
Rapid Accumulation of Virulent Rift Valley Fever Virus in
Mice from an Attenuated Virus Carrying a Single
Nucleotide Substitution in the M RNA
John C. Morrill1, Tetsuro Ikegami1,2, Naoko Yoshikawa-Iwata1¤a, Nandadeva Lokugamage1, Sungyong

Won1¤b, Kaori Terasaki1, Aya Zamoto-Niikura1¤a, C. J. Peters1,2*, Shinji Makino1*

1 Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America, 2 Department of

Pathology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America

Abstract

Background: Rift Valley fever virus (RVFV), a member of the genus Phlebovirus within the family Bunyaviridae, is a negative-
stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic
illness among humans, while in livestock it causes fever and high abortion rates.

Methodology/Principal Findings: Sequence analysis showed that a wild-type RVFV ZH501 preparation consisted of two
major viral subpopulations, with a single nucleotide heterogeneity at nucleotide 847 of M segment (M847); one had a G
residue at M847 encoding glycine in a major viral envelope Gn protein, while the other carried A residue encoding glutamic
acid at the corresponding site. Two ZH501-derived viruses, rZH501-M847-G and rZH501-M847-A, carried identical genomic
sequences, except that the former and the latter had G and A, respectively, at M847 were recovered by using a reverse
genetics system. Intraperitoneal inoculation of rZH501-M847-A into mice caused a rapid and efficient viral accumulation in
the sera, livers, spleens, kidneys and brains, and killed most of the mice within 8 days, whereas rZH501-M847-G caused low
viremia titers, did not replicate as efficiently as did rZH501-M847-A in these organs, and had attenuated virulence to mice.
Remarkably, as early as 2 days postinfection with rZH501-M847-G, the viruses carrying A at M847 emerged and became the
major virus population thereafter, while replicating viruses retained the input A residue at M847 in rZH501-M847-A-infected
mice.

Conclusions/Significance: These data demonstrated that the single nucleotide substitution in the Gn protein substantially
affected the RVFV mouse virulence and that a virus population carrying the virulent viral genotype quickly emerged and
became the major viral population within a few days in mice that were inoculated with the attenuated virus.
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Introduction

Rift Valley fever virus (RVFV), a member of the genus

Phlebovirus within the family Bunyaviridae, causes periodic outbreaks

among livestock and humans in sub-Saharan African countries [1].

RVFV infection results in high mortality and abortion rates in

domestic ruminants with severe hepatic diseases. It also causes an

acute febrile myalgic syndrome, a hemorrhagic syndrome, ocular

disease, and encephalitis in humans [2,3]. Transmission of RVFV

to humans is primarily mosquito-borne or due to direct contact

with infected animal blood, tissues or products of abortion. Since

the late 1970s, several major outbreaks of Rift Valley fever have

occurred outside of sub-Saharan Africa, e.g., in Egypt [4],

Madagascar [5], Saudi Arabia, and Yemen [2,6]. The most

recent outbreak was reported in Kenya and resulted in a high

reported case-fatality ratio in infected humans [7].

RVFV has a single-stranded, tripartite RNA genome composed

of the L, M, and S segments. The L segment is of negative polarity

encoding the RNA-dependent RNA polymerase (L). The anti-viral-

sense M segment encodes two envelope glycoproteins, Gn and Gc,

and two accessory proteins,14-kDa NSm that suppresses virus-

induced apoptosis [8] and the 78-kDa protein. The S segment uses an

ambisense strategy for gene expression; a nonstructural protein, NSs,

is translated from viral-sense mRNA, while N protein is expressed

from anti-viral-sense mRNA [1]. N protein and L protein are essential

for viral RNA synthesis [1] and NSs protein suppresses host innate

immune functions by suppressing host gene expression [9], including

interferon-b [10], and promoting PKR degradation [11,12].
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Experiments using reassortant viruses between an attenuated

MP-12 strain of RVFV and wild-type (wt) RVFV suggested that

RVFV virulence characteristics in the mouse are under polygenic

control [13]. Further studies using reassortant viruses between the

wt ZH548 strain of RVFV and an attenuated RVFV isolate clone

13, a plaque clone variant of the wt 74HB59 strain carrying a

deletion of 69% of the NSs gene [14], suggested that RVFV mouse

virulence is controlled by the S segment [15]. The importance of

NSs on viral virulence was confirmed by using a wt RVFV lacking

the entire NSs gene [16,17]. Studies using the wt RVFV lacking

the NSm gene showed that NSm also affected virus virulence in

rats [18]. In contrast, how Gn and Gc envelope proteins and L

protein contribute to viral virulence is unknown.

The present study revealed that wt RVFV ZH501 stock, which

was originally isolated from a patient during the 1977 outbreak of

RVFV in Egypt, was made up of two major virus populations with

single nucleotide substitution within the Gn gene and that a single

nucleotide difference in the Gn gene of wt RVFV substantially

affected viral mouse virulence. Furthermore, we observed a

remarkably rapid emergence and accumulation of the virulent-

type virus in the mice that had been inoculated with a low virulent-

type RVFV.

Results

Presence of two major viral subpopulations in wt ZH501
virus stock

Sequence analysis of the RT-PCR products of intracellular

ZH501-specific RNAs showed sequence homogeneity in all three

RNA segments, except for nucleotide 847 of the anti-viral sense M

segment RNA (M847), which consisted of a mixture of A and G

residues (Fig. 1). Of 35 independent, cloned RT-PCR products of a

region including M847, 18 clones and 17 clones had A and G,

respectively, at M847, which suggested to us that the ZH501 virus

stock consisted of roughly a 1-to-1 mixture of two major viral

subpopulations, one carrying A and the other carrying G at M847.

The virus carrying A residue at M847 encodes glutamic acid at amino

acid 277 (Glu277) of the Gn envelope protein, while that carrying the

G residue encodes glycine (Gly277). Sequence analysis of the cloned

PCR products also showed other sequence heterogeneities, including

silent mutations and those that altered amino acid sequences, within

the M segment (data not shown), revealing a quasispecies nature of

the ZH501 virus stock. None of these other nucleotide heterogeneities

were shared among clones (data not shown).

Recovery of rZH501-M847-A and rZH501-M847-G from
cDNAs

To know the effects of the nucleotide difference at M847 on

biological properties of the virus, we have recovered ZH501

carrying A at M847 (rZH501-M847-A) and that carrying G

(rZH501-M847-G) at the corresponding site using a reverse genetics

system of ZH501, in which endogenously expressed T7 polymerease

in BHK/T7-9 cells drives expression of viral RNAs and proteins

from the transfected plasmids. Sequence analysis of the entire L, M

and S RNA segments of rZH501-M847-A and rZH501-M847-G

revealed that both viruses had the expected primary sequences.

No substantial differences in the plaque sizes and morphologies

were detected among ZH501, rZH501-M847-G and rZH501-

M847-A in both Vero cells and MRC-5 cells (data not shown).

