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The COVID-19 pandemic caused by the severe acute syndrome virus 2 (SARS-CoV-2)
has been around since November 2019. As of early June 2022, more than 527 million
cases were diagnosed, with more than 6.0 million deaths due to this disease.
Coronaviruses accumulate mutations and generate greater diversity through
recombination when variants with different mutations infect the same host.
Consequently, this virus is predisposed to constant and diverse mutations. The SARS-
CoV-2 variants of concern/interest (VOCs/VOIs) such as Alpha (B.1.1.7), Beta (B.1.351),
Gamma (B.1.1.28/P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) have quickly spread
across the world. These VOCs and VOIs have accumulated mutations within the spike
protein receptor-binding domain (RBD) which interacts with the angiotensin-2 converting
enzyme (ACE-2) receptor, increasing cell entry and infection. The RBD region is the main
target for neutralizing antibodies; however, other notable mutations have been reported to
enhance COVID-19 infectivity and lethality. Considering the urgent need for alternative
therapies against this virus, an anti-SARS-CoV-2 equine immunoglobulin F(ab’)2, called
ECIG, was developed by the Butantan Institute using the whole gamma-irradiated SARS-
CoV-2 virus. Surface plasmon resonance experiments revealed that ECIG binds to wild-
type and mutated RBD, S1+S2 domains, and nucleocapsid proteins of known VOCs,
including Alpha, Gamma, Beta, Delta, Delta Plus, and Omicron. Additionally, it was
observed that ECIG attenuates the binding of RBD (wild-type, Beta, and Omicron) to
human ACE-2, suggesting that it could prevent viral entry into the host cell. Furthermore,
the ability to concomitantly bind to the wild-type and mutated nucleocapsid protein likely
enhances its neutralizing activity of SARS-CoV-2. We postulate that ECIG benefits
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COVID-19 patients by reducing the infectivity of the original virus and existing variants and
may be effective against future ones. Impacting the course of the disease, mainly in the
more vulnerable, reduces infection time and limits the appearance of new variants by
new recombination.
Keywords: COVID-19, equine serum, neutralizing antibodies, nucleocapsid, RBD, VOCs, SPR
INTRODUCTION

