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Abstract: The formation of Maillard reaction products (MRPs) in gluten-free bread made from roasted
and raw buckwheat flour was examined. The levels of phenolic compounds such as flavonoids
(catechin, naringenin, quercetin, rutin, and others) and phenolic acids (like 4-hydroxybenzoic, caffeic,
dihydroxybenzoic, ferulic, gallic, syringic, vanillic, and p-coumaric) were measured using reversed-
phase ultra-high performance liquid chromatography-electrospray ionization mass spectrometry
(RP–UHPLC–ESI-MS). Early and advanced Maillard reaction products were analyzed using HPLC,
whereas spectrofluorimetric analysis was used to determine the levels of fluorescent intermediate
compounds (FIC). The total levels of phenolic compounds were higher in the case of buckwheat bread
prepared from roasted buckwheat flour (156 and 140 µg/g of crumb and crust, respectively). Rutin,
gallic acid, and catechin were the most abundant phenolic compounds detected in roasted buckwheat
bread. The roasting process resulted in significantly lower radical scavenging capacities (ABTS) of
the total phenolics and flavonoids in the buckwheat bread. Taking into consideration these Maillard
reaction products, we observed a significant increase in FIC level in roasted buckwheat crumb and
crust (at about 40%, and 38%, respectively). At the same time, the Nε-(carboxymethyl)lysine (CML)
level did not change in roasted or raw buckwheat bread crumb, though in roasted buckwheat crust
the concentration of CML increased by about 21%.

Keywords: Maillard reaction products; furosine; fluorescent intermediate compounds; buckwheat
bread; phenolic compounds; antioxidant activity

1. Introduction

Bread is one of the most popular cereal products in the world. In the last decade,
an increase in interest in gluten-free (GF) products was observed. Numerous studies
have being conducted to improve the quality of gluten-free (GF) bread [1] given its poor
nutritional value (manifesting as insufficient levels of protein and the minerals Ca, Fe,
Mg, and Zn) [2], poor aroma [3], and poor textural quality. Like other pseudocereals
(e.g., amaranth, quinoa), buckwheat flour does not contain proteins with the ability to
trigger the auto-immune response observed in celiac disease, and therefore can be used in
the production of gluten-free bread [4]. Two types of buckwheat flour are commercially
available with high variability in the composition of nutrients. The first is raw buckwheat
flour, produced by using raw dehulled grains; the second is roasted buckwheat flour, which
is obtained from buckwheat grains roasted at 130 ◦C under 5–6 bars pressure for 1 h, and
then dehulled [5].

Raw buckwheat is usually processed into flour, but in Central and Eastern Europe the
roasting process is also used to produce buckwheat groats (the whole grains sold as a food
product). It is known that heat treatment of buckwheat grains alters their functional and
nutritional properties and can modify their chemical composition, so different prohealth
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effects can be achieved by using different types of buckwheat groats and flour in food
production. It should be highlighted that buckwheat is one of the best pseudocereal
sources of phenolic compounds [4]. In raw and roasted common buckwheat (Fagopyrum
esculentum), ferulic acid (8.94 and 5.78mg/kg), gallic acid (2.84 and 9.63 mg/kg), rutin
(62.19 and 43.21mg/kg), p-coumaric acid (1.83 and 1.78mg/kg), and quercetin (26.95 and
25.02 mg/kg) have been found [6]. However, thermal processing of buckwheat leads to a
notable reduction in its antioxidant capacity [6–8]. For example, Ma et al. [9] found that the
total phenolic content of roasted buckwheat was statistically significantly higher than raw
common buckwheat, but the opposite tendency was observed for the antioxidant activity
of Tartary buckwheat.