ZH501, rZH501-M847-G and rZH501-M847-A showed similar

replication kinetics in VeroE6 cells, mouse 3T3 cells and mouse

macrophage-derived J774.1 cells (Fig. 2), while titers of rZH501-

M847-G were roughly 10 times higher than those of rZH501-

M847-A in human lung fibroblast MRC-5 cells from 24 h to 72 h

p.i. (Fig. 2). Also there was a trend that CPE induced by rZH501-

M847-A was less prominent CPE than that induced by rZH501-

M847-G or ZH501 at a given time in all four cell lines (Fig. 2).

Unpaired-t-tests of three independent experiments examining the

replication kinetics of rZH501-M847-G and rZH501-M847-A in

MRC-5 cells from 0 h to 72 h p.i. revealed that the titer of

rZH501-M847-G was a significantly higher (P,0.01) than that of

rZH501-M847-A at 72 h p.i. (Fig. S1).

Mouse virulence of ZH501, rZH501-M847-A and rZH501-
M847-G

We examined the virulence of rZH501-M847-G, rZH501-

M847-A and ZH501 by intraperitoneal (i.p.) inoculation of 100,

101, 102, 103, 104 or 105 plaque-forming units (PFU) of each virus

into five 5-week-old female CD-1 mice. Hanks’ balanced salt

solution (HBSS) was inoculated into control mice. These mice were

observed daily for 28 days p.i. (Fig. 3). None of the HBSS-

inoculated mice died, while inoculation of 102 to 105 PFU of

ZH501 resulted in the death of all of the mice within 13 days p.i.,

and one and three mice survived after inoculation of 101 and 100

PFU, respectively. All mice that were inoculated with 102 to 105

PFU of rZH501-M847-A died within 9 days p.i., and infection with

101 and 100 PFU resulted in the survival of one and four mice,

respectively. To our surprise, none of the rZH501-M847-G infected

mice died after inoculation of 100 to 102 PFU, four out of five mice

survived after inoculation of 104 and 103 PFU, and one mouse

survived after infection with 105 PFU. These data demonstrated

that ZH501 and rZH501-M847-A were highly virulent to mice,

whereas rZH501-M847-G had reduced mouse virulence.

To know the kinetics and titers of virus replication in various

organs, mice were inoculated i.p. with 105 PFU of rZH501-M847-

G, rZH501-M847-A, ZH501 and a mixture of 105 PFU of

rZH501-M847-G and the same titer of rZH501-M847-A. Virus

titers in livers, spleens, kidneys, sera and brains were determined

from 1 to 7 days p.i.; two to sixteen mice were used for each time

point (Fig. 4). The mice infected with ZH501, rZH501-M847-A,

and the mixture of rZH501-M847-G and rZH501-M847A

exhibited rapid, efficient virus replications in the liver early in

infection, high titers of viremia from 1 to 5 days p.i. and a gradual

increase of efficient virus replication in the brain, where the virus

titers exceeded 106 PFU/g at day 6 p.i. Efficient virus replication

Figure 1. Sequence analysis of the RT-PCR product of intracel-
lular viral-specific M RNA. The sequence of the viral-sense M segment
of ZH501 shows sequence heterogeneity, T and C, at M847 (asterisk).
doi:10.1371/journal.pone.0009986.g001

Mouse Virulence of RVFV

PLoS ONE | www.plosone.org 2 April 2010 | Volume 5 | Issue 4 | e9986



also occurred in the spleens and the kidneys, and all mice died by

day 8 p.i. The mice infected with rZH501-M847-G also showed

rapid virus replication in the liver, and yet the maximum liver

virus titer was approximately 10 times lower than that in the mice

infected with rZH501-M847-A, ZH501 and the mixture of

rZH501-M847-G and rZH501-M847-A. Also rZH501-M847-G

titers in the sera, kidneys, spleens and brains were substantially

lower than the virus titers in the corresponding organs of mice that

were infected with rZH501-M847-A, ZH501 and the mixture of

rZH501-M847-G and rZH501-M847-A. Unpaired-t-test results

showed that virus titers at days 1 to 3 in the serum and the liver,

days 2 to 4 in the spleen, days 2 to 5 in the kidney and days 2 to 6

in the brain of rZH501-M847-G-infected mice were statistically

lower (p,0.01) than the titers in the corresponding organs of

rZH501-M847-A-infected mice.

Neutralizing antibody titers in the infected mice
We next examined serum-neutralizing antibody titers in the

infected mice; ZH501 was used for the neutralizing antibody

assay. For each virus group, 19 to 23 mice were used. As shown in

Fig. 5, all mice that were inoculated i.p with 105 PFU of rZH501-

M847-A, ZH501 or a mixture of 105 PFU of rZH501-M847-G

and the same titer of rZH501-M847-A had less than detectable

levels of neutralizing antibodies until day 3 p.i. In contrast,

rZH501-M847-G-infected mice showed low, but detectable levels

of neutralizing antibodies early in infection; moreover, a low titer

of neutralizing antibody was detected as early as 1 day p.i. in some

of rZH501-M847-G-infected mice. Although neutralizing anti-

body titers increased in infected mice after day 5 p.i., there was a

trend that rZH501-M847-G-infected mice had higher neutralizing

antibody titers than did other infected mice. No neutralizing

antibodies were detected in sham-infected mice (data not shown).

Cross-neutralization analysis of rZH501-M847-A, rZH501-
M847-G and ZH501

We performed cross-neutralization assays to determine how

efficiently antiserum from rZH501-M847-G-infected mice and

that from rZH501-M847-A-infected mice could neutralize

Figure 2. Growth curve of ZH501, rZH501-847-A and rZH501-847-A in various cell lines. VeroE6 cells, NIH3T3 cells, J774.1 cells and MRC-5
cells were inoculated with ZH501, rZH501-847-A or rZH501-847-A at an moi of 0.02. Culture fluids were collected and virus titers were determined by
a plaque assay using VeroE6 cells. Virus growth curve of one representative experiment for each cell type is shown. Progression of CPE is represented
by the symbols: +, ++, +++ or +++. + = up to 25% of cell sheet affected showing cytolysis and swollen cells. ++ = up to 50% of cell sheet affected
showing lysed cells, floating cells and cell debris +++ = up to 75% of cell sheet affected showing significant cell lysis and increased amounts of cell
debris in culture fluid. ++++ = cell sheet destroyed with complete cytolysis.
doi:10.1371/journal.pone.0009986.g002
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rZH501-M847-G, rZH501-M847-A, and ZH501. Anti-rZH501-