The severe acute syndrome virus 2 (SARS-CoV-2) is an RNA virus
with higher transmission rates when compared to earlier
coronavirus outbreaks (e.g., SARS and MERS) (1). As an
evolutionary mechanism, coronaviruses accumulate mutations
through recombination when different variants infect the same
host or when the virus persists for a long time in the host,
resulting in greater viral diversity (2). Consequently, this virus is
predisposed to constant and diverse mutations. The SARS-CoV-2
genome comprises approximately 30,000 nucleotides, encoding four
structural proteins: spike (S), envelope (E), membrane (M), and
nucleocapsid (N) (3). The S protein is a trimeric glycoprotein
containing 1273-amino acid. The monomers are composed of
two domains: S1 (residues 1-686) and S2 (residues 687-1273).
The S1 domain is exposed and contains the receptor-binding
domain (RBD) (residues 306-534), while the S2 domain is
partially buried (3, 4). New variants of SARS-CoV-2 have been
identified with alterations in the S protein. For example, the Alpha
(B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28/P.1), Delta (B.1.617.2),
Kappa (B.1.617.1), and Omicron (B.1.1.529), which was classified as
a variant of concern (VOC) by the World Health Organization
(WHO) on November 2021, display S protein mutations and have
quickly spread across the world (1, 4–6). A previous study
demonstrated that the N501Y mutation, present in all VOCs
except for Delta, exhibits increased ACE-2 binding affinity,
conferring higher resistance to neutralization (7). The E484K
mutation observed in Gamma, Beta, and Omicron (as E484A)
can evade neutralization bymost monoclonal antibodies and reduce
mRNA vaccine responses (6–9). Another significant VOCmutation
occurs at amino acid 417. A K417T was reported in the Gamma
variant, but in Beta and Omicron, the lysine is substituted by
asparagine (K417N) (4, 8). It should be pointed out that the K417N/
Tmutations rarely occur in the absence of other mutations, possibly
because K417 mutations appear to reduce ACE-2 binding.
Additionally, the L452R mutation is present in the Delta, a VOC,
and in Kappa (B.1.617.1) and Epsilon (B.1.427/9), which are
variants of interest (VOIs). This mutation reduces the
susceptibility of the S protein to several Region Binding Motif
(RBM) class 2 monoclonal antibodies (mAb). In one study, the
samples with the L452R mutation displayed 3 to 10-fold reduced
susceptibility to about one-third of plasma samples from
convalescent and vaccinated individuals (4, 10). The mutations
described above are of concern because they are located in the
region interacting with the angiotensin-2 converting enzyme (ACE-
2), the main route of human SARS-CoV-2 infection. Thus, it should
be no surprise that this region has become the main target for
neutralizing antibodies.
org 2
Besides RBDmutations, others have also been found in the S1
domain and S2 domain, as the D614G, present in the S1 domain,
impacts identified sample frequency (IF) and increases fitness,
infectivity, and fatality (11). In addition to the S protein, SARS-
CoV-2 infected patients also present an early antibody response
against the N protein present within the viral particle, not on the
surface (12, 13). The SARS-CoV-2 N protein contains two
distinct RNA-binding domains: the N-terminal domain (NTD)
and the C-terminal domain (CTD). These two domains are
linked by a poorly structured linkage region (LKR) containing
a serine/arginine-rich (SR-rich) domain (SRD) (14, 15). It has
been proposed that NTD and CTD bind to the viral RNA
genome through electrostatic interaction and are essential to
the virus life cycle. Mutations in the N protein have been
detected, and it is plausible that they functionally contribute to
the virulence of the virus. For example, the co-occurring R203K/
G204R mutations in the N protein rapidly increase in frequency
and are closely associated with the virus’ infectivity (16). Indeed,
these mutations are carried by Alpha (B.1.1.7) (17, 18), Gamma
(B.1.1.28/P.1) (19, 20), and Omicron variants (6).

Given the importance of other structural proteins for the
SARS-CoV-2 life cycle, antibodies that inhibit or interfere with
these proteins may effectively reduce infections’ severity and
subsequent consequences, like hospitalization and death.
Considering the urgent need for alternative COVID-19
therapies, developing antibodies that recognize and bind to N-
protein mutations concomitantly to RBD could be a viable and
effective strategy for treating COVID-19-infected patients. In the
present study, the Butantan Institute created, through
immunization of horses using inactivated viruses (SARS-CoV-
2/SP02/2020HIAE - GenBank MT126808.1. B.1.1.28), an equine
Covid immunoglobulin F(ab’)2, herein referred to as ECIG).
This method employed multiple cycles of subcutaneous
inoculation without harm, as the virus was inactivated by
gamma-irradiation, yielding large amounts of plasma and
homogeneous final preparations of highly purified antibodies
(21). A Phase I/II Randomized Clinical Trial approved by the
Brazilian Health Regulatory Agency (ANVISA) (https://
clinicaltrials.gov/ct2/show/NCT04834089) is ongoing to
evaluate ECIG’s safety pharmacokinetics and efficacy in
patients with an increased risk for severe disease and at an
early stage of COVID-19 infection.

Surface Plasmon Resonance was utilized to evaluate ECIG
binding to wild-type and mutated RBD, Spike, and N proteins.
The results demonstrated that ECIG generated by injecting
inactivated, yet structurally preserved whole virus, could
successfully bind to mutated viral RBD, Spike, and N proteins.
The affinity and binding of ECIG to the virus’ proteins indicate
July 2022 | Volume 13 | Article 871874
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that this therapy could minimize and/or inhibit critical SARS-
CoV-2 interactions essential for viral entry via ACE-2, the viral
life cycle, and its replication. Thus, ECIG appears to be a
promising therapeutic alternative for treating individuals
infected with COVID-19 caused by wild-type SARS-CoV-2
and presently known variants. Besides, ECIG could also be
effective against future variants.
MATERIAL AND METHODS

