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Abstract
Gastric intestinal metaplasia (GIM) is a precancerous lesion of gastric cancer (GC) and is considered an irreversible point of
progression for GC.Helicobacter pylori infection can cause GIM, but its eradication still does not reverse the process. Bile reflux is
also a pathogenic factor in GIM and can continuously irritate the gastric mucosa, and bile acids in refluxed fluid have been widely
reported to be associated with GIM. This paper reviews in detail the relationship between bile reflux and GIM and the mechanisms
by which bile acids induce GIM.
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Introduction

According to the latest epidemiological data, the global
incidence and mortality rate of gastric cancer (GC) ranks
fifth and third among malignant tumors, posing a serious
threat to human health.[1] Histologically, GC can be
divided into intestinal-type GC and diffuse-type GC, with
the former predominating in the high-risk population.[2-4]

It is generally accepted that the development of intestinal
GC follows the Correa model: chronic superficial gastritis
– chronic atrophic gastritis – intestinal metaplasia –
dysplasia – GC.[5]Helicobacter pylori (Hp) infection is
considered the main trigger for the development of gastric
intestinal metaplasia (GIM).[6-8] Although eradication of
Hp partially reverses gastric mucosal atrophy and reduces
the risk of GC, it is difficult to reverse GIM.[9-12] This
suggests the existence of other factors that play an
important role in promoting the development of GIM.

Bile acids, products of cholesterol metabolism, are
synthesized in the liver (primary bile acids) and then
transformed by intestinal bacteria (secondary bile
acids).[13-15] The different hydrophobicities of bile acids
cause them to exert different biological effects. Normally,
hydrophobic bile acids are cytotoxic, while hydrophilic
bile acids are cytoprotective.[16-18] Bile acids act as ligands
and exert their physiological effects by binding to nuclear
membrane receptors, such as farnesoid X receptor (FXR),
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vitamin D3 receptor, and G protein-coupled bile acid
receptor (TGR5).[19-24] Recently, growing evidence has
shown that bile reflux, as one of the risk factors for GC, is
related to GIM.[25,26] Therefore, understanding the
mechanism of action of bile acids, important components
of bile, on the gastric mucosa may provide some
innovative views into the pathogenesis of GIM and GC.
In this review, we summarize the role of bile reflux in GIM
and the molecular biological mechanisms of bile acids in
promoting GIM [Figure 1, Table 1], providing ideas for
finding new treatments for GIM.
GIM

As a precancerous lesion and risk factor for GC, GIM is
attributed to the appearance of intestinal lineage cells in
the gastric mucosa in response to factors, such as
continuous inflammatory stimulation and autoantibod-
ies.[27-29] Histologically, GIM is a pathological condition
inwhich the columnar epithelial cells of the gastricmucosa
are replaced by Paneth’s cells, goblet cells, and absorptive
cells.[30,31] According to the type of intestinal marker
enzymes expressed by metaplastic cells, GIM can be
divided into complete and incomplete types.[32,33] Com-
plete GIM (type I), characterized by the presence of
absorptive cells, Paneth’s cells, and goblet cells expressing
sialomucins, is phenotypically similar to that of the small
intestine. Based on the results of high iron diamine/Alcian
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Figure 1: Pathways involved in the induction of GIM by bile acids. ALKBH5: Alkylation repair homolog protein 5; CDX2: Caudal type homeobox 2; CYLD: Cylindromatosis; DKK1: Dickkopf-
related protein 1; FOXD1: Forkhead box D1; FXR: Farnesoid X receptor; GIM: Gastric intestinal metaplasia; HDAC6: Histone deacetylase 6; HNF4a: Hepatocyte nuclear factor 4a; KLF4:
Krüppel-like factors 4; MUC2: Mucin 2; NF-kB: Nuclear factor-kB; SHP: Small heterodimer partner; SNAI2: Snail family transcriptional repressor 2; SOX2: SRY-box transcription factor 2;
TGR5: G protein-coupled bile acid receptor; ZNF333: Zinc finger protein 333.
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blue staining, incomplete GIM, which resembles the
colonic epithelial phenotype can be divided into type II
(characterized by the presence of Paneth cells and
secretion of gastric and intestinal mucins) and type III
(characterized by the absence of Paneth cells and secretion
of sulfomucins).[34-37] You et al[38] reported that GIM
increased the risk of cancer in patients with chronic
gastritis by 17.4- to 29.3-fold and among GIM, incom-
plete GIM (especially type III) has a higher risk of
developing GC.[29,39-42]
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Regarding molecular characteristics, GIM is mainly
associated with abnormal expression of homeodomain
protein CDXs (CDX1 and CDX2), SRY-box transcription
factor 2 (SOX2), Krüppel-like factors 4 (KLF4), andMucin
2 (MUC2). CDX1/2, as intestine-specific transcription
factors,[43] play an essential regulatory role in intestinal
differentiation and development.[44-46] CDX2 not only
directly activates specific genes responsible for regulating
epithelial cell function, such as Lactase-phlorizin hydro-
lase,[47] Calbindin-D9K,[48] and Hephestin[49] but also
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Table 1: Molecular mechanism of GIM induction by bile acids.

