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Abstract

With an increase in life expectancy and the popularity of high-
intensity exercise, the frequency of tendon and ligament inju-
ries has also increased. Owing to the specificity of its tissue,
the rapid restoration of injured tendons and ligaments is chal-
lenging for treatment. This review summarizes the latest prog-
ress in cells, biomaterials, active molecules and construction
technology in treating tendon/ligament injuries. The charac-
teristics of supports made of different materials and the devel-
opment and application of different manufacturing methods
are discussed. The development of natural polymers, syn-
thetic polymers and composite materials has boosted the use
of scaffolds. In addition, the development of electrospinning
and hydrogel technology has diversified the production and treatment of materials. First, this article briefly introduces the structure,
function and biological characteristics of tendons/ligaments. Then, it summarizes the advantages and disadvantages of different
materials, such as natural polymer scaffolds, synthetic polymer scaffolds, composite scaffolds and extracellular matrix (ECM)-de-
rived biological scaffolds, in the application of tendon/ligament regeneration. We then discuss the latest applications of electrospun
fiber scaffolds and hydrogels in regeneration engineering. Finally, we discuss the current problems and future directions in the devel-
opment of biomaterials for restoring damaged tendons and ligaments.
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Introduction
Common fibrous connective structures between bones and
muscles include ligaments and tendons [1, 2]. They are crucial for
preserving the structure and performing the musculoskeletal sys-
tem functions because they stabilize forces, stabilize the bones,
transmit mechanical forces and participate in bodily motions [3].

The body has numerous joint tendons and ligaments, includ-
ing the anterior cruciate ligament (ACL), supraspinatus tendon
(SST), rotator cuff tendon (RCT) and Achilles tendon (AT) [4–6].
The incidence of Achilles tendon (AT) rupture has significantly
increased from 1.8 per 100 000 person-years in 2012 to 2.5 per
100 000 person-years in 2016 (P< 0.01), for an overall incidence of
2.1 per 100 000 person-years, making it one of the most prevalent
tendon ruptures. The population incidence of quadriceps tendon
rupture (QTR) was 0.48, and patellar tendon rupture (PTR)
accounted for 13.5% of all knee injuries (QTR; 9% of knee injuries;
the population incidence was 0.31) [7]. According to reports, the
Western world—including the USA, Europe and Australia—sees
the highest annual incidence of T/L ruptures and related repair
procedures: RCT: 16–131 per 100 000 [8]; AT: 7–40 per 100 000 [9];
and ACL: 8–50 per 100 000 [10].

Although technology has advanced in recent years, the issue of

rehabilitation of tendon injuries has not met everyone’s expecta-

tions and remains a serious clinical challenge [11]. The conservative

clinical approach uses fixed casts and restricted movement ortho-

ses, which require a long ongoing rehabilitation program to achieve

functional recovery [12]. Standard surgical options for clinicians in-

clude filling a partial T/L defect with a graft or, if the defect is large,

filling the graft with bone or muscle to completely replace the T/L

[13]. However, these graft materials often differ significantly from

the body’s tendon ligament properties in biocompatibility and me-

chanical strength [14, 15]. Therefore, there is an urgent clinical need

to develop suitable synthetic graft biomaterials that can facilitate

the repair and regeneration of damaged T/L while maintaining as

many biomechanical properties as possible [16].

Tendons and ligaments
Main components, histology and morphology,
and function of tendons and ligaments
From a microscopic perspective, triple helix type I collagen is an

essential component of the fibers, which twist around each other
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to form bundles. The bundles accumulate by turning to create
tendon units [17]. The tendon sheath surrounds the tendon bun-

dle and includes the inner and outer cords [18].
Tendons are mainly composed of highly aligned collagen-rich

proteins and therefore have a higher tensile strength than the av-
erage tissue [19]. Tendons exist between muscle and bone. Their

primary function is to transmit force and stabilize joints.
Tendons resist tensile forces and are vital during human move-

ment [20]. Ligaments contain many collagen fibers and elastic

fibers (Fig. 1). The role of collagen fibers is to give ligament
strength and stiffness. The elastic fibers allow the ligaments to

stretch and extend under load [21]. Ligaments can strengthen

joints, increase their stability during movement and prevent
them from dislocating and causing injury [12]. Most fibers are

aligned almost parallel to each other, so their force characteris-
tics are usually such that they are subjected to loads in only one

direction [22].

Advances in repair processes and biomaterials for
tendon and ligament rupture
If a tendon or ligament breaks, the repair process is relatively

slow compared with other musculoskeletal tissues [23]. At the be-
ginning of the rupture, inflammatory cells infiltrate the injury

site, triggering the migration of tendon cells, accompanied by the

proliferation of tendon cells and the production of type III colla-
gen [24]. The remodeling stage begins 6 weeks later, the amount

of type I collagen increases continuously, and the stress direction
is consistent with that of tendon cells [25].

Complete rupture of the fibrous tissue usually takes 10 weeks
to grow into scar-like tendon tissue, and the metabolic activity of

the tendon cells and blood vessels gradually decreases [26, 27].
The repaired tendon is usually less intense than a healthy tendon

due to a lack of mechanical stimulation, which is enhanced dur-

ing the repair phase [21]. T/L ruptures have also proven to be the
most difficult to treat due to their characteristics of poor blood

supply to the tendon tissue leading to nutritional deficiencies

[28].
Based on the current situation, the choice of synthetic or bio-

mimetic materials made of polymers to mimic the structure and

biological properties of tendon/ligament tissue for the repair of

tendons and ligaments deserves further investigation [29].

Technologies such as electrostatic spinning and hydrogel micro-

spheres, 3D printing and multifunctional coatings have been

widely used in research and development toward the preparation

of bionic structures that meet the requirements in terms of bio-

compatibility, biodegradability, mechanical properties, morphol-

ogy, porosity, etc. [30]. Although there is still room for

improvement in tissue organ bionics, there has been significant

progress in the research and in the application of regenerative

scaffolds for transplanted tissues, which is a massive advance-

ment for tendon and ligament repair [31].

Products of tendon and ligament
reconstruction and repair
Researchers often divide scaffolds into natural polymer (Fig. 2),

synthetic polymer, composite and extracellular matrix (ECM)-de-

rived biological scaffolds according to the properties of materials

currently used in T/L injury [32].

