Ca2+ activity after CUMS may partially explain the lack of a
relationship between brain functional impairment and behavioral
expression in the subsequently induced manic phase. However,
we believe that the brain functional impairment caused by CUMS
is a feature of the pathological mechanisms underlying BPD.
Finally, unknown factors may have influenced the results of this
study, given our limited knowledge of the pathological mechan-
isms of BPD. Further research on the phase-specific brain
pathological features of BPD in animal models and patients is
needed.

CONCLUSION
In this study, we investigated the pattern of brain Ca2+ activity
impairment, and the relationships of Ca2+ activity and cognitive
performance impairment to depressive and manic symptoms and
their severity, in a murine model of BPD. The findings are
consistent with those of macro-imaging studies of patients with
BPD [31–35], implicating intrinsic emotional network disturbance
in this disorder and confirming the association of brain neural
activity with cognitive impairment during the depressive and
manic phases. Brain neural activity correlated with the severity of
depressive, but not manic, symptoms in this study. Given the
limitations of this pilot study, however, further research is needed
to confirm our observations.
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