Key molecule Bile acid Mechanism Reference

FXR CDCA FXR/miR-92a-1-5p/FOXD1/NF-kB/CDX2 axis [69]

CDCA, DCA FXR/p65 and p50/CDX2 axis [74,103]

CDCA FXR/SHP/NF-kB/CDX2 axis [98]

HNF4a DCA TGR5/ERK1/2 pathway/HNF4a/CDX2 and KLF4 axis [109]

DCA FXR/SNAI2/miR-1/HNF4a-HDAC6 loop/intestinal marker axis [110,113]

SOX2 DCA Reduce the CDX2 promoter DNA methylation level [64]

DCA miR-21/SOX2/CDX2 axis [70]

DKK1 DCA DKK1 expression downregulated by promoter methylation [115]

ALKBH5 CDCA ALKBH5/ZNF333/CYLD/NF-kB/CDX2 axis [119]

ALKBH5: Alkylation repair homolog protein 5; CDCA: Chenodeoxycholic acid; CYLD: Cylindromatosis; DCA: Deoxycholic acid; DKK1: Dickkopf-
related protein 1; FOXD1: Forkhead box D1; FXR: Farnesoid X receptor; GIM: Gastric intestinal metaplasia; HDAC6: Histone deacetylase 6;
HNF4a: Hepatocyte nuclear factor 4a; KLF4: Krüppel-like factors 4; SHP: Small heterodimer partner; SNAI2: Snail family transcriptional repressor 2;
SOX2: SRY-box transcription factor 2; TGR5: G protein-coupled bile acid receptor; ZNF333: Zinc finger protein 333.
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promotes the intestinal phenotype by regulating the
expression of intestine-specific proteins such as sucrase-
isomaltase,[50] MUC2,[51] and KLF4.[52] Homozygous
CDX2 null mice have been reported to be embryonic
lethal, and CDX2± mice survive and develop non-
cancerous polypoid lesions alongside the intestine.[53]

The appearance of intestinal metaplasia induced in both
CDX1 and CDX2 transgenic mice confirms that ectopic
expression of CDXs leads to GIM.[54-56] Mutoh et al[57]

found that transgenic CDX2 was able to bind directly to
the promoter region of CDX1 to induce endogenous
CDX1 expression in mouse intestinal metaplasia tissue,
and Eda et al[58] revealed that CDX2 expression in GIM
precedes CDX1. These results suggest that aberrant
CDX2 expression is the activating factor in the develop-
ment of GIM. In contrast to CDXs, SOX2mainly appears
in organs of foregut origin, such as the pharynx,
esophagus, and stomach, and is not expressed in organs
of hindgut origin, such as intestinal tissue.[59-61] Francis
et al[62] found that knockdown of SOX2 in mouse gastric
mucosal tissues resulted in the loss of forestomach
features, indicating that SOX2 may be involved in
regulating forestomach differentiation. In addition, it
was shown that elevated CDX2 expression in intestinal
metaplasia (IM) tissues was accompanied by a decrease in
SOX2,[63] and inhibition of SOX2 expression could
promote GIM by promoting CDX2 promoter demethyl-
ation.[64] KLF4 is a zinc finger-containing transcription
factor that is highly expressed in a variety of human
tissues, such as the gut and skin,[65] and it can inhibit cell
proliferation and promote cell differentiation.[66,67]

Jonathan et al[68] found a reduction in colonic goblet
cells in KLF4�/� mice, and ultrastructural analysis
showed abnormal cupped cell morphology, while other
epithelial cell types were unaffected, confirming that
KLF4 plays an essential role in colonic epithelial cell
differentiation. KLF4 was strongly positively expressed
in IM tissues in a bile reflux-induced rat Barrett’s
esophagus (BE) model and was significantly elevated in
a bile acid-induced IM cell model.[69-71] Furthermore,
KLF4 induces the expression of MUC2 and reciprocal
transcriptional activation with CDX2 to promote IM.[68]

MUC2, mainly found in the goblet cells of the intestinal
epithelium,[72] is a major component of small and large
intestinal mucus and is involved in the maintenance of
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intestinal homeostasis.[73]In vitro results confirmed that
the expression level of MUC2 was significantly higher in
a bile acid-stimulated IM cell model than in normal cells
and that this process was regulated by CDX2.[74]

Numerous studies have shown that MUC2 expression
levels are significantly elevated in BE and GIM
tissues.[75,76] Overall, the aberrant expression of these
proteins plays a role in the process of GIM, and CDX2
seems to be more critical among them.