Furthermore, the industrial thermal process can limit the negative effects of potential
allergens and toxins in roasted groats and flours, which may also be the reason for the
growing popularity of these raw materials [10]. Thermal processing causes the formation of
end-products of Maillard reaction—melanoidins, which capable of increasing the antioxida-
tive activity of food [11]. Notwithstanding, heat treatment during the roasting and baking
process affects the formation of potentially harmful Maillard reaction compounds, such
as acrylamide (ACR), hydroxymethylfurfural (HMF) furfural, and especially advanced
glycation end products (AGE) e.g., Nε-(carboxymethyl)lysine) [10,12,13]. Numerous recent
studies have been conducted on the antiglycation effect of polyphenolic compounds in the
food matrices [13,14], but there is a lack of information about Maillard reaction products
(MRPs) formation in gluten-free bread made from buckwheat. Moreover, current research
on the effect of heat treatment on buckwheat product mainly involves chemical compo-
sition changes and the Maillard reaction in single buckwheat type products, including
buckwheat groats (kasha) and buckwheat flour [7–9].

The aim of this study was to assess the formation of Maillard reaction products during
the production of gluten-free bread from raw and roasted buckwheat flour.

2. Results and Discussion

Results on the concentration of phenolic compounds in buckwheat bread are sum-
marized in Table 1. In the case of crust and crumb of roasted buckwheat bread, the total
phenolic compound content was 158% and 187% higher, respectively, than in bread pro-
duced with raw buckwheat flour. These findings can be related to the fact that the steaming
processing in the production of roasted buckwheat flour led to a transfer of water-soluble
substances from buckwheat husk to the grain [15]. Moreover, the degradation of the buck-
wheat grain cell membrane during the heat treatment could enhance the extractability of
phenolic compounds from the bound fraction [16]. It should be highlighted that quercetin
concentrations in raw buckwheat bread in the crumb and crust were 42–46 times higher
than in the crumb and crust of the roasted buckwheat bread. These results are in line
with those of Bhinder et al., who found that roasting Tartary buckwheat flour led to a
decrease in quercetin content [10]. Previous studies confirmed that the thermal stability of
quercetin, which is the aglycon of rutin, was lower than that of rutin, the most thermostable
polyphenol [9,10,17]. It is likely that the activity of the enzymes that break down rutin
during the heat treatment of buckwheat grain was inhibited in the production of roasted
flour [18,19]. Hence, the lack of rutin-degrading enzymes in the roasted buckwheat flour
during bread making did not lead to a decrease in rutin content in roasted buckwheat bread;
this is unlike the situation with raw buckwheat bread, where rutin was not detected. The
other abundant compounds in the roasted buckwheat bread, besides rutin, were gallic acid,
dihydroxybenzoic acid, and catechin. The use of roasted buckwheat flour contributed to a
significant increase in these compounds, suggesting that these compounds were liberated
from bonded forms during heat treatment. Moreover, there were no significant differences
in concentrations of gallic acid, dihydroxybenzoic acid, or catechin between the roasted
buckwheat crumb and crust (Table 1).
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Table 1. Phenolic compounds and antioxidant activity of raw and roasted buckwheat bread.

(µg/g)
Raw Buckwheat Bread Roasted Buckwheat Bread

Crumb Crust Crumb Crust

1-O-Sinapoyl-beta-D-glucose nd 0.19 ± 0.01 b 0.25 ± 0.03 a,b 0.26 ± 0.002 a

4-Hydroxybenzoate-O-glucoside 4.97 ± 0.47 a 3.26 ± 0.06 b nd nd
4-Hydroxybenzoic acid 0.73 ± 0.02 b 0.78 ± 0.01 b 9.43 ± 0.18 a 8.70 ± 0.45 a

