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Abstract: Urban noise causes a variety of health problems, and its prevention and control have
thus become an important research topic in urban governance. Although existing literature is fairly
comprehensive in revealing the physical noise patterns, it lacks the concern of people’s perceived
seriousness, especially at the macroscopic, i.e., citywide scale. In this paper, we borrow from the
“exposure-perception-behavior” theory in environmental psychology, and propose an analytical
framework for diagnosing the urban noise problem that integrates the Infrastructural and Social
Sensing perspectives. Utilizing noise monitoring data that fills the spatiotemporal granularity gaps
of official noise monitoring, as well as the “12345” urban complaint hotline records which serve as
a proxy for residents’ perceived noise levels, we empirically examine the mechanisms for physical
magnitude and perceived seriousness of urban noise, respectively, by taking the Jiangbei District of
Ningbo City, China as an example. Results show that the existence of perceptual bias and behavioral
preference effects did shape people’s perceived noise problem map that is vastly different from that of
the physical noise magnitude, in which the semantics of urban places, temporal rhythms of life, and
population demographics significantly influenced people’s tolerance of noise. We conclude the paper
with suggestions on updating the existing National Standard for urban noise regulation to reflect the
perceptual aspect, and also methodological discussions on possible ways to recognize and utilize the
perceptual bias in social-sensing big-data to better accommodate urban governance.

Keywords: urban noise; infrastructure sensing; social sensing; acoustic environmental quality stan-
dard; “high-frequency” city; Ningbo

1. Introduction

Noise poses numerous threats to people’s physical and psychological health and is an
intrinsic part of environmental pollution [1]. The problem of noise pollution is particularly
acute in cities of developing countries due to their limited urban governance capacity [2–5].
In China, for example, the 2013 China Ecological Environment Survey reported that noise is
one of the four major pollutants in China [6]. The compliance rate to the National Acoustic
Environmental Quality Standard (GB 3096-2008) [7] (National Standard henceforth) of urban
noise has been low. In 2020, noise complaints accounted for 41.2% of all environmental-
problem-related public complaints, assuming a second place among all pollutant sources [8].
The various negative effects of urban noise have prompted extensive research in the field of
built environment. Currently, studies on the noise patterns of the built environment have
become fairly established at the mesoscopic (blocks, plazas, and parks) and microscopic
(buildings, indoor environments) scales [9,10]. In terms of noise governance, there is also
an abundance of studies on noise reduction technologies, management strategies, and noise
source control at small and medium scales [11–14]. Based on these academic progresses,
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the International Organization for Standardization (ISO) has formally defined the concept
of the soundscape [15], and some cities in advanced economies have even established
institutionalized environmental noise control programs through soundscape-mapping
tools such as the acoustic map [16,17]. However, at the macroscopic, i.e., citywide scale,
there is still a lack of research on fine-granularity spatiotemporal patterns, occurrence
mechanisms, and governance strategies of the noise problem [13,18–20], and it is again
especially so in developing countries [3].

This situation is largely caused by the lack of empirical observation data on urban
noise at the appropriate spatiotemporal granularity. Traditional urban noise studies tend
to rely on direct monitoring of noise as the data source. In other words, they follow an
infrastructure-sensing approach. Admittedly, direct monitoring instruments can objectively
reflect the magnitude of noise. China’s National Standard on urban acoustic environmental
quality (Table A1 in Appendix A), like those of other countries and international organiza-
tions [15], is based on the physical magnitude of noise. However, one prominent difficulty
in the implementation of this standard lies in the noise monitoring itself. Noise monitoring
data are incomplete in most Chinese cities in spatiotemporal granularity terms, which
means (1) the small number of sampling points, which causes the severe lack of coverage
of urban space, and (2) the fixed sampling time, which lacks reflection of the temporal
variation of noise magnitude. Taken together, existing noise monitoring data are sparse in
space and time, thus reflecting a rather coarse-grained and static urban noise landscape.
However, modern cities bear a fast life rhythm, which requires the “high-frequency”, or
spatiotemporally fine-grained observation of the city for researchers [21], as in the case
of noise research. As a result, the coarse-grained, static noise landscape described above
is not sufficient to reflect the full picture of urban noise, and is therefore inadequate to
support the governance of urban noise in a precise and responsive manner. Although
scholars have developed methods to infer overall, dynamic noise levels from local, static
data [22], such inference is not a substitute for observation, and is often difficult to validate.
Overall, considering its extensive requirements in terms of equipment, manpower, and
other inputs, empirical observation of urban noise at high spatiotemporal granularities is
still a challenging task.