Current studies show that GIM is associated with various
factors such as Hp infection,[77] age, sex,[78] family history
of GC,[79] and bile acid reflux.[25,26] Recently, an
increasing number of studies have been conducted to
investigate the mechanism of bile reflux-induced GIM,
and these are reviewed in detail as follows.
Cause and effect of bile reflux and bile acids on GIM

Bile reflux, also known as duodenogastric reflux (DGR), is
the flow of duodenal contents, including bile, pancreatic
juice, and duodenal fluid, back into the stomach. It is
usually caused by gastroduodenal motility disorders
(primary DGR) or altered gastroduodenal anatomy after
surgery (secondary DGR)[80-82] and is considered to be
associated with GC and precancerous lesions. As
summarized in Table 2, Li et al[83] reported that the
detection rate of bile reflux increased with the aggravation
of mucosal lesions and that the degree of reflux increased.
Bile reflux may increase the severity of Hp infection by
promoting its colonization and aggravating gastric
mucosal lesions.[84] Matsuhisa et al[85] found that
although bile reflux was not significantly associated with
atrophic gastritis, high concentrations of bile acids in the
stomach are related to a high risk of GIM. These studies
have demonstrated a strong association between bile
reflux and GIM, and bile acids, as one of the major
components of bile, are thought to play a crucial role in
this process. Themain physiological functions of bile acids
are involved in food digestion and fat solubilization,[86]

and can act as signaling molecules participating in the
regulation of cellular biological functions, such as
epigenetic regulation, nuclear receptor activation, and
metabolism,[87] and interact with the intestinal micro-
biota.[88] As amphiphilic molecules, the biological func-
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Table 2: Summary of the clinical research related to bile reflux, bile acids, and GIM.

Author Year Research topic Participant Testing method Conclusion Reference

Matsuhisa
et al

2013 Bile acid reflux,
atrophic gastritis,
and
intestinal metaplasia

2283 Gastroscopy and
enzymatic
assay

Bile acid concentration
was positively
correlated with the
degree of GIM

[25]

Tatsugami
et al

2012 Bile acids, intestinal
metaplasia, and
gastric carcinogenesis

767 Gastroscopy and
enzymatic
assay

Bile acid promoted the
progression of
mucosal atrophy and
GIM

[26]

Dan Li
et al

2020 GC and bile reflux 30,465 Gastroscopy Bile reflux rate was
increased with the
aggravation of
mucosal lesions

[83]

Matsuhisa
et al

2011 Bile acid reflux,
mucosal atrophy,
and
intestinal metaplasia

294 Gastroscopy and
enzymatic
assay

High concentration of
bile acids was related
to the high risk of GIM

[85]

Nakamura
et al

2001 Bile acid reflux and
intestinal metaplasia

9852 Gastroscopy and
enzymatic
assay

Bile acid concentration
was increased in
intestinal metaplasia
patients

[91]

GC: Gastric cancer; GIM: Gastric intestinal metaplasia.
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tion of bile acids is influenced by their hydrophilicity.
Hydrophilic bile acids such as ursodeoxycholic acid are
important therapeutic agents for bile acid-related dis-
eases.[89] Hydrophobic bile acids such as chenodeox-
ycholic acid (CDCA) and deoxycholic acid (DCA), are
cytotoxic and can induce oxidative stress and deoxyribo-
nucleic acid (DNA) damage, lyse cell membranes, promote
immunosuppression, and induce tissue damage, which are
susceptibility factors for cancer.[90] Matsuhisa et al[25]

collected gastric fluid by gastroscopy followed by an
enzymatic assay of bile acid concentration and found that
the bile acid concentration was positively correlated with
the degree of GIM. The results of Nakamura et al[91] also
confirmed the strong association between bile acids and
GIM. Furthermore, Tatsugami et al[26] not only reported
that bile acids promoted the progression of mucosal
atrophy and GIM, but also revealed that bile acids
collaborated with Hp to regulate the expression of CDX2
in gastric cells. Given the close association of bile acids
with GIM, Li et al[69] stimulated GES-1, a normal gastric
epithelial cell, with various bile acids and found that
CDCA and DCA were able to significantly upregulate the
expression of intestinal markers such as CDX2, KLF4,
MUC2, and VILLIN at the mRNA and protein levels,
confirming that bile acid stimulation induced a GIM
phenotype in gastric epithelial cells. In the animal model of
bile acid-induced GIM, after 45 days of bile acid gavage
treatment, Yu et al[74] found a significant increase in the
expression levels of the enteric markers CDX2 andMUC2
in the gastric mucosa of mice exposed to DCA, CDCA, or
a mixture of DCA and CDCA, further confirming the
important role of bile acid in the induction of GIM.