Material
SARS-CoV-2 (2019-nCoV) Spike RBD Recombinant proteins
(RBD wild type), RBD (E484K), RBD (N501Y), RBD Beta,
Gamma, Delta, Omicron, S1+S2 Gamma, Delta, Omicron and
Nucleocapsid recombinant proteins (N/wild type and N mut/
del), and ACE-2 protein were purchased from Sino Biological
(Chesterbrook, PA, USA). RBD, N wild type (WU), and S1+S2
Gamma proteins were expressed in insect cells, N mut/del was
expressed in E.coli, and all the other commercial proteins,
including ACE-2, were expressed in HEK293 cells). HBS-EP
buffer (0.01 M HEPES pH 7.4, 0.15 M NaCl, 3 mM EDTA,
0.005% v/v Surfactant P20) was used in SPR experiments. ECIG
was purified by the Immunobiological Production Section,
Bioindustrial Center, Butantan Institute from the plasma of
horses immunized with inactivated SARS-CoV-2 virus,
collected up to 49 days after the first antigen injection. The
final product is composed of F(Ab’2) immunoglobulin
fragments (21).

Cloning and Expression of RBD Gamma
and Delta in CHO Cells
Two SARS-CoV-2 RBD sequences were designed as homodimers
of RBD Gamma (RBDg) with K417T/E484K/N501Y mutations
and RBD Delta plus (RBDdp) with K417N/L452R/T478K
mutations. The constructs were synthesized by GeneArt
(ThermoFisher Scientific – Invitrogen) and contained an N-
terminal SARS-CoV-2 S protein sequence signal, a C-terminal
AviTag sequence, and a 6×HisTag. Plasmids were transformed
into Escherichia coli One Shot TOP10 (Invitrogen, C404003,
City, State, Country) by heat shock. A randomly selected colony-
forming unit (CFU) was propagated. Following cell lysis, the
plasmids were purified with the PureLinkTM HiPure Plasmid
Maxiprep Kit (Invitrogen, K210007) fol lowing the
manufacturer’s instructions. The plasmid DNA was then
transiently transfected into ExpiCHO cells using the
ExpiCHOTM Expression System (Gibco, A29133, City, State,
Country) following the manufacturer’s protocol. Standard
methodologies were utilized to purify the recombinant antigens
with Ni Sepharose 6 Fast Flow resin (Cytiva, 17531801, City,
State, Country).

Binding Analysis
The surface plasmon resonance experiments were performed at
room temperature using a GE Biacore T-200 system (GE
Healthcare, Chesterbrook, PA, USA). For the binding affinity
Frontiers in Immunology | www.frontiersin.org 3
assays, SARS-CoV-2 RBD, WT; E484K; N501Y; Beta K417N/
E484K/N501Y; Gamma (K417T/E484K/N501Y), Delta (L452R/
T478K), Delta plus (K417N/L452R/T478K), Omicron (G339D,
S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K,
E484A, Q493R, G496S, Q498R, N501Y, Y505H), Gamma Spike
S1+S2 (L18F, T20N, P26S, D138Y, R190S, K417T, E484K,
N501Y, D614G, H655Y, T1027I, V1176F), Delta Spike S1+S2
(T19R, E156G, 157-158 deletion, L452R, T478K, D614G, F817P,
A892P, A899P, A942P, D950N, K986P, V987P), Omicron Spike
S1+S2 (A67V, D69-70, T95I, G142D/D143-145, D211/L212I,
ins214EPE, G339D, S371L, S373P, S375F, K417N, N440K,
G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y,
Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y,
N856K, Q954H, N969K, L981F), and N proteins (WT and the
variant containing the D3L/R203K/G204R/S235F mutations)
were immobilized on CM5 sensor chips to result in about 1000
resonance units (RU). The reference flow cell was left blank. The
running buffer was HBS-EP (0.01 M HEPES pH 7.4, 0.15 M
NaCl, 3 mM EDTA, 0.005% v/v Surfactant P20). ECIG and
serum samples (1:10 v/v) flowed over the chip surface. After each
cycle, the sensor surface was regenerated with 10 mM glycine-
HCl pH 2.5. The data were fitted to a 1:1 interaction steady-state
binding model using the Biacore T200 Evaluation 3.1 software.