Caffeic acid 0.48 ± 0.01 a 0.38 ± 0.03 b 0.12 ± 0.01 c 0.070 ± 0.009 c

Catechin 3.98 ± 0.01 b 3.60 ± 0.33 b 22.08 ± 1.08 a 20.12 ± 0.63 a

Dihydroxybenzoic acid nd nd 24.6 ± 1.03 a 22.27 ± 1.37 a

Ferulic acid nd nd 0.15 ± 0.009a 0.17 ± 0.001a

Gallic acid 1.47 ± 0.13 b 1.68 ± 0.05 b 25.46 ± 0.08 a 23.61 ± 1.07 a

Naringenin nd nd 0.09 ± 0.01 a 0.07 ± 0.01a

Quercetin 40.42 ± 0.89 a 41.75 ± 1.7 a 0.96 ± 0.11 b 0.9 ± 0.014 b

Quercetin 3β-D-rutinoside (rutin) nd nd 62.52 ± 0.9 a 52.41 ± 1.25 b

Syringic acid 2.12 ± 0.05 b 2.25 ± 0.09 b 7.77 ± 0.22 a 8.41 ± 0.22 a

Vanillic acid nd nd 2.26 ± 0.15 a 2.5 ± 0.23 a

p-coumaric acid 0.26 ± 0.03 b 0.23 ± 0.07 b 0.38 ± 0.015 a 0.370 ± 0.012 a

Total 54.43 ± 0.89 c 54.12 ± 1.70 c 156.07 ± 0.22 a 139.86 ± 1.37 b

Antioxidant activity (TEAC/g sample) 3.65 ± 0.04 b 4.40 ± 0.03 a 2.80 ± 0.03 c 2.97 ± 0.09 c

Results are the mean± standard deviation. Different letters (a, b, c) in the same row mean significant differences (p < 0.05). nd—not detected.

The antioxidant activity of raw and roasted buckwheat bread is given in Table 1. The
parameters of the roasting process, particularly temperature and time, are known to affect
the antioxidant activity of various food products. Interestingly, the roasting process led to
a significant decrease (p < 0.05) in the antioxidant activity of buckwheat bread. Zieliński
et al. showed a loss of antioxidant activity in common buckwheat (Fagopyrum esculentum)
after roasting at 160 ◦C [7]. The results presented here are in agreement with those of
Sensoy et al. [20], who found that roasting dark buckwheat flour at 200 ◦C for 10 min led
to an increase in nonpolar and polar compounds, but decreased their antioxidant activity.
Besides phenolics, other compounds such as proteins can contribute to the measured
antioxidant activity of buckwheat products [21]. Furthermore, according to Horáková, the
prooxidant properties of flavonoids depend on their concentration [22]. It is therefore likely
that a high flavonoid content in roasted buckwheat bread will also involve a pro-oxidative
effect. Some authors have proposed that phenolic compounds, as well as ascorbic acid,
are able to participate in the Maillard reaction, leading to a decrease in their antioxidant
activity [23]. According to the literature, it is suggested that the reduction in antioxidant
activity due to the roasting process may also be due to the formation of MRPs with pro-
oxidant properties during the early stages of browning [24].

Research in recent years has focused on the inhibitory effect of phenolic compounds on
the formation of MRPs [25,26]. Moreover, the antiglycation activity of phenolic compounds
is usually associated with their antioxidant efficiency in the following decreasing order:
quercetin > gallic acid > catechin > ferulic acid [27].

Table 2 shows the MRPs formed in bread crumb and crust formulated with roasted
and raw buckwheat flour. Due to the high proportions of fat (10%) and sugar (9%), along
with the yeast, it is difficult to compare the level of MRPs in buckwheat samples to other
bakery products.

Furosine (FUR), formed during acid hydrolysis of Amadori rearrangement products
(ARPs) from lysine, has been proposed as an indicator of the early stage Maillard reaction.
It has been reported that FUR is an unsuitable marker for the effect of heat treatment
during baking, as it rapidly changes into advanced MRPs [28]. However, the FUR content
of buckwheat bread crumb and crust could be useful for understanding the Maillard re-
action mechanism in the model buckwheat bread. The levels of FUR were significantly
reduced (~91%) in buckwheat roasted crumb and crust (6.34 and 8.73 mg/kg, respectively)
compared to raw buckwheat bread (71.56 and 117.56 mg/kg for crumb and crust, respec-
tively). This could be explained by the fact that the buckwheat roasting process favors the
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formation of more advanced, fluorescent, cross-linking MRPs in the bread. Similarly, an
increase in intermediary and advanced MRPs (fluorescent intermediate compounds (FIC)
and Nε-carboxymethyl lysine (CML) level) was reported by Wronkowska et al. [8], who
looked at changes in the formation of MRPs induced by buckwheat groats roasted at 160 ◦C
for 30, 40, and 50 min. Çelik and Gökmen did not detect FUR in whole and refined wheat
bread crust-like samples heated at 200 °C for over 15 min, which confirms the instability of
FUR under heat treatment [29]. It is worth noting that in this study FUR levels in raw buck-
wheat bread crust (Table 2) were higher than > 100 mg/kg. In contrast, Çelik and Gökmen
found that, in the whole and refined wheat bread crust-like samples, FUR concentration
was lower (< 100 mg/kg) [29]. Moreover, highly significant negative correlations were
found between FUR content and p-coumaric (−0.97, p < 0.05), catechin (−0.94, p < 0.05),
rutin, gallic, ferulic, vanillic, and syringic acid (−0.93, p < 0.05) concentrations in the crumb
and crust, indicating that they might be involved in the protein protection (Table 3).