Natural polymer
Scaffolds made of natural polymers have unique advantages:

better cell activity and adhesion than other materials and better

biocompatibility and degradation rate. Therefore, this material

has a bright future in tendon repair [33]. Natural materials com-

monly used for scaffold development include collagen, fibrin,

silk, chitosan, hyaluronic acid and alginate [1, 34–37].
Collagen is the main component of the ECM in human ten-

dons and ligaments; therefore, it is also the first natural polymer

used to make scaffolds [38]. As collagen scaffolds have good

Figure 1. A tendon has many layers. Continuous stretching and contraction are due to the directional arrangement of collagen fibers, layered tissue
(microfibrils, sub fibers, fibers and bundles), the composition of ECM and different membrane or sheath structures. Reproduced with permission [21].
Copyright 2021 Elsevier.
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binding sites for cells and growth factors, they support cell adhe-

sion, migration, growth and differentiation [39]. Currently, the

most commonly used collagen comes from animal tissues. It is

necessary to remove antigens and pathogens through crosslink-

ing to ensure that its immunogenicity meets the standard and

improves its mechanical properties [40]. However, these pro-

cesses reduce the material’s biomechanical strength. After physi-

cal or chemical crosslinking, collagen scaffolds lose the

mechanical properties of natural collagen tissues, and their deg-

radation rate, in the long run, is increased [41].
To overcome the problems of mechanical properties and deg-

radation rate, researchers have attempted to inoculate autolo-

gous tendon cells on collagen scaffolds. Collagen scaffold-

inoculated tendon cells were significantly closer to the natural

tendon in terms of elongation and stiffness. However, this experi-

ment was conducted only in an acute defect model. Tendons and
ligament repairs are long-term processes. Whether it is still effec-
tive in a natural human environment remains to be determined

[42]. Researchers have attempted to use new technologies to
make better use of collagen. They creatively used counter-rotat-

ing extrusion technology to manufacture the aligned (CMa, orien-
tation angle 0–15�) and randomly-oriented collagen membranes
(CMr, orientation angle -60�-60�) from insoluble collagens. CMa

promotes tendon differentiation of rat bone marrow mesenchy-
mal stem cells (rBMSCs) in vitro by inducing the shape of slender

cells on the aligned fibers. CMa-BMSCs constructs can achieve
tendon tissue healing by promoting tendon differentiation in vivo
[43]. Puetzer et al. [44] offer a method for developing collagen

Figure 2. Biomaterials commonly used for T/L tissue regeneration. Reproduced with permission [21]. Copyright 2021 Elsevier.
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scaffolds for tendon, ligament and meniscus tissues to reduce
collagen degradation in musculoskeletal tissues and achieve bet-
ter tensile properties. These structures hold considerable promise
as functional musculoskeletal alternatives, and these models
may be a promising tool for studying collagen fiber development,
disease and injury in vitro.

Silk has good strength, toughness and an excellent degrada-
tion rate in vivo [45]. In vivo, the tensile strength of silk fiber can
often maintain a good level for one year and degrade entirely
within 2 years, allowing the mechanical load to be gradually
transferred from the scaffold to the new ligament [46]. Structural
scaffolds are an essential part of tissue regeneration. The study
of silk fibroin (SF), a natural protein with outstanding mechanical
properties, biodegradability, biocompatibility and bioresorbability
has received significant attention over the years for tissue engi-
neering (TE) applications [47]. Through various fabrication meth-
ods, SF can be transformed into films, mats, hydrogels and
sponges, all of which can be dissolved into an aqueous solution.
Multiple techniques can crosslink materials, such as spin coating,
electrospinning, freeze-drying and physical and chemical
approaches. The use of micropatterning and bioprinting techni-
ques for fabricating SF-based scaffolds has been explored re-
cently to facilitate the fabrication of more complex scaffolds [48].
By fabricating biphasic silk fibroin scaffolds, Font Tellado et al.
[49] simulated the gradient in collagen molecule alignment at the
interface. Researchers have discovered that scaffolds mimicking
the native interface may be more effective in supporting tissue
regeneration. Researchers constructed a new scaffold, which is a
silk collagen sponge scaffold woven with ligament-derived stem/
progenitor cells sheets (LSPCs). The growth of collagen fibers after
transplantation was good. Silk collagen sponge scaffolds
implanted with LSPCs have good effects on cell proliferation and
differentiation, ligament fiber regeneration and ligament bone in-
terface healing [50].

Alginate is a polyanion with high charge density and hydro-
philicity [21]. The structure of the alginate scaffold is similar to
that of the ECM, and the scaffold exhibits high biocompatibility
[51]. Through physical, chemical crosslinking and gelation, it can
be implanted into the injury site using a sponge or hydrogel [52].
Alginate scaffolds can combine different cell lines and bioactive
molecules, such as fibroblasts or type I collagen, which can be ac-
curately released by adjusting the type and cross-linking method
[53]. The researchers confirmed the good cell proliferation activ-
ity of the alginate scaffold by assay and the sustained and stable
release of TGF-b1 in the alginate scaffold by ELISA. This led to the
conclusion that the continuous release of TGF-b1 from alginate
scaffolds improves biomechanical and histological outcomes
[54]. Despite its various advantages, compared to synthetic poly-
mers, alginate also has a common disadvantage to natural poly-
mers, namely a lack of mechanical properties [55].

Chitosan is a polysaccharide cationic polymer with good bio-
compatibility and hydrophobicity [56]. Chitosan can be processed
into solid porous scaffolds that can be used for scaffolds and
have excellent adhesion [57]. Willbold et al. [58] implanted Poly (e-
caprolactone) (PCL) scaffolds with chitosan polycaprolactone in
rats and an infraspinatus tendon defect model. They found that
this scaffold promoted vascularization near the wound, with his-
tology showing that cell proliferation and differentiation in-
creased significantly. Chitosan bridging polymer was coupled
unilaterally to dissipative alginate acrylamide hydrogels to
achieve the required tissue adhesion. For the treatment or pre-
vention of tendon injuries, it was hypothesized that Janus Tough

Adhesive (JTA) would simultaneously provide mechanical tissue
integrity and controlled spatial and temporal drug delivery [59].

Hyaluronic acid (HA) is an anionic polysaccharide widely pre-
sent in soft tissues and is responsible for maintaining normal
ECM structure [60]. Because the degradation rate of HA is fast,
combined with the fact that HA usually exists in the form of con-
densation, some crosslinking and chemical modification must be
used to improve its mechanical strength and biodegradability
[61]. Hyaluronic acid has shown promising efficacy and safety
profiles in several clinical and preclinical studies, despite the ab-
sence of a consensus regarding a molecular weight classification.
Hyaluronic acid has shown the potential to stimulate tendon
healing in both in vitro and preclinical studies for its physical–
chemical properties, such as biocompatibility, mucoadhesive, hy-
groscopicity and viscoelasticity. Hyaluronic acid has also been
used to treat different tendinopathies in clinical trials with prom-
ising results [62]. Costa-Almeida et al. [60] combined negatively
charged hyaluronic acid, alginate and chondroitin sulfate with
positively charged chitosan to obtain multicomponent hydrogel
fibers by photo-crosslinking and coagulation bath and cell encap-
sulation (Table 1), which were found to be suitable modulators of
tendon cell bioactivity and have promising applications for ten-
don healing.