The Committee of Ethics Research in Human Beings approved
the serum sample collection (CAAE 3270 7920.0.0000.5467).

Competition-Binding Study
For competition-binding assays, the ACE-2 protein was diluted
in 10 mM sodium acetate buffer, pH 4.5, and then immobilized
on the CM5 sensor chip at about 650 RUs. Next, each SARS-
CoV-2 RBD (WT, Beta, and Omicron) at gradient
concentrations (WT- 100 nM, 200 nM, 300 nM, 400 nM, and
for Beta e Omicron: 250 nM, 500 nM, 750 nM, and 1000 nM)
flowed over the chip’s surface until achieving the saturation
binding between each RBD and ACE-2). Next, at each saturation
concentration, competition-binding assays using SARS-CoV-2
RBD (WT, Beta, and Omicron variant) pre-incubated with ECIG
[1:10 v/v] for 1 hour at 37°C were also performed. These
mixtures were then injected over the surface-immobilized with
ACE-2 to evaluate a possible ECIG-mediated inhibition of SARS-
CoV-2 RBD binding to ACE-2. After each cycle, the sensor
surface was regenerated with 10 mM glycine-HCl pH 2.5.

SDS PAGE
The purity and molecular mass of commercial and in-house
expressed proteins were evaluated by SDS–PAGE at either 7.5%
or 12% under nonreducing conditions. Electrophoresis was
performed for 90 min at 100 V, and the gel was stained by
InstantBlue® Coomassie Protein Stain (Abcam, UK). The
molecular weight markers were fromCytiva, Buckinghamshire, UK.

Statistical Analyses
Experimental data were analyzed using the One-Way ANOVA,
followed by the Tukey or Dunnett post-test using the GraphPad
Prism program (GraphPad Software, San Diego, CA, USA). P
values < 0.05 were considered statistically significant. The values
shown in the graphs are presented as means ± SD. One
July 2022 | Volume 13 | Article 871874
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representative result from at least two independent experiments
was shown.
RESULTS

SARS-CoV-2 Proteins Binding
The notable S protein mutations present in VOCs are presented
in Figure 1, and the recombinant proteins used in the SPR assays
are summarized in summarized in Table 1. We checked
recombinant proteins’ purity and molecular mass by non-
reduced SDS-PAGE (Supplementary Figure S1). For the
binding assays, ECIG was injected and flowed over the surface
of a chip containing recombinant RBD, S1+S2, and N proteins.
TABLE 1 | VOC RBD and N proteins used in the assays.

SARS-CoV-2
Related Proteins

Mutations/deleti

RBD WU Original – appeared in China

RBD E484K E484K (only mutation)

RBD N501Y N501Y (only mutation)

RBD Beta K417N/E484K/N501Y (appeared in South Africa)

RBD Gamma K417T/E484K/N501Y (appeared in Brazil

RBD Delta L452R/T478K (appeared in India)

RBD Delta+ K417N/L452R/T478K (appeared in India)

RBD Omicron G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N,
Y505H

S1+S2 Gamma L18F/20N/P26S/D138Y/R190S/K417T/E484K/N501Y/D614G/H6

S1+S2 Delta T19R/E156G/157-158 del./L52R/T478K/D614G/
F817P/A892P/A899P/A942P/D950N/K986P/V987P

S1+S2 Omicron A67V, D69-70, T95I, G142D/D143-145, D211/L212I, ins214EPE,
G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y,
N764K, D796Y, N856K, Q954H, N969K, L981F

N WU N protein of the original virus (Wuhan)

N mut/del D3L, R203K, G204R, S235F alterations

ACE-2

Frontiers in Immunology | www.frontiersin.org 4
As shown in Figure 2A, the SPR results demonstrated that ECIG
binds to wild-type RDB and RBD containing the primary VOC
mutations. It was also determined that ECIG binds to S1+S2
ECIG binds to S1+S2 of VOCs (Figure 2B) and N protein, WT,
and mut/del (Figure 2C).