M847-G serum demonstrating an 80% neutralizing antibody titer

(PRNT80 titer) of 1:640 to ZH501 and anti-rZH501-M847-A

serum demonstrating a PRNT80 titer of 1:80 to ZH501 were

obtained from rZH501-M847-G-infected mice and rZH501-

M847-A-infected mice, respectively. We used as controls, diluent,

normal mouse serum and convalescent goat anti-ZH501 serum

showing a PRNT80 titer of 1:5,120 to ZH501. In this assay, virus

titers were determined after overnight incubation of 100 ml of

approximately 5.0 log10 PFU/ml of rZH501-M847-G, rZH501-

M847-A, and ZH501 with the same volume of undiluted

antiserum or diluent at 4uC (Table 1). Goat anti-ZH501 serum

efficiently neutralized all viruses, while incubation of rZH501-

M847-A and rZH501-M847-G with the normal mouse serum

resulted in small reductions of the virus titers. Anti-rZH501-M847-

G serum and anti-rZH501-M847-G serum neutralized the three

viruses at different efficiencies. The differences between the virus

titers (in log10PFU/ml) after incubation with each antiserum and

those after incubation with normal serum are shown within

parentheses in Table 1. The anti-rZH501-M847-G serum reduced

the titer of rZH501-M847-G by 1.63 log10 PFU/ml, while it

reduced the titer of rZH501-M847-A and ZH501 by 0.82 and

0.52 log10 PFU/ml, respectively. The anti-rZH501-M847-A

serum reduced the titers of rZH501-M847-A, rZH501-M847-G

and ZH501 by 1.60, 0.7, and 1.0 log10 PFU/ml, respectively.

These data demonstrated that mouse antiserum neutralized the

homologous virus to a similar extent, regardless of the PRNT80

titers, that antiserum neutralized the heterologous virus equally

but to a lesser degree than the homologous virus, and that anti-

rZH501-M847-A serum was able to neutralize the titer of ZH501

to a slightly greater degree than anti-rZH501-M847-G serum;

however, neither serum neutralized ZH501 equal to the

neutralization of their homologous viruses.

Histopathological and immunohistochemical (IHC)
examinations

To further understand the pathogenesis of rZH501-M847-G

and rZH501-M847-A, we performed histopathological and IHC

analyses of various organs of mice inoculated i.p. with 105 PFU of

rZH501-M847-G, rZH501-M847-A, ZH501 or a mixture of 105

PFU of rZH501-M847-G and the same titer of rZH501-M847-A

at various times p.i. (Figs. 6 and S2).

The livers of rZH501-M847-A-infected mice showed multifocal

hepatocellular necrosis with prominent aggregating mononuclear

inflammatory cells and sparsely scattered viral antigens throughout

the liver lobe as early as day 2 p.i. On day 3 p.i., most of the

hepatocytes were necrotic and positive for viral antigens (Fig. 6B).

Also, severe hemorrhages were noted throughout the lobe. After

day 4 p.i., the livers from mice examined showed less severe

hepatocellular damage than livers taken earlier, and the livers

examined on day 6 p.i. showed near complete resolution. ZH501-

infected mice presented with similar lesions and distribution of

viral antigens, and yet the progress of the lesions was somewhat

slower than those in rZH501-M847-A-infected mice (Fig. 6A).

Although rZH501-M847-G-infected mice had focal-to-multifocal

hepatocellular necrosis from days 2 to 4 p.i (Fig. 6C), they

exhibited mild hepatic lesions compared to ZH501-infected mice

and rZH501-M847-A-infected mice. Among mice inoculated with

the mixture of rZH501-M847-G and rZH501-M847-A, one

showed severe hepatic lesions like those of rZH501-M847-A-

infected mice, while others had mild hepatic lesions like that of

rZH501-M847-G-infected mice (data not shown).

The spleens of rZH501-M847-A-infected mice (Fig. 6E),

ZH501-infected mice (Fig. 6D) and mice inoculated with the

mixture of rZH501-M847-G and rZH501-M847-A (data not

shown) were characterized by a depletion of lymphocytes in the

white pulp from day 2 p.i. to day 5 or 6 p.i., with maximum

Figure 3. The virulence of ZH501, rZH501-M847-A and rZH501-M847-G in mice. Five-week-old female CD-1 mice were inoculated i.p. with
100, 101, 102, 103, 104 or 105 PFU of ZH501, rZH501-M847-A or rZH501-M847-G. Control mice were inoculated with HBSS. Mortality was recorded daily
for 28 days p.i. No mice died after 14 days p.i.
doi:10.1371/journal.pone.0009986.g003
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depletion seen on day 3 p.i., and the presence of viral antigens in

the white pulp from days 2 to 4 p.i. No lesions and viral antigens

were detected in the spleens of rZH501-M847-G-infected mice

(Fig. 6F).

All infected mice, except for rZH501-M847-G-infected mice,

had moderate, non-suppurative encephalitis throughout their

brains from day 5 p.i. (Fig. S2A). Viral antigens were detected

as early as day 2 p.i. in the endothelial cells of some mice. After

day 5 p.i., viral antigens were detected in neurons at the thalamus,

and spread to neurons of the surrounding areas (Fig. S2A, inset).

The lesions were diagnosed as mild meningitis or mild encephalitis

in the brains of rZH501-M847-G-infected mice (Fig. S2E), and

viral antigen was detected throughout the brains after day 7 p.i.

Kidneys of some of rZH501-M847-A-infected mice and the

mice infected with the mixture of rZH501-M847-G and rZH501-

M847-A showed pyknotic cells in glomeruli on day 3 p.i (Fig.

S2B). Most of the infected mice had viral antigens in the smooth

muscle of interlobular and arcuate arteries from day 2 p.i., and in

the mesangium of glomeruli on days 3 and 4 p.i (Fig. S2C, D).

Although no pathology was detected in the kidneys of the ZH501-

Figure 4. Virus titers in the various organs and serum of infected mice. Five-week-old, female CD-1 mice were inoculated i.p. with 105 PFU of
ZH501, rZH501-M847-A, rZH501-M847-G or a mixture of rZH501-M847-A and rZH501-M847-G. At 1 through 7 days p.i., serum, liver, spleen, kidney
and brain were collected from infected mice, and virus titers were individually determined by plaque assay. Two to sixteen mice were used for each
time point. In some cases, samples were collected from dead mice. They were: ZH501-infected mice–2 at day 3 p.i., 1 at 5 day p.i. and 1 at day 6 p.i.;
rZH501-M847-G-infected mice–1 at day 7 p.i.; rZH501-M847-A-infected mice–2 at days 2 and 4 p.i., 5 at day 3 p.i., 3 at day 5 p.i., and 4 at day 6 p.i.;
and rZH501-M847-G/rZH501-M847-A-co-infected mice–8 at day 3 p.i., 7 at day 6 p.i., and 2 at day 6 p.i.
doi:10.1371/journal.pone.0009986.g004
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infected mice, viral antigens were detected from day 3 in the

mesangium of glomeruli and in the smooth muscle of interlobular

and arcuate arteries from days 3 to 7 p.i. The kidneys of rZH501-

M847-G-infected mice showed no pathology. Some of the infected

mice exhibited viral antigens from days 5 to 7 day p.i. in the

smooth muscle of interlobular and arcuate arteries (Fig. S2H),

whereas no viral antigens were detected in the glomeruli (Fig.

S2G).