Notwithstanding the difficulties in dynamically monitoring urban noise, noise control
under the urban governance perspective does not necessarily require the extreme ideal of
real-time noise monitoring. This is because the objective of urban governance is people’s
subjective satisfaction of the acoustic environment, which is not the same thing as the
objective, physical magnitude of noise. Indeed, stemming from the “exposure-perception-
behavior” framework in environmental psychology [23], we can establish a framework
for conceptualizing the urban noise problem from the governance perspective (Figure 1),
which includes two stages. The first is a physical stage, where the noise generated by
certain sound sources is transmitted to various places through certain pathways and a
distance-decay process. After entering the human ear, there comes the second stage, a
psychological-behavioral one, where people sense to form their perception of the noise,
and some of them may decide to complain about it. For the second stage, studies have
shown that different people have different “thresholds” for the noise to trigger negative
feelings, and that people’s tolerance of noise (also referred to as “annoyance”) is not simply
linearly related to physical magnitude of noise [24–27]. Rather, people’s perception of
noise are influenced by the environment [28,29], place semantics [14,30,31], and their own
demographic characteristics [32,33] in complex ways. Apparently, only when people find it
intolerable to abide the noise will they choose to take actions, or putting it another way,
to complain.
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Figure 1. A conceptual framework for understanding the urban noise problem.

Technically, in the framework of Figure 1, direct observation of fine-granularity noise
magnitude when reaching the human ear (Y1) is difficult to obtain; direct observation of
people’s perception of noise (Y2), however, is even more so as it is a state in the human
mind and is impossible to “read”. These challenges make it difficult for researchers to
infer people’s preference or tolerance for noise (Y3) from the chain of analysis in Figure 1.
Nevertheless, the advance of Information and Communication Technology (ICT) and other
technologies in the field of urban governance in recent years has opened up new opportu-
nities to study the urban noise problem. Supported by new data sources such as Internet
User-generated Contents (UGC), or records in e-government platforms, researchers are
now able to utilize proxy data on people’s stated preferences on urban events. In the case
of urban noise, the “12345” urban complaint hotline, which is commonly established in
Chinese cities, is an excellent proxy to observe people’s noise preferences. The “12345”
hotline is roughly equivalent to the “311” hotline in United States cities, through which
citizens can complain about various problems in everyday urban lives, and noise is one
of the most complained issues on the hotline. Therefore, through the noise complaint
records on the “12345” hotline, we can observe people’s expression of noise preference.
Methodologically, such observation is a reflection of the emerging “Social Sensing” ap-
proach, where, with the aid of the ICT, each person can act as a sensor of social events,
generating data with individual markers and spatiotemporal semantic information anytime
and anywhere [34,35]. At the collective level, we can use Social Sensing data to reveal the
spatiotemporal patterns of the observed objects for this paper, noise, and investigate the
mechanisms by which they occur [36]. Such analysis helps us to understand the rationale
of urban residents complaining about noise. And further, by comparing this rationale
with the physical occurrence mechanisms of noise generation and transmission, we can
better understand the relationship between physical and psychological processes of the
noise problem, and develop effective urban noise control policies, which would be of great
importance in urban environmental governance.

In summary, we conduct noise monitoring with improved spatiotemporal granularity
in this study, and compare it with noise complaint records from the “12345” hotline data,
which allows us to investigate the following two research questions:

(1) What are the fine-grained spatiotemporal patterns of objective, physical magnitude of
noise, as well as the residents’ subjectively perceived seriousness of noise in typical
urban settings? And what similarities and differences the two pictures show?

(2) What are the mechanisms that gives rise to the physical and perceptual noise land-
scape, respectively? And what similarities and differences the two mechanisms have?

In this paper, we take the Jiangbei district of Ningbo City as an example, and examine
the above questions. The rest of the paper is organized as follows. Section 2 describes
the methods and data. Section 3 presents the empirical findings on the spatiotemporal
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patterns and mechanisms of the monitored physical magnitude of noise and the perceived
seriousness of noise. We conclude the paper in Section 4 with a summarizing conclusion,
and discussions on the methodological and practical implications of the research.