Synthetic polymer scaffold
Polyesters, such as PCL, poly (L-lactic acid) and polylactic acid
(PLA), are the main biodegradable scaffolds for T/L injury [64].
They have greater mechanical strength, better mechanical prop-
erties and better degradation rates in vivo than natural polymer
materials [65–68]. Among these commonly used polymers, PCL
has the slowest degradation rate, followed by PLA [69] and poly-
glycolide acid (PGA) [70]. In contrast, Poly (lactic-co-glycolic acid)
(PLGA) has the fastest degradation rate [71].

PLA is a biodegradable and recyclable polyester produced from
renewable raw materials [72]. However, synthetic polymers often
have a dense structure and small pores, which are not conducive
to cell proliferation and adhesion and hinder cell growth [73]. The
studies found that after the ACL was replaced with the PLA-
based implant, the failure forces of the knee joints were lower
than those of intact joints, including the strain-at-failure rate.
Due to the selected method of attaching autograft ends to the
tibia and femur bone surfaces, the biomechanical parameters of
the knee joint were substantially improved [74].

PLGA is a linear aliphatic polyester and a biodegradable, bio-
compatible polymer that can be used as a carrier to transfer
growth factors or genes [75]. Jiang et al. [76] loaded plasmid DNA
encoding fibroblast growth factor-2 into PLGA to evaluate its
effects on human periodontal ligament cells in vitro. PLGA/pFGF-
2 can promote periodontal ligament (PDL) regeneration. Han et al.
[77] loaded bone morphogenetic protein 2 into PLGA and applied
it to reconstruction after ACL rupture in rats. In vitro and in vivo
experiments confirmed that BMP-2 and platelet-rich fibrin (PRF)
could achieve sustained and stable release. The combination of
this synthetic scaffold and growth factor effectively promotes the
production of blood vessels and effectively controls inflammation
and tendon–bone regeneration. A PLGA/wool keratin composite
membrane loaded with basic fibroblast growth factor (bFGF) was
prepared by Zhang et al. [78] through emulsion electrospinning.
This composite membrane combines bFGF with dextran DEX
to ensure that bFGF can be better encapsulated within the DEX
and PLGA/wool keratin composite membranes. The electrospun
emulsion fiber has a continuous core-shell structure that carries
aqueous bFGF in the nuclear layer of the fiber and promotes
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adhesion, migration, proliferation, fiber growth and osteogenic

differentiation of human periodontal membrane fibroblasts

(hPLDFs).

Hybrid scaffold
In earlier years, it was common to use only one material to create

scaffolds [79]. However, clinical use and further research have

highlighted many problems with this method, including poor me-

chanical strength and fast degradation rate of natural polymer

scaffolds [80]. Synthetic polymer scaffolds have insufficient bio-

logical activity, making it difficult to promote cell adhesion and

proliferation and inevitably produce acidic degradation products

during degradation in vivo [81]. As a result, researchers began to

consider the advantages of combining synthetic and natural

polymer scaffolds to make up for each other’s defects, thereby

achieving optimal biological conditions [82]. Therefore, compo-

sites made by organically combining several materials have sig-

nificantly improved biocompatibility, mechanical strength and

biodegradability [83]. Liu et al. [84] deposited polyelectrolyte mul-

tilayer films (PEM) with poly-l-lysine (PLL)/ hyaluronic acid (HA)

on the scaffold which is fabricated with flexible and elastic

poly(l-lactide-co-caprolactone) (PLCL 85/15). After PEM modifica-

tion, medullary mesenchymal stem cells (BM-MSC) showed good

metabolic activity on the scaffold and type I collagen. Type III col-

lagen secreted by mesenchymal stem cells increased signifi-

cantly, with good mechanical properties and biocompatibility.
Compared to traditional composites, nanocomposites exhibit

unique properties. Nanoparticles have a higher surface-area-to-

volume ratio, better ductility than general materials and good

mechanical strength and biodegradation rate [85]. Green [86]

attempted to combine nanomaterials with collagen. Collagen/

carbon nanofibers were prepared with 0.5 and 5 wt% filler load-

ing, using 1� Phosphate buffered saline (PBS) diluted glutaralde-

hyde (GA) solution. Tensile tests were then carried out under dry

and wet conditions, and their mechanical properties were found

to be equivalent to those of natural collagen fibers. Tomas [87]

decorated magnetic nanoparticles based on cellulose nano scaf-

folds to make the scaffolds magnetic responsive, promoted the

growth of human adipose stem cells (HASCs) and tendon differ-

entiation through mechanical sensing mechanisms in vivo and

in vitro and found that pro-inflammatory markers were downre-
gulated under magnetic conditions.

The regeneration of tendon and ligament tissues must be
taken into account the problem of the interface. The regeneration
of the interface is usually tendon–bone interface regeneration or
muscle–tendon interface regeneration [88]. Considering the dif-
ferent physical properties, cells and growth factors of different
interfaces, we should consider more composite scaffolds made of
different materials [89]. In the tendon–bone interface, Zhang et al.
[90] combined the degradable scaffold with the non-degradable
scaffold to create a new scaffold similar to the ‘Swiss roll’ struc-
ture, decorated the bone morphogenetic protein 7 (BMP-7) on the
PCL nanofiber membrane. They then rolled the nanofiber mem-
brane and polyethylene terephthalate (PET) mesh fabric into the
desired ‘Swiss roll’ structure. In in vitro experiments, the new tis-
sue covering the surface of the BMP-7/PCL/PET mixed ligament
was similar to the natural ACL ligament tissue. The gap between
the main bone and the graft narrowed, many new bones were
found, and many new blood vessels were formed at the interface.