In summary, there were rough correlations between the

presence of viral antigens and viral titers in the given organs,

and rZH501-M847-G-infected mice had delayed development of

lesions or showed less severe lesions than did other infected mouse

groups.

Emergence and accumulation of viruses carrying A
residue at M847 in rZH501-M847-G-infected mice

We next examined whether the viruses that accumulated in

infected mice retained the input-virus genome sequence at M847.

To this end, we took advantage of the presence of a naturally

occurring Sac I site (GAGCTC), which includes the A residue

(underlined) at M847 of rZH501-M847-A. Due to single

nucleotide substitution, the corresponding region of rZH501-

M847-G lacked this restriction enzyme site. Mice were infected i.p.

with 105 PFU of rZH501-M847-G or rZH501-M847-A (n = 9 for

each group). Organs were isolated at various times p.i., and RT-

PCR products that included M847 were subjected to Sac I

digestion. For each virus group, we collected 3 livers at 4 day p.i., 3

spleens, 3 kidneys and 3 brains at day 6 p.i., and 3 brains at day

7 p.i. RT-PCR products of the expected size were obtained from

all samples of rZH501-M847-A-infected mice, and all were fully

susceptible to Sac I digestion (Fig. 7), demonstrating that

replicating rZH501-M847-A retained A residue at M847 in the

infected mice. We were unable to obtain RT-PCR products from

one spleen sample at day 6 p.i., one kidney sample at day 6 p.i.,

one brain sample at day 6 p.i., and one brain sample at day 7 p.i.

from rZH501-M847-G-infected mice (data not shown), probably

due to low virus titers in these samples. Two liver samples at day

4 p.i., were resistant to Sac I digestion (Fig. 7). Unexpectedly, the

RT-PCR products of one liver sample were a mixture of Sac I-

susceptible PCR product and Sac I-resistant products (Fig. 7) and

all other RT-PCR products, including two spleen samples at day

6 p.i., two brain samples at day 6 p.i., and two brains at day 7 p.i.

(data not shown) were susceptible to the Sac I digestion (Fig. 7).

These data strongly suggested an accumulation of rZH501-M847-

A-type virus carrying A residue at M847, in rZH501-M847-G

infected mice at 4 days p.i. in livers and 6 days p.i. in spleens and

brains.

To learn how quickly rZH501-M847-A-type virus accumulat-

ed in various organs of rZH501-M847-G-infected mice, we

inoculated 25 mice i.p. with 105 PFU of rZH501-M847-G, and

livers, spleens and brains were isolated every day through day

8 p.i. To eliminate the possible contamination by rZH501-M847-

A in the samples, rZH501-M847-A was not used in the BSL-4

laboratory during the experiments. For each sample, the virus

titers, production of RT-PCR products and susceptibilities of the

RT-PCR products to Sac I digestion are summarized in Fig. 8A

and the representative data concerning the Sac I digestion of the

RT-PCR products are shown in Fig. 8B. Most samples carrying

detectable levels of infectious viruses and many samples in which

virus titers were below the detection limit yielded the RT-PCR

products. Accumulation of rZH501-M847-A-type virus was

detected in the liver of a single mouse as early as 2 days p.i.

and rZH501-M847-A-type virus became the major virus

population in livers, spleens and brains from day 5 to 8 p.i. We

performed sequence analysis of some of the cloned RT-PCR

products to firmly establish the accumulation of rZH501-M847-

A-type virus in rZH501-M847-G-infected mice; the numbers of

the clones used for sequence analysis and the samples were: 20

clones from mouse 8b brain, 10 clones from mouse 6c spleen, 10

clones from mouse 7c brain, and 10 clones from mouse 7c spleen

(see Fig. 8A). Consistent with the data of Sac I digestion of the

RT-PCR products of these samples, all clones had A at M847.

These data unambiguously demonstrated that rZH501-M847-A-

type virus became the major virus population in rZH501-M847-

G-infected mice.

Figure 5. Neutralizing antibody titers in the infected mice.
Serum neutralizing antibody titers of five-week-old female CD-1 mice
inoculated i.p. with 105 PFU of ZH501, rZH501-M847-A, rZH501-M847-G
or a mixture of rZH501-M847-A and rZH501-M847-G. Dashed line
denotes the minimum neutralizing antibody detection level.
doi:10.1371/journal.pone.0009986.g005

Table 1. Cross-neutralization assays.

Virus Diluent Normal mouse serum Anti-rZH501-M847-G [1:640]* Anti-rZH501-M847-A [1:80] Goat anti-ZH501 [1:5,120]

rZH501-M847-G 4.70** 4.48 2.85 (1.63)*** 3.78 (0.70) ,0.7

rZH501-M847-A 4.57 4.30 3.48 (0.82) 2.70 (1.60) ,0.7

ZH501 4.90 5.00 4.48 (0.52) 4.00 (1.00) ,0.7

*PRNT80 titer to ZH501.
**Numbers represent virus titers in log10PFU/ml that were obtained after incubation with diluent, normal mouse serum or antisera.
***Numbers within the parenthesis represent differences between the virus titers in log10PFU/ml after incubation with each antiserum and those after incubation with

normal mouse serum.
doi:10.1371/journal.pone.0009986.t001
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To know whether the phenomenon of emergence of a major

population of rZH501-M847-A-type virus after infection with

rZH501-M847-G-type virus also occurred in cell culture, rZH501-

M847-G was independently passaged five times at a multiplicity of

infection (moi) of 0.01 and 1 in both VeroE6 cells and MRC-5

cells. RT-PCR products, including M847, were generated from

intracellular RNAs, extracted from cells infected with viruses at

passage levels 1 and 5, and subjected to Sac I digestion. We did not

observe the accumulation of rZH501-M847A-type virus after 5

passages of rZH501-M847-G in both cell types (data not shown),

demonstrating that the rZH501-M847-A-type virus did not

emerge after passages of rZH501-M847-G in cultured cells but

it became the major virus population in mice that were infected

with rZH501-M847-G.

Finally, we examined mouse virulence of rZH501-M847-A-

type virus that had accumulated in rZH501-M847-G-infected

mice by i.p. inoculation of 101, 102, 103, 104 or 105 PFU of the

brain homogenates of 8b mouse (see Fig. 8A) into mice (n = 5

for each dilution); RT-PCR analysis of mouse 8b brain extracts

revealed that rZH501-M847-A-type virus was the major virus

population, and sequence analysis of all 20 cloned RT-PCR

products of this brain extract showed that M847 was A.

Inoculation of 104 or 105 PFU of the recovered virus resulted

in the death of all mice within 7 days p.i., while 2 mice, 3 mice

and 4 mice survived after inoculation of 103 PFU, 102 PFU and

101 PFU of the virus, respectively (Fig. 9). The recovered

viruses had a higher mouse virulence than did rZH501-M847-

G, while they were not as virulent as rZH501-M847-A or

ZH501 (Fig. 3).