2. Materials and Methods
2.1. Study Area and Data Sources
2.1.1. Study Area

Jiangbei District, Ningbo City, China, was selected as the case city for this study
(Figure 2). Specifically, we chose the urban and peri-urban areas with a high concentration
of population in the district, i.e., the area east of the bypass highway as the boundary of
the study area. The area is 102 km2 in size and with a population of about 400,000 by the
end of 2019. Ningbo is an important port city in East China, and the study area covers the
central business district, the old town area, and an entire urban-rural gradient, where major
types of urban noise environments are included, making the area a representative case for
studying the urban noise problem.
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Figure 2. Study area.

2.1.2. The “12345” Data

The “12345” urban problem complaint hotline is an important part of China’s digital
urban governance system, providing a bottom-up feedback channel for addressing urban
problems of all sorts. The complaint records in the study area were provided by the Ningbo
Bureau of Urban Management for the period from 1 January 2017 to 31 July 2019, and the
sample size is 1116. The record data include the time, location, content, handling status, and
handling government department of the complaints, and were anonymized as necessary
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before being provided to the researcher. A sample of typical noise complaint records is
shown in Table A2 in Appendix B. According to the noise types involved in the complaints,
the complaint records can be divided into two categories: everyday life-related noise (such
as dog barking, noise from streetside restaurants, loud advertisement broadcasting, traffic
noise, etc.), and construction-related noise.

2.1.3. Noise Magnitude Data Acquisition and Processing

We obtained the noise monitoring data from government information disclosure by the
Ningbo Ecological Environment Bureau. The data include two types of records: (1) noise
monitoring data for the acoustic environment functional areas in the study area. This
record has only one sample point in the whole area, and is continuously monitored with
the fixed-point monitoring method as stipulated by the National Acoustic Environmental
Quality Standard, and the data obtained are the average day and night equivalent sound
level values for the whole year of 2019; (2) the regional acoustic environment monitoring
data in the study area, which contains 23 monitoring points. For each monitoring point,
one day (non-holiday) which meets the general outdoor noise monitoring conditions is
chosen to conduct a 10 min noise level monitoring, and the monitoring is conducted once
a year.

Since the above officially provided noise monitoring sampling is very sparse in both
spatial and temporal terms, in this study we conducted field noise monitoring under
standard measurement conditions to obtain noise magnitude data at higher spatiotemporal
granularity. For the entire study area, we first designated a regular grid system of 1 × 1 km
(see below for details), and then determined the number of monitoring points needed
within each grid through stratified sampling based on the number and distribution of the
“12345” noise complaint records in each grid, such that the ratio of number of complaint
records to the number of noise monitoring points to be 10:1. Given the number of sampling
points (107 in total), random points were generated as locations for noise monitoring
(Figure 3a). We used the AWA6228+ sound level meter for sound monitoring, which
complies the National Standards of GB/T3785-2010 (IEC61672) Level 1 and GB/T3241-2010
(IEC61260) Level 1; and used the AWA6201 sound calibrator, which complies the National
Standard GB/T 15173-2010 Level 1 [37]. All instruments, as well as the monitoring methods
used were in accordance with the specifications of the National Standard, and the latitude
and longitude of each sampling point were recorded at the same time with a portable
Global Navigation Satellite System (GNSS) device. The noise monitoring records at each
sampling point included the sound pressure LA, which were recorded once per second, and
were converted to equivalent continuous A-weighted sound pressure level (Laeq) according
to the method in the National Standard [7]. The measurement reflects the energy average of
A sound level (in dB) during the specified measurement time T. Its calculation formula is:

Laeq = 10lg
(

1
T
∗
∫ T

0
100.1LAdt

)
The noise measurements obtained from the above process were imported into ESRI

ArcGIS (ESRI, Redlands, CA, USA) together with the official data of 23 effective regional
acoustic environment monitoring points, and the distribution map of noise magnitude were
obtained by inverse distance weight interpolation. The principle of the inverse distance
weight interpolation method is most consistent with the attenuation characteristics of
noise transmission, i.e., when noise propagates in the atmosphere, the magnitude decays
inversely proportional to the distance squared as the propagation distance increases, and
therefore most noise studies have adopted this interpolation method [2,38].
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2.1.4. Other Data Sources and Calculation of Indicators

(1) Land use data

The land use data (for the year of 2018) of the study area used in this study were
obtained from the Open Data of Tsinghua University (EULUC-China). This data has an
average precision of 65.7% and a maximum precision of 82.9% on the primary classification
and an average precision of 60.2% and a maximum precision of 80.0% on the secondary
classification, and thus has a high degree of confidence for research purposes [39]. We
manually corrected this data with the status quo satellite maps, and finally obtained a land
use map including 6 primary land use categories and 13 secondary categories (Table A4 in
Appendix D).