The binding of ECIG to RBD proteins (wild-type and VOCs)
and N proteins (wild-type and mutated) was compared to the
sera samples from COVID-19 convalescent individuals collected
before the start of vaccination (Figure 3).

Blocking of the ACE2-RBD Interaction
by ECIG
Competition assays using human ACE-2 immobilized on the
surface of the CM5 biosensor were performed to evaluate
ons Source Host Figure

Sino
Biol.

Insect
cells

Fig.
S1a

Sino
Biol.

HEK293 Fig.
S1a

Sino
Biol.

HEK293 Fig.
S1a

Sino
Biol.

HEK293 Fig.
S1a

Sino
Biol.

HEK293 Fig.
S1a

Sino
Biol.

HEK293 Fig.
S1a

in-
house

ExpiCHO Fig.
S1a

T478K, E484A, Q493R, G496S, Q498R, N501Y, Sino
Biol.

HEK293 Fig.
S1a

55Y/T1027I/V1176F Sino
Biol.

Insect
cells

Fig.
S1c

Sino
Biol.

HEK293 Fig.
S1c

G339D, S371L, S373P, S375F, K417N, N440K,
Y505H, T547K, D614G, H655Y, N679K, P681H,

Sino
Biol.

HEK293 Fig.
S1c

Sino
Biol.

Insect
cells

Fig.
S1b

Sino
Biol.

E.coli Fig.
S1b

Sino
Biol

HEK293 Fig.
S1d
FIGURE 1 | Visual representation of the domain locations and the most common mutations. Abbreviations: NTD, N-terminal domain; RBD, receptor-binding domain;
RBM, receptor-binding motif; SD, subdomain; S1/S2, the junction between the exposed S1 attachment domain and the partially buried S2 fusion domain.
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whether ECIG inhibits RBD binding to ACE-2. As shown in
Figure 4, ECIG attenuated wild-type RBD, RBD Beta, and
Omicron binding to ACE-2 by 71.2%, 65,8%, and 47,3%,
respectively (Figures 4A–C). Sensorgrams showing the
saturation curves of the binding of RBD WU, Beta, and
Omicron to ACE-2 immobilized on the sensor chip and the
interference of ECIG on the respective binding can be seen in
Supplementary Figure S2.
DISCUSSION

ECIG was prepared from the plasma of horses immunized
subcutaneously with four doses of gamma-irradiated SARS-
CoV-2 after a study demonstrating its immunogenicity
potential while unable to cause disease. Different from
chemical inactivation, the radiation maintained the structure of
the viral proteins. ECIG is composed of F(ab´)2 fragments, thus
absent of Fc component, as recommended by Brazilian
B C

A

FIGURE 2 | Surface plasmon resonance analyses of ECIG binding to RBD, Spike S1+S2, and N proteins. (A) Binding of ECIG to wild-type and mutated RBD. (B)
Binding of ECIG to Spike S1+S2 Gamma, Delta, and Omicron. (C) The binding of ECIG to wild-type N protein and N mut/del. Binding assays were performed with a
BIAcore T200 biosensor instrument, with RBD, Spike, and N proteins immobilized on a CM5 sensor chip. Binding responses are represented in resonance units (RU). A
running buffer was used as a negative control (0 mM). Results were evaluated by one-way ANOVA and showed statistical significance (p ≤ 0.05).
FIGURE 3 | Surface plasmon resonance analysis of ECIG (showed in red
symbols) in comparison to 34 sera samples from SARS-CoV-2 infected
individuals (not vaccinated). All the samples were diluted at 1:10 v/v in HBS-
EP. Binding assays were performed with a BIAcore T200 biosensor
instrument, with RBD and N proteins immobilized on a CM5 sensor chip.
Binding responses are represented in resonance units (RU). A running buffer
was used as a negative control (0 mM).
July 2022 | Volume 13 | Article 871874