Discussion

A past report using reassortant viruses between an attenuated

MP-12 strain and wt RVFV suggested that RVFV virulence in

mouse is under polygenic control [13]. Past studies revealed that

the NSs gene, encoded in the S segment, and the NSm gene,

encoded in the M segment, both contribute to viral virulence

[16,17,18]. We presented here our findings that a single nucleotide

difference in M847 of the Gn gene of ZH501 substantially affected

virulence in mice, a result that further supports the notion that

RVFV virulence is under polygenic control [13].

Roughly a 1-to-1 mixture of the rZH501-M847-G-type virus

and rZH501-M847-A-type virus existed in the ZH501 virus stock.

Because the original ZH501 sample from a patient in the 1977

RVFV outbreak was not available, it is unclear whether high titers

of both rZH501-M847-G-type virus and rZH501-M847-A-type

virus replicated in the patient. We found that the rZH501-M847-

A-type virus became a major viral population in mice inoculated

with rZH501-M847-G, while viruses accumulated in mice

inoculated with rZH501-M847-A were the rZH501-M847-A-type

virus. Additionally, 38 of 39 isolates from wt RVFV thus far

reported were found to have A at M847 and carry Glu277 [19],

which is also encoded by rZH501-M847-A. These data suggest

that the rZH501-M847-A-type virus probably represented the

major virus population in the patient. However, it is possible that

rZH501-M847-G-type virus existed as an RVFV quasispecies in

the patient and affected the severity of the disease; quasispecies

have cooperative interactions to control viral pathogenesis [20].

Consistent with this notion, we found a lesser virulence in a virus

Figure 6. Histopathology and immunohistochemistry (IHC) of mice infected with ZH501 (A and D), rZH501-M847-A (B and E) and
rZH501-M847-G (C and F). (A) Liver histopathology and IHC (inset) from mice infected with ZH501 on day 3 p.i. The majority of the hepatocytes
were necrotic (hematoxylin and eosin staining) (magnification, 6200, inset: 6400). (B) Liver histopathology and IHC (inset) from mice infected with
rZH501-M847-A on day 3 p.i. The samples showed severe hemorrhages in the livers due to disrupting hepatocytes (magnification, 6200, inset:
6400). (C) Liver histopathology and IHC (inset) from mice infected with rZH501-M847-G on day 3 p.i. Mice had focal necrosis in the liver
(magnification, 6200, inset: 6400). (D) Spleen histopathology and IHC (inset) from mice infected with ZH501 on day 3 p.i. Depletion of
lymphocytes in the white pulp was present (magnification, 6200, inset: 6400). (E) Spleen histopathology and IHC (inset) of mice infected with
rZH501-M847-A. The lesion was the same as that of ZH501-infected mice (magnification, 6200, inset: 6400). (F) Spleen histopathology and IHC
(inset) of mice infected with rZH501-M847-G (magnification, 6200, inset: 6400). No lesions or viral antigens were detected in the spleens of mice
infected with rZH501-M847-G.
doi:10.1371/journal.pone.0009986.g006
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sample consisting of a major population of rZH501-M847-A-type

virus and a minor population of rZH501-M847-G (Fig. 8A) and

obtained from a rZH501-M847-G-infected mouse brain at 8 days

p.i., than did rZH501-M847-A or ZH501 (Figs. 3 and 9). Although

the accumulation of rZH501-M847A-type virus did not occur

even after 5 passages of rZH501-M847-G in VeroE6 cells and

MRC-5 cells, we observed that rZH501-M847-G replicated to

higher titers than rZH501-M847-A in cultured cells (Figs. 2 and

S1). This trend in virus replication in vitro pointed to the

possibility that the rZH501-M847-G-type virus that was present as

a minor virus population in the patient could have amplified in cell

culture to become a major viral subpopulation in the ZH501 virus

stock that was generated in vitro.

The kinetics of virus accumulation in various organs in mice

inoculated with ZH501, rZH501-M847-A or rZH501-M847-G

showed that RVFV replicates in the liver early in infection. The

efficient replication of rZH501-M847-A and ZH501 in the liver

and in other initial target organs probably induced high viremia

titers that facilitated the spread of the virus to other organs,

including the spleen, kidneys and brain ultimately leading to

death of the animals. The virus titers in the liver of rZH501-

M847-G-infected mice at 2 days p.i. were roughly ten times

lower than those in the liver of rZH501-M847-A-infected mice

(Fig. 4). Likewise, virus titers in other organs and serum of the

rZH501-M847-G-infected mice were substantially lower than

those of the corresponding organs of rZH501-M847-A-infected

mice. The present data imply that the level of virus titers in the

initial target organ, e.g., the liver, at 2 to 3 days p.i. may

determine the severity and ultimate outcome of RVFV infection

in mice.

Although we have demonstrated the importance of single

nucleotide substitution at M847 of Gn protein for wt RVFV

mouse virulence, further studies are required to determine how

this single nucleotide substitution affected RVFV’s virulence. Past

studies showed that the gain-of-positive-charge mutations in the

flavivirus E protein [21,22,23] and the alphavirus E2 protein [24]

can enhance binding to negatively charged glycosaminoglycans

(GAG) and increase the efficiency of virus uptake into cultured

cells. However, the virulence of the variant viruses in mice is

reduced, as these variant viruses are rapidly cleared from the

circulatory system [22,24,25,26]. Probably, the gain-of-positive-

charge mutations in the envelope protein facilitates viral

adherence to GAGs present in blood cells and subsequent

reticuloendothelial system-mediated virus elimination from the

circulation. Likewise, rZH501-M847-A, which had a negatively

charged Glu277 of the Gn envelope protein, was highly virulent

for mice, while rZH501-M847-G carrying an uncharged Gly277

was substantially less virulent (Fig. 3). Furthermore, rZH501-

M847-A-infected mice showed higher viremia titers than rZH501-

M847-G-infected mice at 1-3 days p.i. (Fig. 4), but rZH501-M847-

G replicated at a higher titer than did rZH501-M847-A in MRC-5

cells (Fig. 2). Accordingly, it is possible that rZH501-M847-G

binds efficiently to GAGs in the circulation, resulting in low levels

of systemic infection, whereas rZH501-M847-A carrying Glu277

binds to GAGs less efficiently, resulting in high titers of viremia,

efficiently establishes a systemic infection that involves the CNS,

and kills the infected mice. The attenuated virus, MP-12,

developed by serial passage of the wt RVFV ZH548 strain in

the presence of 5-fluorouracil [27], carries A at M847 and encodes

Glu277, suggesting that the presence of Glu277 in Gn does not

always make RVFV virulent. The amino acid sequence of the M

segment of MP-12 differed from that of rZH501-M847-A by 5

amino acids. We suspect that a combination of some or all of these

mutated amino acids in the M segment contributed to the

attenuation of MP-12.