Table 2. Formation of Maillard reaction products (MRPs) in buckwheat bread formulated with raw
and roasted buckwheat flour.

MRPs
Raw Buckwheat Bread Roasted Buckwheat Bread

Crumb Crust Crumb Crust

FUR (mg/kg) 71.61 ± 5.34 b 117.56 ± 5.96 a 6.34 ± 0.68 c 8.73 ± 1.82 c

FIC (FI/g) 44.43 ± 1.08 b 47.07 ± 1.29 b 62.06 ± 2.17 a 65.05 ± 1.15 a

CML (mg/kg) 423.37 ± 10.61c 508.85 ± 18.61 b 418.56 ± 11.4 c 617.86 ± 22.18 a

Results are mean ± standard deviation. Different letters (a, b, c) in the same row mean significant differences
(p < 0.05). FUR—furosine; FIC—fluorescent intermediate compounds; CML—Nε-carboxymethyl lysine.

Table 3. Correlation coefficients between MRPs, phenolic compounds and antioxidant activity for
raw and roasted buckwheat bread.

FUR FIC CML TEAC

FUR −0.89 * −0.16 0.99 *
FIC −0.89 * 0.48 −0.85 *

CML −0.16 0.48 −0.05
TEAC 0.99 * −0.85 * −0.05

1-O-Sinapoyl-beta-D-glucose −0.47 0.78 * 0.50 −0.41
4-Hydroxybenzoate-O-glucoside 0.79 * −0.96 * −0.41 0.76 *

4-Hydroxybenzoic acid −0.93 * 0.97 * 0.26 −0.91 *
Caffeic acid 0.83 * −0.99 * −0.47 0.79 *

Catechin −0.94 * 0.96 * 0.24 −0.92 *
Dihydroxybenzoic acid −0.93 * 0.97 * 0.25 −0.91 *

Ferulic acid −0.93 * 0.99 * 0.40 −0.90 *
Gallic acid −0.93 * 0.97 * 0.27 −0.91 *
Naringenin −0.93 * 0.95 * 0.20 −0.91 *
Quercetin 0.94 * −0.98 * −0.31 0.91 *

Rutin −0.93 * 0.95 * 0.21 −0.91 *
Syringic acid −0.93 * 0.99 * 0.39 −0.89 *
Vanillic acid −0.93 * 0.99 * 0.38 −0.90 *

p-coumaric acid −0.97 * 0.94 0.18 −0.96 *
* Correlation is significant (p < 0.05); n = 4; FUR—furosine; FIC—fluorescent intermediate compounds; CML—Nε-
carboxymethyl lysine.

On the other hand, buckwheat bread samples formulated with roasted buckwheat
flour showed a statistically significant increase in their levels of FIC. Surprisingly, there
in the level of FIC were no statistically significant differences between the level of FIC in
the crust and the crumb of the buckwheat bread prepared from the same kind of flour.
This may suggest that different conditions during baking, such as temperature and water
activity inside and on the surface of the dough, do not significantly affect the level of these
intermediary MRPs [30].
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The negative correlation coefficient (−0.89, p < 0.05) between FUR and FIC confirms
that this nonenzymatic browning reaction in the bread samples tended towards the for-
mation of intermediary and subsequently more advanced MRPs. This observation is in
agreement with Carciochi et al. [31], who found significant increases in FIC level after
roasting quinoa seeds, at 160 ◦C and 190 ◦C for 60 to 90 min. It can further be assumed
that a high concentration of quercetin in raw buckwheat flour markedly contribute to sup-
pressing FIC formation (−0.98, p < 0.05). This is in line with the study of Zhang et al. [26]
who reported that quercetin most strongly inhibits fluorescent AGEs in a cookie model,
followed by naringenin, rosmarinic acid, and epicatechin.