Natural ECM derivative scaffold
Different ECM-derived materials have been obtained from several
different organs, such as the common skin, bladder, colon, small
intestinal submucosa and esophagus [91, 92]. ECM-derived mate-
rials can promote macrophage polarization, and the mechanism
of polarization promotion of ECM-derived materials from differ-
ent sources varies [93]. For example, the skin induced M1 polari-
zation of macrophages in vitro, wherein the specific mechanism
involved the upregulation of iNOS. Several other common ECM-
derived materials have been shown to induce macrophage M2 po-
larization in vitro, and the induction process is similar to that of
IL-4 [94]. Acellular biological scaffolds have been widely studied
recently and have wide application prospects for tendon and liga-
ment healing [95]. On the premise that the mechanical properties
and ECM structure are well preserved, the acellular biological
scaffold also has a better solution to the immunogenicity of
transplantation since this scaffold removes the cellular compo-
nents of tissue [96]. Acellular biological scaffolds have a good cell
structure. Still, compared with synthetic polymer scaffolds, acel-
lular biological scaffolds are more difficult to obtain raw
materials, which is an obstacle in practical clinical applications

Table 1. Natural polymer materials for T/L reconstruction and repair

Material Scaffold Model Result

Collagen
protein

Autologous tendon
cells were inocu-
lated on collagen
scaffolds

Sheep infraspinatus
tendon defect model

The tensile strength of the reconstructed tendons (mean load to failure, 2516 N;
SD, 407.5 N) was �84% of that of the native tendons (mean load to failure,
2995 N; SD, 223.1 N), the elongation and stiffness of tendon were significantly
closer to that of the natural tendon. Fiber growth and collagen content were
better [42].

Silk Silk fiber collagen
hydrogel scaffold

Rabbit anterior cruci-
ate ligament defect
model

Regenerated ACLs in the CSLS group tended to form larger collagen fibrils
(47.5 6 1.4 nm) than ACLs in the CS group (35.8 6 1.8 nm), and the collagen
fibers grew well [50].

Alginate TGF was implanted
into alginate scaf-
folds-bone

Rabbit supraspinatus
tendon defect model

Exhibit a significantly heightened ultimate failure load (108.32 6 32.48 N;
P¼ 0.011), there were more collagen fiber bridging interfaces, and the area of
new fibrocartilage formation was more evident [54].

Chitosan Cs-g-PCL coated fi-
ber scaffolds

Rat infraspinatus ten-
don defect model

The modulus of elasticity of the CS-g-PCL-patched group had a mean of
13.8 6 5.4 N/mm2, which promoted the increase of vascularization near the
wound. Histology showed that cell proliferation and differentiation also in-
creased significantly [58].

Hyaluronic
acid

Direct injection Subacromial deltoid
bursa in patients
with supraspinatus
tendon tear

Effectively relieved patients’ pain and improved shoulder function [63].
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[97]. Thirty individual small intestine submucosa (SIS) sheets
were laminated and then grafted with SIS patches to repair ten-
don defects. The enhanced, low-immunogenicity SIS patches
were biomechanically and structurally equivalent to their broad
fascia. Although the results are good in short-term acute tendon
defects, the results for chronic defects are yet to be proven [98].
The amniotic membrane and chorionic layer were washed, lami-
nated and dehydrated to prepare the micronized dehydrated hu-
man amniotic membrane/chorionic membrane (ldHACM). The
double-layer tissue was ground at a low temperature, and the
particles were collected and applied to the tendon cell inflamma-
tion model in vitro. ldHACM treatment was found to reverse the
pro-inflammatory-induced increase in type 3 collagen expression
and decrease the IL1b-induced type 1 and type 3 collagen levels.
Researchers have also found that ldHACM can promote angio-
genesis [99]. The decellularized biological scaffold can also be an
effective alternative for future tendon ligament injuries after en-
suring mechanical properties and avoiding rejection in vivo [100].

Products for clinical trials
Surgical reconstruction of the ACL may involve artificial liga-
ments as either an augmentation to autologous grafts, allografts
or a complete replacement. However, in early clinical trials, most
artificial, non-degradable devices have not proven satisfactory
over time. The Gore-Tex polytetrafluoroethylene (PTFE) ligament
was developed as a prosthetic ligament but has also been used as
an augmentation device. However, clinical studies with long
follow-up times have shown a high incidence of complications
[101]. There has been some evidence of a higher rate of complica-
tions with an additional poly(urethane urea) degradable augmen-
tation device in a single-bundle bone-patellar tendon-bone
(BPTB) ACL reconstruction compared with non-augmentation in
short interim or long-term studies. As a result of the augmenta-
tion of the autograft, 10 patients had lengthy surgical procedures
and later explanations of the device, six of these because of an in-
sufficient screw fixation to the femur and four due to swelling
[102].

In several clinical studies in recent years, the choice of
implants for tendon ligament injuries has increased as the range
of materials and synthetic techniques have been improved. With
this has come a degree of improvement in the effectiveness of
the implants found in clinical trials. Bridge-enhanced ACL repair
(BEAR) may be a viable alternative to ACL reconstruction (ACLR)
for complete mid-segment ACL tears. At two years postopera-
tively, anteroposterior (AP) knee laxity and patient-reported out-
comes were similar between ACL repair using the BEAR implant
and ACLR [103]. This procedure has inherent advantages, includ-
ing lacking an autograft requirement and less risk of osteoarthri-
tis following the process. This study suggests that ACLR repair
using the BEAR implant is a safe and promising technique that
warrants further investigation.

As well as inducing new tendinous tissue to grow on the bursal
surface of the supraspinatus tendon, the collagen implant also
improved the quality (based on MRI) of the native tendon.
Following surgery, the implant-generated host tissue matured
over time and remained stable at 12 months, and the average in-
crease in tendon thickness was 2.2 mm at three months. Previous
studies on sheep and humans have shown similar results. Recent
studies have confirmed that these implant-generated host tis-
sues can rapidly mature into tendon-like tissue following rotator
cuff repair [104, 105].

A potential disadvantage of tendon/ligament repair in clinical
trials is that this method requires tearing down the intact

tendon/ligament tissue, which may result in a length-tension
mismatch in the repaired cuff and alter the normal orientation,
and shape [106]. As a result, it may be necessary to immobilize a
surgically repaired shoulder for six weeks after the operation be-
fore gradually progressing to active motion and strengthening
over a six-month rehabilitation period [107]. As a result of the
bioreductive implant, patients with intermediate- to high-grade
partial-thickness lesions might have experienced a more rapid re-
covery than expected after postoperative rehabilitation. To pre-
vent increased strain on the tendon, physicians and their
patients are interested in surgical procedures that preserve the
native cuff anatomy while biologically augmenting the degenera-
tive tissue.

As a result of the degradable augmentation device, tissue can
be ingrown into the graft and tissue tensioned, providing natural
biomechanical stimulation to the graft [108]. As a result of necro-
sis and resorption and an unprotected period of regeneration, the
autograft loses strength and elasticity after surgery. A degradable
augmentation device shares the mechanical load with the biolog-
ical graft by gradually increasing the stress on the autograft.
Future studies must investigate the stress shield distribution
from the degradable augmentation device to the autograft.