(2) POI data, and the city functional mixture index calculation

The POI (Point of Interest) data used in this study were obtained from the online map
service Gaode Maps (Available online: www.amap.com; accessed on 7 September 2019),
which classifies the POIs into eight functional categories, namely, food and beverage ser-
vices, leisure and entertainment services, financial services, government and administration
agencies, office buildings, shopping services, tourist attractions, and automobile services.
Besides, in order to examine the relationship between street vending activities which might
inflict everyday life-related noise complaints, we also extracted the complaint records from
the “12345” hotline about street vending as a supplement to the POI data.

Further, to reflect the semantic differences of urban places, this study introduces an
urban functional mixture index based on land use or POI composition of a place. The index
is calculated based on the principle of entropy in information theory, and its value is related
to the total number of land use or POI types in a grid and the percentage of each type. The
calculation formula is as follows.

S = −
n

∑
i=1

Pi log10 Pi

where S is the information entropy, which represents the degree of functional mixture of
an urban place. The higher the entropy value, the higher the degree of mixing of urban
functions [40]. Taking POI as an example, the higher the entropy value of POI, the more
diverse and complete the types of services that this grid can provide, and the smaller the
possibility that the grid is dominated by a certain POI type; n denotes the number of land
use or POI types in a certain grid; Pi denotes the proportion of a certain type among all
types. Based on spatial statistics of each grid with GIS tools, n and Pi can be obtained to
calculate S.

(3) Mobile phone signaling data

The mobile phone signaling data used in this study were provided by the telecom
operator China Unicom. Mobile phone signaling data record cell phone users’ power on,
power off, calling, being called, sending and receiving SMS, switching base stations, and
periodic location update events. The data provided to us contain anonymized user IDs, the
time of the above events, the base station number where they were located at that time, and
the geographic coordinates of the events, which were recorded according to the base station
triangulation method with an accuracy of about 200 m. China Unicom is one of the four
major operators in China. With a market share of 21%, it constitutes a large sample of the
entire population; at the same time, the data provider has already performed resampling
of the data for correction of potential bias caused by people without cell phones, such as
children, so its mobile phone signaling data can be considered as an unbiased sampling of
the population and can be used to describe the spatiotemporal characteristics of residents’
activities such as living, working, and recreation [41]. In this study, the basic demographic
and behavioral characteristics of local residents in the study area were profiled by three
types of stay and five age groups as provided by the data. The three stay types include
residence, work, and visiting, and their identification is based on the logic of the users’

www.amap.com
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common life rhythms (Table A3 in Appendix C). Among them, the residence and work
tags are determined based on the nighttime and daytime stay patterns of cell phone users
over a long period of time, with each user having at most one residence tag and one work
tag. The visiting tag, on the contrary, is recorded as a visit as long as the user has a stay of
more than 30 min at a location, with no upper limit on the number of visits. To reflect the
necessary stable spatiotemporal patterns, one month of user data was used for the above
stay type tagging in this study.

2.1.5. Analysis Grids

This spatiotemporal analysis in this study is based on a regular grid. First, a prelimi-
nary grid division of 1 × 1 km was carried out for the study area. However, comparing this
grid with the “12345” noise complaint records, it can be found that its spatial granularity is
too coarse to reflect the spatial heterogeneity at a smaller scale in some areas with intensive
complaints. Therefore, a finer granularity of the grid is necessary. However, there are
areas with rather low density of human activities such as large agricultural fields at some
marginal locations in the study area, and such areas are not suitable for further spatial
division because it would unnecessarily obscure the focus of the analysis and would also
increase the zero values in the final analysis data, which would have side impacts on the
accuracy of the parameter estimation of the statistical model. We believe that since people
are the main subject of urban noise problems, the appropriate overall study area is the area
of the city with human activities, and therefore samples with a significant lack of human
activities should be avoided as much as possible to avoid sampling bias. Based on the
above considerations, we subdivided the grid with ≥4 complaint points on the 1 × 1 km
grid into a 500 × 500 m grid. The obtained analysis grids are shown in Figure 3b, which
yield a total of 278 grids as the basic spatial analysis units of this study. It should be noted
that in the statistical modeling later on, we excluded the grids with zero POI and complaint
records, so a total of 210 analysis grids were finally involved in the statistical modeling.