One valuable marker for monitoring the progress of the Maillard reaction in food is
Nε-carboxymethyl lysine (CML). The use of roasted buckwheat flour did not affect the
CML content in the crumb obtained from raw buckwheat flour (Table 2). However, it
should be emphasized that the process of roasting buckwheat grains increased (21.42%) the
CML content of the buckwheat bread crust. It is known that the temperature of the crust
exceeds that of the crumb by over 100 ◦C [32]. Heat transmission during the baking process
thus favors the formation of Maillard reaction products (MRPs) in the crust. Compared to
the literature data, discrepancies can be seen between the CML content of bread prepared
from buckwheat flour and the model wheat bread (49.71 mg/kg bread and 15.09 mg/kg
crumb) [13], as well as the model sponge cake prepared using a different type of sugar
(1.16–6.64 mg/kg model cake) [33]. Interestingly, no significant correlation was found
between CML and phenolic compounds content in the bread crumb and crust, regardless
of the type of flour used. It should be highlighted that flavonoids with the 3-OH and 5-OH
groups in the A ring may have the ability to trap reactive dicarbonyl compounds and thus
inhibit the formation of advanced glycation end products (AGE) [34]. Despite the fact that
rutin is considered to have antioxidant properties, in this study we noted no inhibitory
effects on the formation of AGE. Moreover, the inhibitory effect of phenolic compounds
can not only be associated with a high concentration of rutin because other compounds
could also be responsible for antagonistic or synergistic effects on Maillard reaction product
formation [35]. Starowicz et al. [36] stated that supplementation with rutin of rye and
buckwheat biscuits increased the formation of volatile compounds typical of the advanced
stage of the Maillard reaction. It can thus be suggested that a high level of quercetin
3β-D-rutinoside (rutin) in the crumb and crust of roasted buckwheat bread can also be
involved in the formation of increased concentrations of advanced MRPs in the bread
samples. These findings agree with those of Yuan et al. [37], who reported that the type and
concentration of natural antioxidants significantly affect the formation of Maillard reaction
products. A higher concentration of phenolic compounds can also have a promoting effect
on the formation pathway of advanced MRPs. Conversely, Przygodzka et al. [38] reported
that the enrichment of rye and buckwheat ginger cakes formulated from rye flour and
roasted dehulled buckwheat flour with 50 mg and 100 mg rutin, respectively, did not result
in an increase in CML, i.e., 24.36 ug/g without rutin; 23–83 µg/g with 50 mg of rutin, and
22–96 µg/g with 100 mg of rutin addition.

Principal component analysis (PCA) of the MRP and phenolic compound concen-
trations, as well as of the antioxidant activity of the samples was performed in order to
identify the main factors determining the properties of the buckwheat bread (Figure 1).
The two principal components (PCs) explained 96.93% of the total variance. The score plot
(Figure 1a) shows a clear separation in the negative component of PC1 for the crumb and
crust of the bread formulated with the roasted buckwheat flour, and in the positive scores
of PC1 for the crumb and crust of the bread formulated with the raw buckwheat flour. This
separation is related to the relative levels of FIC and CML the former being higher for the
gluten-free bread made from roasted buckwheat flour than from raw buckwheat flour, the
reverse being observed concerning FUR. Indeed, it was observed that CML and FIC were
located in the negative PC1/negative compound of PC2, in the same area as the roasted
buckwheat crust, but FUR was found in the area of raw buckwheat crust (Figure 1b). On
the other hand, the crust and crumb were either prepared from roasted or raw buckwheat
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flour according to PC2, this separation being related to the higher levels of CML in the crust.
It can clearly be seen that only phenolic compounds are found in the negative PC1/positive
PC2 and positive PC1/positive PC2 quadrants, where the roasted and raw buckwheat
bread crumb is located (Figure 1b). The phenolic compounds found in the area with the
roasted and raw buckwheat breadcrumbs were 4-hydroxybenzoic acid (3), catechin (5),
dihydroxybenzoic acid (6), gallic acid (8), naringenin (9), rutin (11), and p-coumaric acid,
(14) as well as 1-O-sinapoyl-beta-D-glucose (1), ferulic acid (7), syringic acid (12), and
vanillic acid (13).
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3. Materials and Methods