The present study showed the importance of the A nucleotide

at M847 of wt RVFV in mouse virulence, whereas it is unclear

whether this nucleotide also affects viral virulence in other

animals. Like rZH501-M847-G, one wt RVFV isolate 763/70,

which was obtained from an aborted bovine fetus in Zimbabwe in

1970 [28], has G at M847 and carries Gly 277 [19], while all the

rest of the wt RVFV isolates thus far sequenced carry A at M847

and encode Glu277 [19]. No information is available as to the

titers of 763/70 in different tissues of the aborted fetus and the

viremia status of its mother. Although we reported that pregnant

cows inoculated with ZH501 become febrile, have 2.3 to 4.0 log10

PFU/ml of viremia, and undergo abortion [29], the relationship

between level of viremia and abortion in cattle has not been

carefully examined yet. We observed that very low viremia can

result in abortion in experimentally infected sheep with ZH501 (J.

Morrill, unpublished data), and, hence, we speculate that

placental tissue in sheep and probably cattle may be exquisitely

sensitive to infection, and low titers of viremia can infect the

placenta at very low levels and gain access to the fetus. Virulence

of 763/70 in the bovine has not been experimentally tested and

763/70 differs from ZH501 at other genome regions. Accord-

ingly, the role of G at M847 of 763/70 in virus virulence for

bovine is unclear. Experimental infection of rZH501-M847-A

and rZH501-M847-G into domestic animals will show whether

the importance of the A nucleotide at M847 in viral virulence is

limited to the mouse model.

Figure 7. Sac I digestion of the RT-PCR products. Five-week-old
female CD-1 mice were infected i.p. with 105 PFU of rZH501-M847-G or
rZH501-M847-A. Total RNAs from 3 livers at 4 day p.i., 3 spleens at day
6 p.i., 3 kidneys at day 6 p.i., 3 brains at day 6 p.i., and 3 brains at day
7 p.i. were collected and subjected to RT-PCR analysis. In the samples
where RT-PCR products were obtained, RT-PCR products were digested
with Sac I and subjected to agarose gel electrophoresis. As controls,
PCR products that were obtained from plasmid encoding M segment of
rZH501-M847-A were digested with Sac I or incubated in the absence of
Sac I (Control).
doi:10.1371/journal.pone.0009986.g007
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Figure 8. Accumulation of viruses carrying the genotype of rZH501-M847-A in rZH501-M847-G-infected mice. Five-week-old female
CD-1 mice were infected i.p. with 105 PFU of rZH501-M847-G and liver, spleen and brain were collected every day from day 1 to day 8 p.i. Virus titer in
each sample was determined by a plaque assay. RT-PCR products were obtained from total RNAs in these samples and then subjected to Sac I
digestion. (A) Color and number in each box represent the genotype of major viruses and the virus titer in Log10PFU/g of tissue, respectively, in each
mouse. Color legend: G = genotype of rZH501-M847-G. A = genotype of rZH501-M847-A. G = A = a mixture of similar amounts of rZH501-M847-G
genotype and rZH501-M847-A genotype. G.A = viruses carrying the rZH501-M847-G genotype were more abundant than those carrying the
rZH501-M847-A genotype. A.G = viruses carrying the rZH501-M847-A genotype were more abundant than those carrying the rZH501-M847-G
genotype. Not decided = the major genotype of viruses was not determined due to weak RT-PCR signals. Not detected = RT-PCR products were not
obtained. (B) Agarose gel electrophoresis of the RT-PCR products that underwent SacI digestion. Only representative samples are shown. The mouse
identification number in the gel is shown in (A). Control = PCR products that were obtained from plasmid encoding M segment of rZH501-M847-A
were digested with Sac I or incubated in the absence of Sac I. N = Not detected. W = Not decided.
doi:10.1371/journal.pone.0009986.g008

Mouse Virulence of RVFV

PLoS ONE | www.plosone.org 9 April 2010 | Volume 5 | Issue 4 | e9986



A remarkably rapid emergence and accumulation of rZH501-

M847-A-type virus occurred in the mice inoculated with rZH501-

M847-G (Figs. 7 and 8). In the past, an experimental infection

using swine influenza virus resulted in a similarly rapid emergence

of a variant virus in infected hosts during single infections [30].

There are other examples of this type of quasispecies emergence

and fixation in vivo [31,32,33]. Although rZH501-M847-G was

rescued from cDNAs and direct sequencing of the M segment of

rZH501-M847-G did not show the presence of rZH501-M847-A-

type in the inoculum (data not shown), rZH501-M847-A-type

viruses might have been generated during T7 polymerase-

mediated primary transcription from the plasmid or during M

segment RNA replication and existed as one of a minor virus

population of ZH501-M847-G quasispecies in the inoculum.

Alternatively, rZH501-M847-A-type virus was generated by a

point mutation at M847 of the M segment in the rZH501-M847-

G-infected mice and became a major virus population as early as 2

days p.i. As discussed above, we speculate that rZH501-M847-A

may bind to GAGs less efficiently than does rZH501-M847-G.

This putative phenotype of rZH501-M847-A-type virus might

have prevented the efficient elimination of the virus from

reticuloendothelial systems, and facilitated continuous replication

and systemic infection.

We noted that neutralizing antibodies were rapidly elicited in

rZH501-M847-G-infected mice within 3 days p.i. (Fig. 5), during

which time most of the viruses retained the genotype of rZH501-

M847-G (Fig. 8). Because the importance of neutralizing

antibodies for the protection of animals from RVFV infection is

well documented [34,35,36,37,38,39,40,41,42], a rapid and

efficient generation of neutralizing antibodies probably contribut-

ed to low titers of viremia and prevention of systemic infection in

rZH501-M847-G-infected mice. It is interesting to note that the

antiserum neutralized the heterologous virus equally but to a lesser

degree than the homologous virus in the cross neutralization assay

(Table 1). These results were consistent with a report that the

region including Glu277 or Gly277 of Gn protein is a major

neutralizing epitope site [43]. It is likely that in the rZH501-M847-

G-infected mice, rZH501-M847-A-type virus emerged partly

because this virus was less susceptible to rapidly generated

neutralizing antibodies directed against rZH501-M847-G. We

further suspect that in the rZH501-M847-G-infected mice, newly

emerged rZH501-M847-A-type virus failed to continuously

replicate efficiently after 5 days p.i. in various organs primarily

due to an increase in the titers of neutralizing antibodies, resulting

in the survival of the mice. The virus titers in rZH501-M847-A-

inoculated mice were higher than those inoculated with rZH501-

M847-G in many organs during the first 4-5 days p.i., while the

neutralizing antibody titers tend to be higher in rZH501-M847-G-

inoculated mice than in rZH501-M847-A-inoculated mice (Fig. 5).

These data suggest that rZH501-M847-A replication might have

induced immunosuppression. This possibility was consistent with

the data that lymphocytes were depleted in the white pulp of mice

inoculated with rZH501-M847-A, but not those inoculated with

rZH501-M847-G, a finding probably due to apoptosis (Fig. 6).