2.2. Analysis of Spatiotemporal Patterns of Noise Magnitude and Complaints

According to the time tag of the “12345” complaint records, we can statistically get the
changes of the volume of the “12345” complaints in different time periods. The annual day
and night equivalent sound level averages provided by the Ningbo municipal government
present the continuously monitored noise magnitudes throughout the year. The records
are compared with the number of complaints, which reflect people’s noise preferences
at respective time periods. Similarly, comparing the interpolated noise magnitude map
and the noise complaint kernel density map, we can examine people’s noise complaint
preferences in different locations. In general, four scenarios exist in terms of the relationship
between noise magnitude and noise complaints in both spatial and temporal senses: (1) high
noise magnitude, high complaint volume; (2) high noise magnitude, low complaint volume;
(3) low noise magnitude, high complaint volume; and (4) low noise magnitude, low
complaint volume. Among them, of particular importance are scenarios (2) and (3), as both
appear counter-intuitive.

2.3. Explanatory Model for Physical Noise Levels

We then constructed the model for explaining the physical noise magnitudes with
built and social environment factors. The dependent variable in the model is the average
of all monitored noise magnitudes during the study period, where each 10 min sound
monitoring result at a sample site was converted to an Laeq value following the method
in the National Standard [7]. The rationale for selecting independent variables is based on
the basic principles of acoustics, i.e., considering both noise source and transmission path
factors [29]. Nevertheless, in the absence of direct noise source observation, we opt to
use proxies for both noise source and transmission path feature as the independent vari-
ables, including population density, built-environment features, and urban place semantics
(Table 1). As the dependent variable and all independent variables are continuous, we fit
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the model using multiple linear regression, a common practice in most literature on the
acoustic environment [42,43]. The model takes the form of:

y = β0 + β1x1 + . . . + βkxk + ε

where x1, . . . , xk are the independent variables; y is the dependent variable; β0, . . . , βk are
the regression coefficients; and ε is the error term.

Table 1. Variables in the physical noise magnitudes model.

Variable Category Description Max Min Average Var

Population density
Population as recorded in the

mobile phone signaling
records/grid area

0.3118 0.0022 0.0359 0.0013

Road density Road land area/grid area 0.40186 0 0.11873 0.00637
Urban functional

mixture level
POI-based urban functional

mixture index 1.19600 0 0.16200 0.05090

POIs

Food and beverage services
POI count/grid area 0.21954 0 0.01369 0.00103

Shopping service POI
count/grid area 0.30000 0 0.02816 0.00271

Office building POI
count/grid area 0.02800 0 0.00088 0.00001

Leisure and entertainment
services POI count/grid area 0.20538 0 0.01014 0.00050

Government and
administration agencies POI

count/Grid area
0.10800 0 0.00392 0.00015

Financial services POI
count/grid area 0.04400 0 0.00302 0.00004

Tourist attractions POI
count/grid area 0.05732 0 0.00116 0.00002

Automobile services POI
count/grid area 0.0675 0 0.0078 0.0001

Street vending POI
count/grid area 0.31179 0.00218 0.03588 0.00132

2.4. Explanatory Model for Perceived Noise Levels (Complaints)

For the explanatory model for people’s perceived noise levels as proxied by complaint
records, we first need to limit the scope of the model. On the one hand, compared to the
irregularly generated construction noise, the everyday life-related type of noise is more
structural in nature for cities. On the other hand, due to limitations in research conditions,
we only monitored the noise magnitudes during the daytime, and thus a meaningful
comparison can only be conducted within the time period. On balance, we only chose the
everyday life-related type of noise complaints as the dependent variable, and constructed
an explanatory model for the daytime, i.e., the period from 6:00 to 19:00. In general,
this time period includes a variety of everyday life states such as people’s commuting,
social out, and home stay, which cover typical occasions when the everyday life-related
type noise complaints may occur, and thus can generally reflect the long-term, structural
characteristics of people’s perception and preference statement (complaint-making) of
urban noise.

The independent variables in the model include the physical noise magnitude, as well
as various demographic and urban place semantic factors that may affect the two phases of
noise perception and behavior in Figure 1. They include land use, POI, functional mixture
indices of urban places, and demographics of the working, living, and visiting populations
as recorded in the mobile phone signaling data (Table 2). Among them, the land use and
POI factors reflect the semantics of urban places at different spatial granularities, and we
also added the functional mixture indices to reflect the diversity of place semantics. For
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similar considerations, the various types of people under the three activity labels are also
included to reflect ways people using urban places.