Raw and roasted buckwheat flour (Glutenex, Sady, Poland) from Polish commercial
buckwheat (Fagopyrum esculentum Moench) were purchased from a local market. The
producer confirmed that the carbohydrate, protein, and fat contents in the raw and roasted
flour were: 63 and 69 g/100g, 13 and 12 g/100g, and 3.1 and 2.9 g/100g, respectively.

3.1. Bread-Making Process

Samples of bread were prepared using 200 g of raw or roasted buckwheat flour, 3 g
of salt, 18 g of sugar, 20 g of oil, 3 g of yeast, and 160 g of water, following the recipe of
Pongjaruvat et al. [39]. All the ingredients were mixed together using a KitchenAid mixer
(KitchenAid, Benton Harbor, MI, USA) for 8 min at a speed of 70 rpm. After 60 min of
fermentation (at 35 ◦C, with relative humidity 75%), the dough was divided into two parts
of equal weight, placed into baking forms, and proofed for 20 min. The dough was then
baked at 230 ◦C for 35 min in an oven (MIWE Michael Wenz, Amstein, Germany) on a
semitechnical scale. Afterward, the buckwheat bread was left at room temperature for 2
h to cool down and then sliced (about 1.5 cm thick). The crust and crumb were carefully
separated and ground for later analysis.

3.2. Extraction and Analysis of Polyphenolic Compounds

A mixture of methanol, water, and formic acid (70:29.7:0.3 v/v/v) was used to extract
phenolic compounds from the buckwheat bread crumb and crust [40]. The compounds
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present in each sample were identified based on the retention time of standard and molec-
ular mass and structural information from the MS detector during MS/MS experiments.
Limit of quantification (LOQ where S/N > 15) was determined for hydroxybenzoic acid,
caffeic acid, catechin, dihydroxybenzoic acid, ferulic acid, gallic acid, naringenin, quercetin;
syringic acid, vanillic acid, p-coumaric acid and it was not lower than 0.01 µg/mL; LOQ for
rutin was 0.05 µg/mL. Sinapoyl glucoside and hydroxybenzoate glucoside were quantified
as sinapic acid and 4-hydroxybenzoic acid, respectively. Calibration and quality control
(QC) samples were prepared in methanol, water, and formic acid (70:29.7:0.3 v/v/v). Recov-
ery of QC was higher than 93% and recovery of standards spiked to extracts of buckwheat
bread crumb and crust samples was in the range 86–110%. Carryover between injections
was not observed. The coefficient of determination (R2) for all calibration curves was higher
than 0.995.

Analysis was performed using reversed-phase (C18 column) ultra-high performance
liquid chromatography–electrospray ionization mass spectrometry (RP-UHPLC-ESI-MS,
Dionex UltiMate 3000 UHPLC; Thermo Fisher Scientific, Sunnyvale, CA, USA), following
the method described by Dziedzic et al. [41].

3.3. Antioxidant Activity

The same extracts obtained for the determination of polyphenolic compounds were
used for the analysis of antioxidant activity. One gram of lyophilized and ground sample
was extracted in 7 mL of an aqueous solution with 70% methanol, 29.7% water, and 0.3%
formic acid and the extraction was carried out in a water bath at 70 ◦C for 45 min with
mechanical shaking. The total antioxidant activity was measured using the ABTS radical
(2,20-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) following the method described by
Re et al. [42]. The results were expressed in µmols Trolox Equivalent Antioxidant Capacity
(TEAC) per 1 g of dry matter of bread sample.