Electrospun fiber material for tendon repair
The simulated natural ECM produced by electrospinning provides
sufficient conditions for cell anchoring, adhesion, proliferation,
migration and differentiation [109]. Researchers have recently
combined electrospun nanofibers with emerging materials, such
as minerals, metals, growth factors, stem cells, drugs and nano-
particles, to enhance further their physical and chemical proper-
ties and biological activities [110]. The structure and porosity of
the scaffolds should promote cell activities and the formation of
new tissues [111].

An essential disadvantage of electrospun fiber scaffolds is
their low porosity and unsuitability for implant cell infiltration
[112]. In particular, the pore size left for cells was smaller after
the scaffolds were knitted, braided, twisted woven fibers and 3D
printed. Researchers have attempted to limit the melting be-
tween fibers in the electrospinning process to separate the pore
and fiber diameters in the electrospun support [113]. Olvera et al.
[114] designed a porous three-dimensional (3D) microfiber scaf-
fold by changing the rotation speed of the collection mandrel.
The fibers had a porosity of 95%, making it easier to bend the
electrospun sheet. Their mechanical properties were similar to
those of the natural anterior cruciate ligament. Higher porosity
also allows mesenchymal stem cells to be better immersed in
implants. To enhance cell attachment, spreading and prolifera-
tion while increasing the size of the fibers, researchers have
shortened the distance between the nozzle and the collector,
electrospun the HA/collagen mixture with N,N-dimethyl form-
amide (DMF)/NaOH as the solvent, and produced specific pore
sizes on the whole scaffold through chemical crosslinking and
immersion of sodium chloride particles during electrospinning.
Cell adhesion, growth and collagen content were enhanced in an
in vitro model of bovine chondrocytes. However, they cannot pro-
vide uniform morphology and stability [115]. Blakeney et al. [116]
developed a 3D electrospun scaffold with a shape similar to that
of a cotton ball, composed of loose and porous nanofibers
(Fig. 3A). In contrast to the traditional flat-plate collector, the
non-conductive spherical disk of the embedded metal probe cre-
ates a Focused, Low density, Uncompressed nanoFiber (FLUF)
mesh support (Fig. 3B). The cotton ball support comprises
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electrospun nanofibers with similar diameters, larger pores and a
lower structural thickness.

Tendons and ligaments have an anisotropic layered structure,
and how to better model their structure and avoid inter-fiber
wear is of great importance to ensure the long-term function of
the graft [117]. A hybrid nanofibrous composite is presented here
to imitate these characteristics. PLCL and gelatin nanofibers are
electrospun sequentially onto PET fibers to fabricate nanofiber-
reinforced yarns for improved durability and biocompatibility
[118]. They compared different manufacturing methods and de-
termined that the knitted structure could simulate anisotropic
mechanical properties, even, more potent than natural liga-
ments. Also, in vivo, tendon regeneration is promoted by the knit-
ted nanofibrous composites on which ligaments are formed. A
significant amount of tendon-associated ECM proteins is depos-
ited after optimized anisotropic hybrid nanofibrous composites
for tendon repair [119].

Electrospun fibers are often mechanically inadequate for ten-
don applications. It is therefore a new idea to design a reinforced fi-
ber and improve the electrospinning method to enhance the
deposition and integration of fibres when electrospinning fibers are
fabricated. Li et al. [120] have reported a strategy based on a rough
polymer surface reinforcement as part of the surface fiber deposi-
tion and integration during electrospinning. An open-pored poly-
mer surface significantly improved fiber deposition when added to
polymer surfaces. The fabricated fiber topography had improved
surface hydrophilicity, a higher crystallinity and improved me-
chanical properties such as maximum force and maximum exten-
sion following elastic and plastic deformations. In constructing
tendon cell interconnections with tendon stem cells (TSCs), the fi-
ber topography suggested good cell compatibility and the ability to
support F-actin cytoskeleton expression. The results of this study
could provide insights into how mechanically enhanced fiber

topography can be designed to regenerate tendon tissues. The me-
chanical properties have been improved, but the tendon adhesions
and inflammation problems still need further improvement, and
for these two persistent problems, Pien et al. [121] offers a new
idea. To fabricate tubular repair constructs, naproxen and hyal-
uronic acid (i.e. anti-inflammatory and anti-adhesion compounds)
were electrospun into the acrylate-endcapped urethane-based
polymer (AUP) material and mechanical reinforcement with a tu-
bular braid. Researchers tested the developed tendon repair con-
structs using ex vivo sheep tendons. They found that they
possessed the mechanical properties for tendon repair (i.e. mini-
mum ultimate stress of 4 MPa), with a maximum pressure of
6.4 6 0.6 MPa. In addition to the innovation of the electrostatic
spinning material itself, the way it is secured at the wound site has
an equally profound impact on wound healing. As electrospun
nanofibers can slip under external forces, thus hindering the prolif-
eration and differentiation of migrating stem cells, Wang offers a
new way of thinking about how to anchor them more firmly and
improve their ability to promote tissue regeneration [122].
Poly(ester-urethane) urea and gelatin were electrospun and double
crosslinked by a multi-bonding network densification strategy to
create nanofiber scaffolds with formed joints to mimic the natural
microstructure of tendon-to-bone insertion. However, a crimped
nanofiber scaffold (CNS) has been shown to induce chondrogenic
differentiation and bionic tensile stress, making it a credible plat-
form for in vivo experiments [123].

The integration of electrospinning with other technologies
compensates for the technical shortcomings of both sides and
gives full reign to the advantages of both technologies (Fig. 4)
[124]. For example, electrostatic spinning combined with 3D tech-
nology, electrostatic spinning technology combined with electro-
spray, rotary jet spinning (RJS) and wet electrostatic spinning
(WES) can all complement each other’s strengths. PCL–poly

Figure 3. (A) Traditional flat-plate collector, spherical disk and metal array collector. (B) In three-dimensional rendering and two-dimensional
projection, a cotton ball-like ePCL scaffold has a loosely packed network structure [116]. Copyright 2011 Elsevier.
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(glycerol sebacate) (PGS) blends can be made into scaffolds by
electrostatic spinning techniques, and 3D printing techniques are
also widely used. Touré et al. [125] innovatively electrospun fiber
mats of PCL and PGS directly onto one side of a 3D printed grid of
PCL–PGS blends containing bioactive glass, and the scaffolds
exhibited good three-dimensional porosity for cell growth and in-
filtration. The scaffold showed good three-dimensional porosity
for cell growth and infiltration, superior mechanical properties
and degradation rates. The combination of electrostatic spinning
and electrospraying to produce poly-L-lactic-co-e-caprolactone
(PLC) films in the form of organogels and PLA nanofibers pro-
duced by electrostatic spinning to make rotator cuff reinforced
patches resulted in a combination of the two techniques to form
a structure with good mechanical properties and good biocom-
patibility [126].