Therefore, it is particularly important to clarify the
detailed molecular mechanisms underlying the bile acid-
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induced GIM phenotype for the prevention and treatment
of GIM.
Molecular mechanism of GIM induction by bile acids

FXR in bile acid-induced GIM

FXR is a transcription factor of the nuclear receptor
superfamily and a bile acid-binding receptor.[20,92] It is not
only a potent regulator of bile acid homeostasis, lipid
metabolism, and the inflammatory response but also plays
an important role in immune regulation, cell proliferation,
and differentiation,[93,94] and is associated with various
cancers and Barrett’s esophagus.[95,96] FXR is mainly
highly expressed in the liver, intestine, kidney, and adrenal
glands, and is less expressed in normal gastric mucosa.[93]

Nevertheless, Shi et al[97] and Zhou et al[98] found that
FXR expression was significantly increased in GIM
tissues. Recent studies have shown that FXR can be
involved in the regulation of bile acid-induced GIM
through microRNA (miRNA). miRNAs are endogenous
RNAs of approximately 22 nucleotides (nts) that can
affect the expression of proteins by directly binding to
complementary sequences in the 3’-untranslated regions
(3’-UTRs) of target mRNAs, causing degradation or
translational repression of the target mRNA.[99] Li et al[69]

found that the expression of miR-92a-1-5p and CDX2
was upregulated in GIM tissues, whereas the expression of
Forkhead box D1 (FOXD1) was downregulated. Given
that the miR-17–92 family plays a key role in GC and
IM,[100] they treated GES-1 cells with CDCA and
GW4064, an agonist of FXR, consistently found signifi-
cant upregulation of miR-92a-1-5p and CDX2 and
downregulation of FOXD1 at the RNA level. miR-92a-
1-5p has a binding site in the 3’-UTR of FOXD1, thereby
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reducing FOXD1 expression. FOXD1, as a molecule that
plays a role in multiple cancers, can inhibit Nuclear factor-
kB (NF-kB) activation,[101,102] and CDX2 expression was
positively regulated by NF-kB in GIM caused by Hp
infection. Li et al[69] first validated the mechanism by
which the FXR/miR-92a-1-5p/FOXD1/NF-kB/CDX2 ax-
is promotes GIM in a bile acid-induced GIM cell model.
Similarly, Yu et al[74] and Li et al[103] also demonstrated
that DCA and CDCA can promote GIM by upregulating
the expression of intestinal markers such as CDX2,
through the FXR/NF-kB signaling pathway. Zhou et al[98]

found that FXR could directly induce the expression of a
small heterodimer partner (SHP), and the FXR-induced
stimulation of CDX2 upregulation is dependent on SHP to
promote NF-kB activity.
Hepatocyte nuclear factor 4a (HNF4a) in bile acid-induced
GIM

HNF4a, a nuclear transcription factor, is involved in
various physiological processes, such as gastrointestinal
tract development, hepatocyte differentiation, and glyco-
lipid metabolism.[104] In the gastrointestinal tract, HNF4a
is essential for goblet cell maturation and regulation of
normal colonic function.[105] Aberrant expression of
HNF4a is involved in the progression of colon and
GCs.[106,107] HNF4a is normally not expressed in the
esophagus but is upregulated in BEandGIM tissues.[108]Ni
et al[109] found that HNF4a, the intestinal markers CDX2,
and KLF4, and the bile acid receptor TGR5 increased in
parallel during GIM progression and that the HNF4a
positive rate was up to 100% in severe GIM endoscopic
biopsy specimens. Luciferase reporter gene analysis and
ChIP assays confirmed that HNF4a binds to the promoter
regions of CDX2 and KLF4, promoting the expression of
both. Upstream, bile acid stimulation can activate the
ERK1/2 pathway via TGR5, which in turn induces HNF4a
expression. Based on that Ni et al demonstrated the
important role of HNF4a in bile acid-induced GIM at
the cellular level, Wang et al[110] further constructed
Rosa26Hnf4a transgenic mice and found significant struc-
tural abnormalities in gastric tissues and increasedmucin in
gastric cells in the transgenicmice.Moreover, they identified
anotheraberrantlyexpressedprotein inGIMtissue,Histone
deacetylase 6 (HDAC6), which not only modifies histones
but also targets a number of non-histone proteins, and has
been reported to promoteGCprogression.[111,112] HDAC6
can be transcriptionally activated by HNF4a and can
promote the expression of HNF4a, thus forming an
HDAC6/HNF4a loop. miR-1, which was significantly
downregulated inGIM tissues, could bind to the 3’-UTR of
HDAC6andHNF4a. In another studybyWang et al,[113] it
was shownthatafterDCAstimulation,FXRexpressionwas
upregulated and further activated SNAI2 (Snail family
transcriptional repressor 2), which transcriptionally re-
pressed miR-1 expression. Eventually, the FXR/SNAI2/
miR-1/HNF4a-HDAC6 loop/intestinal marker axis was
formed in response to bile acid stimulation.