Materials and Methods

Viruses and cells
The ZH501 strain of wt RVFV was obtained from the Special

Pathogens Branch at the Centers for Disease Control and

Prevention (CDC) (Atlanta, Georgia). RVFV ZH501 was

originally isolated from a patient during the 1977 outbreak of

RVFV in Egypt by inoculating the human specimen into suckling

mice brain. After amplification of the virus in the suckling mice

brain one more time, the ZH501 virus stock was generated after

two passages in FRhL cells and two passages in VeroE6 cells. The

Vero cell line and MRC-5 cell line were used for a viral plaque

assay as described previously [44]. All of the experiments that used

virulent ZH501 were performed in The Robert E. Shope, MD

BSL-4 Laboratory in the John Sealy Pavilion for Infectious

Diseases Research at The University of Texas Medical Branch at

Galveston, Texas.

Plasmid constructions
Standard molecular biological techniques were used to

construct plasmids. Total RNA of VeroE6 cells infected with

RVFV ZH501, which was obtained from Stuart Nichol at the

CDC, was used for first-strand cDNA synthesis. ZH501 virus stock

at CDC [16] and our ZH501 stock underwent the same passage

history. PCR fragments of full-length, antiviral-sense ZH501 S and

L-segments were cloned into a pProT7 plasmid [45], designated as

pProT7-wS(+) and pProT7-wL(+), respectively. The ZH501 M-

segment carrying G and A at nucleotide 847 of anti-viral-sense was

cloned into a pProT7 plasmid, designated as pProT7-wM(+)-

M847-G and pProT7-wM(+)-M847-A, respectively. The plasmids

expressing ZH501 N or L proteins under the control of T7 RNA

polymerase were reported previously [46]. The ORF of ZH501

glycoproteins, which carry G at nucleotide 847 of anti-viral-sense

M were cloned into the pCAGGS plasmid under chicken b-actin

promoter, designated as pCAGGS-G. All of the constructs were

confirmed to have the expected sequences.

Virus rescue
rZH501-M847-G, a recombinant ZH501 carrying G at

nucleotide 847 of anti-viral-sense M, was recovered by co-

transfection of pProT7-wS(+), pProT7-wM(+)-M847-G, pProT7-

wL(+), pT7-IRES-N, pT7-IRES-L and pCAGGS-G into BHK/

T7-9 cells by TransIT-LT1 (Mirus, Madison, WI), as described

previously [45]. rZH501-M847-A was recovered by co-transfec-

Figure 9. The virulence of rZH501-M847-A-type virus obtained
from the brain of rZH501-M847-G mouse. Five 5-week-old female
CD-1 mice were inoculated i.p. with 101, 102, 103, 104 or 105 PFU of the
brain homogenates from the 8b mouse (Fig. 8A). Control mice were
inoculated with HBSS. Mortality was recorded daily for 28 days p.i. No
mice died after 9 days p.i.
doi:10.1371/journal.pone.0009986.g009
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tion of pProT7-wS(+), pProT7-wM(+)-M847-A, pProT7-wL(+),

pT7-IRES-N, and pT7-IRES-L into BHK/T7-9 cells. The culture

medium was replaced with fresh medium at 24 h post transfection.

At 5 days post transfection, the culture supernatants were

collected, clarified and then inoculated into VeroE6 cells. The

supernatant of infected VeroE6 cells at 3 days p.i. was collected

and used for titration of virus infectivity by plaque assay and for

the subsequent experiments. Sequence analysis of M segment

RNA confirmed the presence of the expected nucleotide at M847

in rZH501-M847-G and rZH501-M847-A.

Sequence analysis of the rescued viruses
Intracellular viral RNAs of infected MRC-5 cells served as the

source of sequence analysis. Most of the sequences of the L, M and

S RNA segments of rescued rZH501-M847-A and rZH501-

M847-A were determined by direct sequencing analysis of the

virus-specific RT-PCR products. For sequencing of the 59-end of

viral RNAs, free 59-phosphates in intracellular RNAs were

removed by calf intestinal alkaline phosphatase and then the

samples were treated with tobacco acid pyrophosphatase to

remove the cap structure. After ligation of the RNA adaptor to

uncapped RNA by using T4 RNA ligase, cDNA was synthesized

by employing an RLM-RACE kit (Ambion, Austin, TX) using

random primers. Amplicons were obtained by using a virus-

specific and an adaptor-specific primer and subjected to

sequencing analysis. For sequencing of the 39-end of viral RNAs,

a poly A tail was added to viral RNAs by using a Poly(A)

Polymerase Tailing Kit (Epicenter biotechnology, Madison, WI).

First-strand cDNA was synthesized from RNA containing a poly A

tail by using the 39Race adaptor (RLM-RACE kit, Ambion). The

cDNA was subjected to PCR with an adaptor-specific primer and

a virus-specific primer, and the amplicons were subjected to

sequence analysis.

Analysis of viral growth
VeroE6 cells, mouse 3T3 cells, mouse macrophage-derived

J774.1 cells and MRC-5 cells were infected with viruses at an moi

of 0.02 at 37uC for 1 h, and washed 3 times with PBS. Then

medium was added. Culture supernatants were harvested at

various times p.i., and the virus titer was measured by plaque

assay.

Virus plaque assays
Virus titers were determined by plaque assay in Vero cell

monolayers grown in 24-well plates. For the viral plaque assay,

serial tenfold dilutions of each specimen were prepared in HBSS

with 2% fetal bovine serum added (HBSS-FBS), and 50 ml of each

dilution was adsorbed on duplicate cell monolayers for 1 hour at

37uC. After 1 hour, the monolayers were overlaid with 0.6 ml of a

mixture of 1 part 1% agarose and 1 part 2X Eagle’s basal medium

with Earle’s salts, 17 mm HEPES, 8% fetal bovine serum, 100 U

of penicillin/ml and 100 mg of streptomycin sulfate/ml. After

incubation for 72 h at 37uC in a 5% CO2 atmosphere, each cell

monolayer was stained by adding 0.6 ml of a second overlay,

identical to the first, but containing 4% neutral red. After an

additional 24 h incubation, plaques were enumerated and viral

titers were calculated.

Virus inoculation into mice and collection of samples
from infected mice

Five-week-old female outbred CD-1 mice were purchased from

Charles River Laboratories (Wilmington, MA). The mice were

housed, 5 mice per cage, in micro-isolator cages, in a BSL-4

biological containment laboratory with a 12-h day-night photo-

period. Virus inocula were prepared in HBSS, pH 7.4, with no

supplements. Each mouse was inoculated i.p. with 0.1 ml of

inoculum in a tuberculin syringe fitted with a 26-gauge, 3/8- inch

needle. Moribund mice or mice pre-selected for euthanasia were

anesthetized with isoflurane, whole blood was collected via cardiac

puncture, and the mice were euthanatized by cervical dislocation.

Liver, spleen, and brain tissues were aseptically collected

immediately following euthanasia or as soon as dead mice were

discovered. All experiments were performed in accordance with

guidelines of the Institutional Animal Care and Use Committee of

the University of Texas Medical Branch and the recommendations

in the Guide for the Care and Use of Laboratory Animals (Institute of

Laboratory Animal Resources, National Research Council,

National Academy of Sciences, 1996). The facilities used are fully

accredited by the American Association for Accreditation of

Laboratory Animal Care.