3.4. Analysis of Maillard Reaction Products

Furosine (2-furoylmethyl-lysine) was determined using the method described by
Gökmen et al. [28]. The hydrolyzed sample was filtered through medium-grade filter
paper and the diluted filtrate was passed through an Oasis HLB cartridge to remove any
dark-colored interfering compounds before analysis with HPLC. A Waters Alliance HPLC
System 600 (Milord, MA, USA) with a photodiode array detector was used. The furosine
quantitation was based on a calibration curve by the external standard method (limit of
detection (LOD) 5.75 ng/mL; LOQ 11.93 ng/mL). The results were expressed as mg/kg
of sample.

Free fluorescent intermediate compounds (FIC) were determined as described by
Delgado-Andrade et al. [43] and measured at λ Ex = 340 and λ Em = 420 nm using
a fluorescence spectrophotometer (Shimadzu RF5001 PC, City, Japan). FIC data were
expressed as mean values in fluorescence intensity (FI)/g sample.

CML (Nε (carboxymethyl)-L-lysine) was determined following the method described
by Mildner-Szkudlarz et al. [25]. Following defatting, protein reduction, hydrolysis, and
derivatization using o-phthaldialdehyde; CML determination was performed using a
Waters Alliance HPLC system 600 (Milord, City, MA, USA) with a fluorescence detector
(Waters 474). The compounds identified were quantified using the external standard cali-
bration procedure. The limit of detection (LOD) was 0.42 ng, and the limit of quantification
(LOQ) was 1.29 ng. The results were expressed as mg/kg of sample.

3.5. Statistical Analysis

All analyses were carried out in triplicate (n = 3) for each sample. Tukey’s honest
significant difference multiple comparison (one-way ANOVA) at a p < 0.05 level was
performed and Pearson correlations were determined using Statistica 13 software (Dell
Software, city, state abbr. USA). Principal component analysis (PCA) was performed using
selected data from the analysis. The results are presented as a two-dimensional system
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(biplot) obtained by plotting the observations and variables on the plane formed of the
calculated principal components.

4. Conclusions

This is the first study reporting the formation of Maillard reaction products in buck-
wheat bread produced using raw and roasted flour. Buckwheat bread-making not only
affects the formation of compounds with antioxidant activity but also promotes potentially
harmful Maillard reaction products including FUR, FIC, and CML. However, the results
suggest that raw buckwheat flour is a more appropriate ingredient for the production of
buckwheat bread because the application of roasted buckwheat flour led to a higher concen-
tration of fluorescent intermediate compounds and also the advanced glycation products
formation. Taking into account the possibility of reducing the formation of potentially toxic
MRPs, further investigation, especially on the role of dicarbonyl compounds, is required to
better understand the mechanism of the Maillard reaction in this type of food matrix.
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5. Dziedzic, K.; Szwengiel, A.; Górecka, D.; Rudzińska, M.; Korczak, J.; Walkowiak, J. The effect of processing on the phytosterol

content in buckwheat groats and by-products. J. Cereal Sci. 2016, 69, 25–31. [CrossRef]
6. Liu, Y.; Cai, C.; Yao, Y.; Xu, B. Alteration of phenolic profiles and antioxidant capacities of common buckwheat and tartary

buckwheat produced in China upon thermal processing. J. Sci. Food Agric. 2019, 99, 5565–5576. [CrossRef]
7. Zielinski, H.; Michalska, A.; Amigo-Benavent, M.; del Castillo, M.D.; Piskula, M.K. Changes in Protein Quality and Antioxidant

Properties of Buckwheat Seeds and Groats Induced by Roasting. J. Agric. Food Chem. 2009, 57, 4771–4776. [CrossRef]
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13. Mildner-Szkudlarz, S.; Siger, A.; Szwengiel, A.; Przygoński, K.; Wojtowicz, E.; Zawirska-Wojtasiak, R. Phenolic compounds
reduce formation of N ε -(carboxymethyl)lysine and pyrazines formed by Maillard reactions in a model bread system. Food Chem.
2017, 231, 175–184. [CrossRef] [PubMed]
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38. Przygodzka, M.; Zieliński, H. Characterization of the quality of novel rye-buckwheat ginger cakes by chemical markers and
antioxidant capacity. Chem. Pap. 2016, 70. [CrossRef]