Methylation in bile acid-induced GIM

DNA methylation plays a vital role in various biological
processes, and gene-related DNAmethylation can occur in
1668
promoters and usually represses gene transcription.[114]

Niu et al[64] found that reduced SOX2 expression during
GIM progression promoted CDX2 expression by reducing
the level of DNA methylation in the CDX2 promoter
region. Yuan et al[70] also demonstrated that miR-21
inhibited SOX2 expression, resulting in the opposite
expression patterns of CDX2 and SOX2 in bile acid-
stimulated gastric cells. Dickkopf-related protein 1
(DKK1), known as an inhibitor of the Wnt signaling
pathway, plays an important role in the progression of
GC. Lu et al[115] observed that in bile acid-induced GIM,
DKK1 expression was reduced and the methylation level
of the DKK1 promoter region was increased, resulting in
upregulated expression of intestinal markers in GIM
tissues.

RNA methylation refers to the addition of methyl groups
at different positions in RNA, such as m6A methylation,
which is considered the most common methylation
modification occurring on the nucleobase.[116,117]

ALKBH5 (Alkylation repair homolog protein 5) is a
major demethylase that reverses m6A methylation mod-
ifications, while YTHDF2 (YTHN6-Methyladenosine
RNA binding protein 2) recognizes specific m6A sites
and accelerates the degradation of m6A-modified
RNA.[118] Yue et al[119] found that ALKBH5 upregulation
increased the expression of ZNF333 (zinc finger protein
333) in GIM tissues as well as in bile acid-treated gastric
cell lines by eliminating m6A-YTHDF2-dependent mRNA
degradation. Then, ZNF333 transcriptionally represses
Cylindromatosis expression and indirectly activates NF-
kB signaling pathway, which in turn promotes CDX2
expression. In addition, p65, a key transcription factor of
the NF-kB signaling pathway, promotes ALKBH5 expres-
sion by binding to the ALKBH5 promoter, thus forming a
feed-forward loop.
Potential therapeutic targets for bile acid-induced GIM

Although bile acids have been shown to play an important
role in the induction of GIM, there is a relative lack of
research addressing whether key molecules in the mecha-
nism of action of bile acids can serve as therapeutic targets
for GIM. Resveratrol is a drug with potential antitumor
effects,[120] Lu et al[121] found that resveratrol could
activate FOXO4 by increasing FOXO4 phosphorylation
via the PI3K/AKT pathway, then inhibited CDCA-induced
GIMmarker expression, and has a potential reversal effect
on GIM, especially GIM caused by bile acid reflux. There
may be other molecules or signaling pathways in the
induction of GIM by bile acids that could be potential
targets for the treatment of GIM, but further exploration
is needed.
Conclusions and perspectives

As one of the precancerous lesions and risk factors for GC,
the relationship between intestinal metaplasia and bile
reflux has been widely reported and recognized. We
suggest that the role of bile reflux in the GIM process
explain why GIM remains difficult to reverse after Hp
eradication. Bile reflux-induced GIM is mainly mediated
by bile acids and regulated by several critical molecules
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and signaling pathways, including FXR, TGR5, HNF4a,
microRNAs, methylation modifications, and the NF-kB
pathway. However, given that existing studies have only
explored the mechanism of single bile acid in the induction
of the GIM phenotype, they are also somewhat flawed.
Therefore, more in-depth studies should be conducted to
determine how the bile acid profile of gastric juice changes
in patients with GIM and the role of other bile acids in
promoting the process of GIM. Altogether, the study of
bile acid-induced GIM is of great significance, not only
suggesting the need for special attention to the occurrence
of GIM and GC events in patients with bile reflux but also
providing many possible therapeutic targets for the
treatment of GIM.
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