Preparation of organ homogenates and sera
Tissues were prepared as 10% (w/v) homogenates in HBSS

supplemented with 10% heat-inactivated (56uC for 30 minutes)

fetal bovine serum and antibiotics (200 U/ml penicillin and

50 mg/ml streptomycin). Serum for virus and neutralizing

antibody assays was separated from whole blood by centrifugation

at 1,500 x g for 15 minutes and stored at -80uC until assayed.

Tissue homogenates were similarly clarified by centrifugation, and

supernatants were harvested and stored at 280uC until assayed.

Neutralizing antibody assays
Serum neutralizing antibody was determined using an 80%

plaque-reduction neutralization test. Serial fourfold dilutions of

serum were prepared in HBSS-FBS. An equal volume of the

ZH501 strain of RVFV suspension containing approximately 80

PFU/50 ml was added to each dilution. After incubation at 37uC
for 1 hr, 50 ml of each dilution was adsorbed on duplicate Vero

cell monolayers for 1 hr at 37uC and then overlaid with 0.6 ml of

the agarose-medium mixture used in the viral plaque assay. After

72 hr incubation at 37uC in a 5% CO2 atmosphere, each

monolayer received 0.6 ml of a second agarose containing neutral

red dye. Plaques were counted and an 80% reduction in the

number of plaques inoculated was used as the endpoint for virus-

neutralization titers.

Cross-neutralization assays
Anti-rZH501-M847-G serum demonstrating a PRNT80 titer of

1:640 to ZH501 was a mixture of the sera, each collected at days 6,

7 and 8 p.i. from eight rZH501-M847-G-infected mice. Similarly,

anti-rZH501-M847-A serum demonstrating a PRNT80 titer of 1:80

to ZH501 was a mixture of the sera collected at 6 days p.i. from

four rZH501-M847-A-infected mice. Diluent (HBSS-FBS) and

normal mouse serum served as negative controls, while convales-

cent goat anti-ZH501 serum showing a PRNT80 titer of 1:5,120 to

ZH501 served as a positive control. We incubated at 4uC overnight

vials containing 100 ml of approximately 5.0 log10 PFU/ml of

rZH501-M847-G, rZH501-M847-A or ZH501 combined with

100 ml of each serum sample or diluents. After incubation, virus

titers were determined by using viral plaque assays.

RNA extraction from organs
One hundred microliters of 10% tissue homogenate were mixed

with 900 ml of TRIzol reagent (Invitrogen, Carlsbad, CA). After

addition of 200 ml of chloroform, tubes were shaken vigorously by

hand and centrifuged at 15,000 rpm for 10 min at 4uC. Following
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centrifugation, the aqueous phase was transferred to a new tube

and 500 ml of isopropanol was added to the tubes. Samples were

centrifuged at 15,000 rpm for 25 min at 4uC. RNA pellets were

washed with 75% ethanol and dried. Thirty microliters of RNase-

free water was added to dissolve the RNA pellet. The samples

were then treated with RQ1 RNase-Free DNase (Promega,

Madison, WI), and the RNAs were purified by addition with

phenol-chloroform.

RT-PCR and Sac I digestion
The total RNA of infected VeroE6 cells or mouse liver, spleen,

kidneys and brain were extracted with Trizol reagent (Invitrogen).

First-stranded cDNA was synthesized with a random hexamer by

RTG YouPrime RXN Beads (GE Healthcare, Bucks, UK)

according to the manufacturer’s instructions. PCR primers which

anneal to nucleotide 411 to nucleotide 430 (M430F: 59-ATG GCA

GGG ATT GCA ATG AC-39) or nt.1041 to 1060 (M1041R: 59-

ACT GCA AAG GGC ACA ACC TC-39) of anti-viral-sense M

were used for PCR reaction. PCR was performed for 30 cycles at

94uC for 40 sec, 55uC for 1 min, and 72uC for 1 min using the

Expand High Fidelity PCR System (Roche, Mannheim, Ger-

many). The PCR products were purified with QIAquick PCR

Purification Kit (Qiagen, Germantown, MD), digested with Sac I

and then separated on a 1% agarose gel.

Sequence of ZH501 M-segment
The PCR product consisting of a wild-type ZH501 M-segment

by M430F and M1041R was directly sequenced, or cloned into

pSTBlue-1 by AccepTor Vector Kits (Novagen, Darmstadt,

Germany) according to the manufacturer’s instruction. Thirty-

five clones were sequenced by T7 primer.

Histopathology and IHC examination
Specimens for histopathologic examination were collected in

10% neutral buffered formalin. The livers, spleens, kidneys, and

brains obtained from infected mice and control animals were

processed for histopathological and IHC examination as previ-

ously described [47]. Formalin-fixed and paraffin-embedded tissue

sections were subjected to hematoxylin and eosin (H&E) by

standard methods for evaluating histopathology and IHC staining

for detecting RVFV antigens, respectively. For detecting RVFV

antigens, the tissues were incubated with rabbit anti-N antibody

[48] (1:500). Color was developed by using the fuchsin+ substrate-

chromogen system (DAKO cytomation, Carpentaria, CA).

Supporting Information

Figure S1 Growth curve of rZH501-847-A and rZH501-847-A

in MRC-5 cells. MRC-5 cells were inoculated with rZH501-847-A

or rZH501-847-A at an moi of 0.02. Culture fluids were collected

and virus titers were determined by a plaque assay that used

VeroE6 cells. The results were obtained from three independent

experiments.

Found at: doi:10.1371/journal.pone.0009986.s001 (0.07 MB TIF)

Figure S2 Histopathology and IHC of mice infected with

rZH501-M847-A (A to D), and rZH501-M847-G (E to H). (A)

Brain of mouse infected with rZH501-M847-A on day 6 p.i. Viral

antigens were detected by IHC in the neurons (magnification,

6200, inset: 6400). (B) Glomerulus of the kidney in mouse

infected with rZH501-M847-A; some mice showed pyknotic cells

(arrow) in glomeruli (magnification, 6600). (C, D) RVFV antigens

were detected by IHC in the glomeruli (C) and blood smooth

muscle of interlobular and arcuate arteries (D) of mice infected

with rZH501-M847-A (magnification, 6600). (E) Mice infected

with rZH501-M847-G had encephalitis on day 8 p.i. Viral

antigens were detected in the neurons by IHC (magnification,

6200, inset: 6400). (F) No lesions were found in the kidneys of

mice infected with rZH501-M847-G (magnification,6600). (G, H)

Viral antigens were detected in the smooth muscles of interlobular

and arcuate arteries (H); however antigens were not detected in

the glomeruli of mice infected with rZH501-M847-G (G)

(magnification, 6600).

Found at: doi:10.1371/journal.pone.0009986.s002 (2.55 MB TIF)
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