Guner et al. [127] assembled fiber pads produced by rotary jet
spinning (RJS) and wet electrospinning (WES) into biphasic fiber
support. The shell of the biphasic support is composed of aligned
PCL fibers to ensure a better mechanical property and strength
(Fig. 5a). The support core was composed of PCL or PCL/gelatin
fibers, and their arrangement was random, providing a bionic
structure suitable for cell adhesion (Fig. 5b). Subsequent in vitro
studies showed that the core fibers were randomly arranged in
the aligned PCL fiber shell of the biphasic scaffold, which in-
creased the initial adhesion, proliferation and differentiation of
the mouse fibroblast cell line (Fig. 5c). The aligned arrangement
of PCL fibers can promote the elongation of aligned fibers,
thereby improving tendon tissue healing by guiding cell prolifera-
tion and ECM deposition.

Hydrogel materials for repairing tendons and
ligaments
Hydrogels are 3D network structures that are hydrophilic, similar
to the ECM structure. Hydrogels can be combined with growth

factors, cells and drugs and have been widely used for drug deliv-
ery, wound treatment and cell culture [128]. Although hydrogels
have many advantages, their use remains outside the realm of

clinical application, including in T/L tissue, due to several disad-
vantages, including poor mechanical properties, fragile stress,

stiffness and natural tendons and ligaments [129]. To bring the
hydrogel closer to the tendon/ligament in terms of structure and

properties, Park [130] proposes a strong, tough, hierarchical hy-
drogel that mimics tendon function at multiscale levels. A

double-network isotropic hydrogel is transformed into an aniso-
tropic hydrogel via stretching, solvent exchange and subsequent

crosslinking via ionic forces. Based on the degree of stretching,
anisotropic hydrogels display high strength and toughness that

fluctuate over a wide range (1.2–3.3 MPa of strength). In addition,
anisotropic hydrogel strands are braided into a rope to form a hi-

erarchical architecture that exhibits an improved mechanical
performance (4.7 MPa of strength in a four-strand hydrogel rope)

compared with separated hydrogel strands (2.3 MPa of strength).
Anisotropic ligaments consist of bundles of collagen fibers with a

high degree of mechanical strength and directional movement
when stimulated by external stimuli such as temperature and
strain [131, 132]. Hydrogels must be designed to synergize compo-

sition and micro/macro anisotropic structures to achieve truly bi-
ological simulations. Hydrogels can be constructed with

Figure 4. (A) Preparation of RCA patch, combining PLC thin film produced by electrospray and PLA nanofiber produced by electrospinning and
immersion in water bath precipitation polymer to obtain the final product. (B) In the control group, cell metabolism and growth factor activity were
detected alive and dead. (C) Cell metabolism and growth factor activity were detected in 4L35/40 medium. (D) Cell metabolism and growth factor
activity were detected in the F4L35/40 medium. Reproduced with permission [124]. Copyright 2019 Rey-Vinolas et al.

8 | Regenerative Biomaterials, 2022, Vol. 9, rbac062



anisotropic structures using various techniques, including supra-

molecular self-assembly, electric, magnetic and force fields, as

well as directional freezing [60, 133–136]. Anisotropy of hydrogel

fibers is enhanced through the microstructural alignment of

clays and polymers during stretching. By varying stretching ra-

tios, the fibrous gel bands retain their anisotropy, giving them ro-

bust mechanical properties and a fast anisotropic shape

deformation response to external thermal stimulation. This

method can be expanded to manufacture a variety of anisotropic

actuators by further designing and fabricating bilayer fibrous gel

tapes. An excellent platform for developing next-generation soft

materials for bionic tissues has been developed through this

study [137]. Using the gel aspiration-ejection (GAE) method, colla-

gen hydrogels are rapidly densified and remodeled into aligned

dense collagen (ADC) systems. The removal of the casting fluid

increases collagen fibrillar density (CFD, or collagen content)

[138], while the applied pressure differential aligns the resulting

hydrogel. ADCs provide a microenvironment similar in composi-

tion and structure to tissue, with highly aligned collagen, with re-

generative potential in terms of short-term mechanically

activated tendon differentiation [139].
In addition to enhancing the mechanical properties and struc-

ture of the hydrogel, the prevention of adhesions in the peri-

tendon tissue also has a profound effect on injury repair. Dang et

al. [140] developed a unique hydrogel using Skin Secretions of

Andrias Davidianus (SSAD), which is biologically active, adhesive

and possesses controllable microstructures. SSAD-derived hydro-

gel with double layers demonstrated strong adhesiveness in vivo

and could repair ruptured Achilles tendons in rats without sutur-

ing. SSAD-derived hydrogels are their antioxidant, and antibacte-

rial properties are further beneficial, which promote

peritendinous adhesion reduction. Postoperative tendon sheath

adhesion is an essential factor that affects the postoperative re-

habilitation of tendon and ligament injuries [141]. Many patients

experience poor functional recovery due to adhesions.

Researchers have used many methods to reduce this adverse ad-

hesion, including minimally invasive sutures, drug treatment

and postoperative rehabilitation; however, the problem of post-

operative tendon sheath adhesion remains outside their grasp

[142]. Imere et al. [143] assembled a PCL self-assembled peptide

hydrogel using B synovial cells. The synovial cells encapsulated

in hydrogels promote hyaluronic acid production, restore tendon

lubrication and help synovial sheath regeneration to prevent ten-

don sheath postoperative adhesion. Promoting tendon ligament

soft tissue regeneration represents a new approach.
In addition to improving post-operative tissue adhesions, en-

largement of the bone tunnel is a recurring phenomenon after

tendon/ligament graft implantation, affecting the long-term fixa-

tion of the implant [144]. Micromotion of the graft within the tun-

nel, vibration or defective fixation techniques are the mechanical

Figure 5. Fabrication of biphasic fiber support. (a) three stent forms (b) FSPCL (c) FSPCL/ESPCL and FSPCL/ESPCL-gel ratio 3:1 stent. Reproduced with
permission [127]. Copyright 2019 IOP Science.
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causes of this condition [145, 146]. Intra-articular and synovial
fluid accumulation between the tendon/ligament and the bone
wall may also lead to local osteolysis and tunnel enlargement,
the so-called ‘synovial bath effect’ [147]. The construction of bi-
onic composite tubular grafts (CTG) made from horseradish per-
oxidase (HRP)-cross-linked serine protein (SF) hydrogels
containing ZnSr-doped b-tricalcium phosphate (ZnSr-b-TCP) par-
ticles as promising bone tunnel fillers for ACL graft (ACLG) im-
plantation can improve the fixation of ACLG and facilitate
tendon/ligament repair of tendon/ligament injuries [148].