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Andrade et al. SARS-CoV-2 Equine Serum x VOCs
Pharmacopeia, the case for all equine immunoglobulin
preparations produced by Butantan Institute, including anti-
virus such anti-rabies serum. Therefore, its neutralization
capacity is conferred only by direct virus neutralization,
avoiding potential adverse reactions of heterologous Fc-
binding. There have been some discussions on the contribution
of the Fc moiety towards the neutralization of SARS-CoV-2 and
avoiding ADE (antibody-dependent enhancement) in studies
conducted with human monoclonal antibodies. Specific
antibodies that do not directly neutralize the virus could rely
on Fc-effector functions to attain SARS-CoV-2 neutralization.
Wrinkler et al. (22) generated human monoclonal antibodies
Frontiers in Immunology | www.frontiersin.org 6
anti-SARS-CoV-2 and reported superior neutralizing activity of
intact IgG compared to the loss-of-function mutated IgG. Their
results are not similar for all monoclonal antibodies tested; one
was not dependent on Fc for protection. In a monoclonal
antibody preparation, all the molecules have the same
characteristics: binding to the same epitope on the RBD
molecule and activating (or inhibiting) the same Fc-effector
functions. Another study by Andreano et al. (23) purposely
abrogated Fc effector functions by introducing three mutations
in the Fc moiety of human monoclonal antibodies. Analyzing a
panel of human mAbs, they found a highly neutralizing one that
induced prophylactic and therapeutic protection to SARS-CoV-2
B

C

A

FIGURE 4 | Surface plasmon resonance analysis of (A) wild-type RBD, (B) RBD Beta, and (C) Omicron binding to ACE-2 in the presence and absence of ECIG. At
their respective saturation concentration, wild-type RBD, RBD Beta, and RBD Omicron were pre-incubated with ECIG [1:10 v/v] for 1 hour at 37°C. These mixtures
were then injected over the surface previously immobilized with ACE-2 to evaluate if ECIG alters SARS-CoV-2 RBD binding to ACE-2. The binding responses are
represented in resonance units (RU). Running buffer was used as the negative control (0 mM). Results were evaluated by one-way ANOVA and showed statistical
significance (p ≤ 0.05).
July 2022 | Volume 13 | Article 871874
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in the golden Syrian hamster model. To avoid the potential risk
of ADE, only Fc-mutated mAbs were used. The effects of
heterologous polyclonal antibodies on the FcR of human cells
are not easy to predict and control. The complement system
activation should also be avoided. While various studies can be
conducted in vitro or animal models, only the results of clinical
trials could support the conclusions. Hyperimmune equine
antibodies have been used for more than a century for
different targets. Butantan Institute and other producers digest
the equine antibodies with pepsin to cleave them into F(ab)’2
fragments (24–26). We consider it safer to rely on the experience
of decades.

Based on its extensive experience producing effective
hyperimmune sera, the Butantan Institute developed an equine
anti-SARS-CoV-2 serum, an antibody product based on the
whole virus; inactivated yet structurally preserved viruses were
employed for the immunization. Three assays had previously
evaluated the neutralization capacity of ECIG. First, the samples
were submitted to the current gold standard neutralization
method based on a virus neutralization test requiring live
pathogen and a biosafety level 3 laboratory, CPE-VNT
(cytopathic effect-based virus neutralization test), tested with
wild-type and variants of SARS-CoV-2. Three initial
preparations of ECIG resulted in neutralization titers of
1:1120-1:2140 for wild-type virus, 1:120-1:200 for gamma
variant, and 1:1120-1:2240 for zeta, a VOI that appeared in
Brazil, containing E484K/D614G/V1176F mutations (21). Two
commercial ELISA kits that correlate with neutralization
capacity were conducted in samples of the horse plasma and
purified preparation (anti-RBD domain antibody detection kit
from ROCHE and cPass Neutralization Antibody Detection kit
from GenScript), with consistent results. The final preparation
was tested in the golden Syrian hamster model (21).