39. Pongjaruvat, W.; Methacanon, P.; Seetapan, N.; Fuongfuchat, A.; Gamonpilas, C. Influence of pregelatinised tapioca starch and
transglutaminase on dough rheology and quality of gluten-free jasmine rice breads. Food Hydrocoll. 2014, 36, 143–150. [CrossRef]

40. Wang, R.; Zhou, W. Stability of Tea Catechins in the Breadmaking Process. J. Agric. Food Chem. 2004, 52, 8224–8229. [CrossRef]

http://doi.org/10.1021/acs.jafc.9b01413
http://www.ncbi.nlm.nih.gov/pubmed/30969769
http://doi.org/10.1016/j.foodchem.2017.03.126
http://www.ncbi.nlm.nih.gov/pubmed/28449994
http://doi.org/10.1007/s00217-015-2517-8
http://doi.org/10.1007/s11947-011-0669-5
http://doi.org/10.1021/jf2000772
http://www.ncbi.nlm.nih.gov/pubmed/21438525
http://doi.org/10.1016/j.foodres.2011.06.026
http://doi.org/10.1016/j.ijbiomac.2020.07.135
http://doi.org/10.1021/jf9045733
http://doi.org/10.1016/j.foodchem.2005.08.007
http://doi.org/10.1016/j.foodchem.2008.12.068
http://doi.org/10.2478/v10102-011-0019-5
http://doi.org/10.1111/j.1365-2621.2001.00513.x
http://doi.org/10.1016/j.foodchem.2014.09.036
http://doi.org/10.1021/jf4045827
http://www.ncbi.nlm.nih.gov/pubmed/24471469
http://doi.org/10.1016/j.foodchem.2008.07.025
http://doi.org/10.1016/j.jcs.2008.06.007
http://doi.org/10.1007/s00217-020-03481-4
http://doi.org/10.1006/fstl.1998.0427
http://doi.org/10.1111/ijfs.13061
http://doi.org/10.1021/jf103353e
http://www.ncbi.nlm.nih.gov/pubmed/21043504
http://doi.org/10.1021/tx800227v
http://www.ncbi.nlm.nih.gov/pubmed/18774823
http://doi.org/10.1016/j.foodchem.2011.04.034
http://www.ncbi.nlm.nih.gov/pubmed/25212289
http://doi.org/10.3390/molecules24050982
http://doi.org/10.1016/j.foodres.2010.09.025
http://doi.org/10.1515/chempap-2015-0217
http://doi.org/10.1016/j.foodhyd.2013.09.004
http://doi.org/10.1021/jf048655x


Molecules 2021, 26, 1361 10 of 10

41. Dziedzic, K.; Górecka, D.; Szwengiel, A.; Sulewska, H.; Kreft, I.; Gujska, E.; Walkowiak, J. The Content of Dietary Fibre and
Polyphenols in Morphological Parts of Buckwheat (Fagopyrum tataricum). Plant Foods Hum. Nutr. 2018, 73, 82–88. [CrossRef]

42. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS
radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [CrossRef]

43. Delgado-Andrade, C.; Rufián-Henares, J.A.; Morales, F.J. Study on fluorescence of Maillard reaction compounds in breakfast
cereals. Mol. Nutr. Food Res. 2006, 50, 799–804. [CrossRef] [PubMed]

http://doi.org/10.1007/s11130-018-0659-0
http://doi.org/10.1016/S0891-5849(98)00315-3
http://doi.org/10.1002/mnfr.200500249
http://www.ncbi.nlm.nih.gov/pubmed/16917806

	Introduction 
	Results and Discussion 
	Materials and Methods 
	Bread-Making Process 
	Extraction and Analysis of Polyphenolic Compounds 
	Antioxidant Activity 
	Analysis of Maillard Reaction Products 
	Statistical Analysis 

	Conclusions 
	References