Reliable mechanical strength, tendon-like structure and con-
trolled drug release rates are important for wound recovery. In
contrast, most hydrogels release drugs abruptly and intermit-
tently, requiring sutures or penetrating cells to fuse with the sur-
rounding tissue. In contrast, Benjamin R Freedman reported a
hydrogel with a tough matrix on one side and a chitosan surface
on the other, a hydrogel with a ‘Janus’ surface and sustained
drug release, which acts as a high volume drug reservoir better
supported by tendon gliding and adhesion. How effectively
hydrogels release drugs, cells and biological factors is critical to
wound healing, Decellularized tendon ECM has been widely stud-
ied as a biological scaffold [149]. However, the effect of acellular
tendon hydrogels on stem cell behavior is minimal. Ning et al.
[150] produced a new acellular tendon hydrogel (T-gel) using
Macaca mulatta. The acellular tendon hydrogel affected the differ-
entiation, proliferation and tendon regeneration of tendon-
derived stem cells (mTDSCs). Compared with collagen gel (C-gel),
acellular tendon hydrogel has a better porosity. The combination
of hydrogel and pulsed electromagnetic field (PEMF) accelerates
the release of drugs and relieves pain and tissue swelling often
associated with tendon tissue injuries [151]. Wang et al. [152]
combined celecoxib with pulsed electromagnetic fields (PEMF)
and hydrogels to prepare a magnetic response hydrogel dressing
containing celecoxib. In a rat Achilles tendon rupture model,
Fe3O4 nanoparticles accelerated drug release and promoted M2
macrophage polarization at the lesion site, effectively alleviating
inflammatory reactions and relieving pain in patients.

Biological factors for repairing tendons and
ligaments
Traditionally, repairing and healing injured and diseased tendons
have been fraught with concern and difficulty, often leading to less
satisfactory results [153]. Recent research on growth factors has
opened up new treatment options for tendon injuries and diseases
[154]. FGFs promote the development of tendons and muscles in
tissues and organs, so it is hoped that research into utilizing their
biological effects will result in new therapeutic methods [155].
However, vascular endothelial growth factor (VEGF) appears to ad-
versely affect tendon healing in experiments because of its angio-
genic activity and stimulatory effect on matrix metalloproteinases,
which are highly expressed in various ruptured tendons [156].

The abnormal growth of blood vessels and the growth of bone
tissue into the injured site are the main factors leading to poor
healing of the tendon–bone interface and bone tunnel surface
[157]. However, with advances in research, exogenous biological
factors and cells have increasingly received more attention and
are increasingly used in clinical settings [158]. Biological factors
can interact with cells and regulate cell activity [159].

IGF-1 is highly expressed in the early stages of inflammation
and promotes collagen production by tendon fibroblasts [160].
Muench et al. [161] applied insulin or IGF-1 to the tissue of the
acromial bursa and then observed the migrated subacromial

bursa tissue (SBT)-derived cells with a fluorescence microscope.
Insulin and IGF-1 inhibited cell proliferation at the initial stage,
subsequently promoting cell proliferation, differentiation and mi-
gration after 96 h.

Essential fibroblast growth factor (bFGF) and vascular endothe-
lial growth factor A (VEGFA) have been found in basic research to
significantly stimulate cell proliferation and differentiation, fiber
growth and collagen production [162, 163]. These growth factors ef-
fectively improve tendon healing. The sustained and stable release
of growth factors is the key to promoting the healing of injured ten-
dons [164]. Although many researchers have tried different meth-
ods, the effect remains poor. Surgical sutures are common in
surgery and must come into contact with the damaged tissue [165].
With the successful loading of growth factors on sutures in recent
years, Zhou et al. [166] attempted to evenly adhere PLGA nanopar-
ticles encapsulated with bFGF and VEGFA to the suture surface
(Fig. 6A), effectively transporting growth factors to the tissue and
controlling the release of growth factors. In the chicken flexor ten-
don injury model and rat Achilles tendon injury model (Fig. 6B), it
was found that nanoparticle-coated sutures containing bFGF and
VEGFA improved the adhesion of tendons significantly, improved
the sliding function of tendons, and further promoted tendon heal-
ing (Fig. 6C). This growth factor delivery system has broad pros-
pects for repairing tendon injuries and fractures.

Specific growth factors can promote the differentiation of
adipose-derived stem cells into various mesodermal cells, such
as tendon cells [167]. The transected tendon was treated with adi-
pose stem cells (ADSCs) cultured with growth differentiation fac-
tor 5 (GDF5) and platelet-derived growth factor (PDGF). As a
result, the tendon fiber and blood vessels grew well, promoting
the tendon tissue’s healing [168].

The rotator cuff tear injury prevalence in humans is increas-
ing annually [169]. Orthopedic doctors’ difficulty in dealing with
this type of injury lies in the remodeling of the tendon–bone in-
terface. Platelet-rich plasma (PRP) contains a variety of growth
factors, the most abundant of which are transforming growth
factor-b1 (TGF-b1), VEGF and PDGF [170]. These growth factors
can regulate the recovery from inflammation and promote cell
proliferation and differentiation [171]. Graphene oxide (GO) is a
high-tech material with excellent performance. It can be used as
a carrier for growth factors and drugs to improve drug release.
Bao et al. [172] developed a GO/PRP gel to treat rotator cuff tears
by combining PRP with GO. The gel had good biocompatibility,
and the structure of the newly formed tendon-bone interface
(TBI) tissue was more similar to the structure of the natural ten-
don–bone junction. It had better mechanical properties, and the
gel promoted the proliferation, osteogenesis and cartilage differ-
entiation of BMSCs. Thus, they have good application prospects.
At present, the most difficult problem with the action of growth
factors at sites of injury is the difficulty associated with achieving
their sustained and controllable release and the control of the in-
flammatory response after the stent enters the body [173]. The
combination of biomimetic nanoparticles (NPS) and scaffolds
represents a new approach to promoting the sustained and effec-
tive release of drugs and growth factors [174].