The entire S protein or S protein fragments, combined with or
without other SARS-CoV-2 recombinant proteins, have been used
to develop vaccines and therapies. The recombinant RBD protein
was used to immunize horses, producing serum used in a clinical
trial (27–29). Equine serum produced by immunization with
recombinant spike protein was also reported (30). Another group
developed equine formulations against S1 or a mixture of
recombinant S1, N, and SEM (spike-envelope-membrane mosaic)
proteins (31, 32). However, none of these formulations were
evaluated by their inhibition of the binding of RBD to ACE-2
receptor, as shown herein.

The S protein contains the RBD that binds to the human
ACE-2 receptor and is responsible for virus entry into host cells.
Most mutations present in VOCs and VOIs are located in the
RBD. Some of these mutations increase the binding affinity to
ACE-2 and are associated with increased transmissibility, disease
severity, and humoral immunity escape (4). However, other
essential viral structural proteins, such as the N protein, are
highly immunogenic and play critical roles in viral replication
and packaging viral RNA into new virions (33). Besides the S
protein mutations, various mutations have been identified in the
N protein. It has been reported that after infection, the N protein
Frontiers in Immunology | www.frontiersin.org 7
enters the host cell and facilitates viral replication and virus
particle assembly and release (34). The reported substitutions are
enriched in the three intrinsically disordered domains: N1a, N2a,
and spacer B/N3. There is a particularly high density of
substitutions in the SR-rich subdomain of N2a, where R203K
and G204R, the most common substitutions, are located (35).
Studies have demonstrated that the R203K/G204R mutations
improve replication efficiency compared to the original virus.
These mutations are dominant during the pandemic, potentially
increasing virulence and viral fitness. These multiple mutations
and the emergence of new variants have raised concerns about
the effectiveness of currently available antibody treatments and
the future of the pandemic. ECIG, targeting all proteins of SARS-
CoV-2, can be explored as an alternative COVID-19 treatment
strategy. The present work assessed the binding of ECIG to
SARS-CoV-2 RBD, S1+S2 domains, and N proteins using SPR, a
technology widely accepted as the gold standard for
characterizing antibody-antigen interactions. The results
demonstrated that ECIG recognizes and binds to the RBD
present in VOCs. These VOCs display higher virus
transmission rates, increasing the risk of reinfection and
reducing susceptibility to neutralizing monoclonal antibodies
and vaccination. To compare the binding of antibodies present
in ECIG in response to immunization of horses with a gamma-
irradiated virus to antibodies in the serum of humans
convalescent from COVID-19, we performed SPR assays
against RBD proteins – wild-type, beta, gamma, delta, and also
omicron - as well as N proteins - wild-type and mutated,
demonstrating that the range of antibodies present in ECIG is
similar as those elicited by the infection with the real virus.

Additionally, ECIG effectively inhibits the binding of wild-
type RBD and RBD Beta and Omicron to ACE-2, as
demonstrated by our results. The Beta variant is particularly
concerning because the RBD contains a set of mutations that
may help it evade the neutralization of antibodies raised against
the original virus (8, 9). The Omicron variant accumulates many
mutations, causing health concerns around the world. In this
sense, our results are encouraging because RBD binding to ACE-
2 is the central route for SARS-Cov-2 virus infection. Indeed,
blocking virus binding to a cell attenuates its spread to other
cells, hinders its life cycle, and impairs the illness and course of
the disease. Moreover, ECIG’s ability to concomitantly bind to
the RBD and N protein increases its neutralizing potential.

From this perspective, the horse serum resulting serum
produced by the Butantan Institute for clinical use can effectively
treat patients prone to a high risk of complications due to infection
with the existing variants. It is also possible that ECIG could be
effective against future variants.
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