Cells that repair tendons and ligaments
Cell therapy involves injecting cells from other body parts or allo-
geneic sources into the injured site [175]. Currently, research in
this field focuses on differentiated cells (tendon cells and fibro-
blasts) and stem cells (Table 2), the main cells constituting the
ECM [176]. Tendon cells and fibroblasts can produce rich growth
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Figure 6. (A) Effect of ordinary suture on repairing tendon adhesion. (B) Effect of nanoparticle-coated suture loaded with bFGFþVEGFA on repairing
tendon adhesion. (C) Process diagram of preparing nanoparticle-coated suture loaded with growth factor. Reproduced with permission [166]. Copyright
2021 Elsevier.

Table 2. Cell summary of tendon and ligament repair

Cell type Scaffold/Carrier Model Result

Tendon cell Collagen scaffold Sheep infraspinatus
tendon defect model

Damaged tissues have more similar tendon elongation and mechanical
strength to natural tendons, providing a better physiological environ-
ment for cell proliferation, migration and differentiation [42].

Fibroblast PGA scaffold Rat dorsal myofascial
model

It is found that fibroblasts are the main cell group involved in tendon re-
generation, with increased collagen I content, increased mechanical
strength and enhanced tensile properties [187].

Bone marrow
mesenchymal
stem cells

Acellular tendon ma-
trix scaffold

Rabbit Achilles tendon
defect model

Collagen I content increased significantly and had better mechanical
strength, stronger tensile properties, stiffness and biocompatibility [188].

Adipose-derived
stem cells

Hydrogels containing
GDF5 and PDGF

Rabbit tendon defect
model

Tendon differentiation was promoted, the growth of fibrous tissue was
good, and the mechanical properties were similar to normal tissue [187].

Tendon-derived
stem cells

Gelma carrier Rat tendon defect
model

Collagen fibers were arranged better; fibrosis was reduced, mild inflam-
matory reaction and tendon healing was promoted [180].

Periosteal
progenitor cells

Injectable hydrogel
made from PEGDA

Rabbit infraspinatus
tendon defect model

The number and length of new collagen fibers increased, fibrocartilage
adhesion increased, and osteoblast proliferation was good. Bone min-
eralization and fibrocartilage maturity were also higher [182].
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factors to promote the healing of injured sites, and they are also
the most common cells in tendon tissue [177]. Stem cells, such as
bone marrow stem cells, mesenchymal stem cells and induced

pluripotent stem cells, have different regeneration abilities for
other tissues and are applied to various tissues. After differentia-
tion, these stem cells can produce tendon cells or fibroblasts.

Stem cell therapy has special precautions: tendon cells and fibro-
blasts will not produce teratomas, and transplanting stem cells
and other cells may lead to tumors [178]. The combination of

cells, materials and growth factors can effectively control the lo-
cation and degradation of cells and play a role in the damaged
part for a long time without consuming it in other places to

strengthen the effect of cell therapy [179]. The key for stem cells
to improve tendon and ligament healing lies in the role of exo-
somes and secreted growth factors. The paracrine mechanism is

critical for stem cells to promote tissue healing, and the hepato-
cyte growth factor (HGF) is an essential nutritional factor with
paracrine activity, regulating inflammation and inhibiting fibro-

sis. Zhang et al. [180] transfected TSCs with HGF and found those
collagen fibers arranged better (Fig. 7), reduced fibrosis, mild in-
flammatory reaction and promoted tendon healing.

Adipose stem cells (ASCs) induced by growth differentiation

factor 5 (GDF-5) promote tissue regeneration and differentiation

[181]. Chen et al. [182] combined the ASCs cell sheet stimulated

by GDF-5 with a nano-yarn scaffold (NNs). The upregulation of

Smad2/3 protein and Smad1/5/9 phosphorylation was found to

promote the differentiation of tendons, the growth of fibrous tis-

sue was good, and the mechanical properties were similar to

those of normal tissues. These findings indicate that the ASCs

cell sheet NNs complex is an excellent biological carrier for ten-

don tissue regeneration. Exosomes are extracellular vesicles

stimulating tendon regeneration in stem cells, acting on cells

through endocytosis or receptor–ligand interactions [183].

Exosomes are also an essential paracrine factor in stromal cells

[184]. Liu et al. [185] isolated exosomes from mesenchymal stro-

mal cells (ADSCs). The hydrogel, as a carrier, was combined with

an exocrine system. As a result, ADSC-Exos was found to activate

the SMAD2/3 and SMAD1/5/9 pathways, promote the prolifera-

tion and differentiation of TSCs, and play an important role in

inhibiting inflammation. This provides a new approach to the

treatment of tendon injuries [186].

Summary and future perspectives
This article highlights recent advances in tissue regeneration in

the application of electrostatic spinning, hydrogel materials,

Figure 7. Tendon stem cells (TSCs) expressing hepatocyte growth factor (HGF) can stimulate a more orderly arrangement of collagen fibers and lower
COLIII a-SMA, TGF-b1 levels and fibronectin, promoting tendon healing. Reproduced with permission [180]. Copyright 2021 Zhang, Liu, Shi, Zhang, Lu,
Yang, Cui and Li.
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growth factors and cells to tendon regeneration for the repair of
tendon tissue. Using drugs, nanoparticles and mineralization gra-
dients enrich scaffolds’ bioactivity and cellular differentiation
prepared by electrostatic spinning. Improving scaffolds’ multi-
scale morphology and mechanical properties is still necessary,
and the current fibrous structures are still far from being natural
tissues. By integrating additive manufacturing, 3D printing, elec-
trospray and electrospinning, it is possible to improve the balance
between electrostatic spinning porosity and mechanical strength.
An ideal environment for cell proliferation and differentiation
can be achieved by combining mineralization gradients and me-
chanical properties that approach those of natural tissue. It is
necessary to develop an injectable hydrogel with mechanics, tis-
sue damage-specific binding and disease response for future T/L
applications. Combining multiple biomaterials will also enable
more precise and personalized treatment. Hydrogels can support
mechanical repair and biological regeneration through an opti-
mal combination of soft matrix materials and fibrous structures.
Moreover, a deeper understanding of the internal regulatory
mechanisms of cells, growth factors and scaffolds in vivo to con-
trol inflammation and neovascularization will significantly im-
pact T/L repair surgery. Many combinations of geometries of
customizable T/L materials can be explored, which will result in
the development of more candidate materials for ruptured T/L
repair and regeneration. They have minimal foreign body reac-
tion and desired tissue growth and can be observed using conven-
tional imaging techniques. Future research should focus on
finding the best combination of technologies for treating tendon
and ligament injuries, such as cells, growth factors, hydrogels
and scaffolds, combined with discoveries in the field of materials,
to develop new materials that are better suited for soft tissue.
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