Table 2. Variables in the Perceived Noise Levels Model.

Variable Type Variable Code Min Max Average Var

Physical noise magnitude Equivalent sound level Laeq 53.12067 72.76729 60.93731 5.60515

Place semantics

Percentage of residential land res101 0.00000 0.96923 0.29357 0.09088
Percentage of office building land offices201 0.00000 0.29002 0.01030 0.00148

Percentage of markets and shopping
centers land ma202 0.00000 0.60756 0.02508 0.00795

Percentage of industrial land indus301 0.00000 0.99219 0.21198 0.09322
Percentage of bus station land station402 0.00000 0.15977 0.00101 0.00013
Percentage of government and

administrative land gov501 0.00000 0.29840 0.01330 0.00220

Percentage of education and research land edu502 0.00000 0.94566 0.05536 0.02634
Percentage of medical land hospital503 0.00000 0.29332 0.00393 0.00063

Percentage of cultural and sports land spo_cul504 0.00000 0.36356 0.01671 0.00353
Percentage open space land openspace505 0.00000 0.68544 0.05103 0.01493

Percentage of agricultural land farm601 0.00000 0.99009 0.13975 0.08121
Percentage of water bodies water602 0.00000 0.73339 0.05832 0.01888

Functional mixture index- land use S_landuse 0.01984 0.79269 0.38445 0.02942

Demographics—residents

Percentage under 18 years old jz18 0.00676 0.28462 0.03651 0.00077
Percentage 19–34 years old jz19_34 0.20982 0.84677 0.41267 0.00982
Percentage 35–49 years old jz35_49 0.06048 0.44774 0.31169 0.00304
Percentage 50–64 years old jz50_64 0.04805 0.35027 0.18848 0.00255

Percentage 65 years old and above jz65 0.00314 0.12500 0.05065 0.00065
Residential population mixture index jz_S 0.39064 0.72707 0.64646 0.00335

Demographics—working
population

Percentage under 18 years old gz18 0.00000 0.21769 0.02571 0.00052
Percentage 19–34 years old gz19_34 0.15584 0.60222 0.41026 0.00741
Percentage 35–49 years old gz35_49 0.21088 0.51485 0.34679 0.00208
Percentage 50–64 years old gz50_65 0.07477 0.35714 0.18677 0.00288

Percentage 65 years old and above gz65 0.00000 0.09434 0.03047 0.00041
Working population mixture index gz_S 0.42823 0.59975 0.52681 0.00119

Demographics—visiting
population

Percentage under 18 years old df18 0.01170 0.05822 0.02345 0.00005
Percentage 19–34 years old df19_34 0.31643 0.55981 0.42250 0.00162
Percentage 35–49 years old df35_49 0.27330 0.44082 0.35304 0.00045
Percentage 50–64 years old df50_65 0.08791 0.24413 0.17039 0.00063

Percentage 65 years old and above df65 0.00935 0.06377 0.03062 0.00012
Visiting population mixture index df_S 0.48250 0.58399 0.53014 0.00036

We used the number of noise complaints within each analysis grid as the dependent
variable. The histogram of the variable for the 210 samples (Figure 3c) demonstrated that
a large percentage of these observation values are 0, where no noise complaints occur in
the corresponding grids. The many 0′s in the dependent variables means that the variable
is truncated at 0, which requires the use of the Tobit model to address the truncated data.
When the left-hand side constrained point is 0 and there is no right-hand side constrained
point, the Tobit model introduces the latent variable y∗, which is linearly related to the
independent variable. Since we can only observe in the sample y = max(0, y∗), the Tobit
model is set as follows:

y∗i = X′i β + ui

ui ∼ N
(

0,σ2
)

yi =

{
y∗i , | y∗i > 0
0, | y∗i ≤ 0

When the latent variable y∗ is less than or equal to 0, the dependent variable y is
equal to 0; when y∗ is greater than 0, y is equal to y∗. Meanwhile, we assume that the
perturbation term ui follows normal distribution with a mean of 0 and variance of σ2. For
the case in this study, this model can be interpreted as the non-zero observations in the
sample are the grids where complaints have already occurred, i.e., yi = y∗i > 0. However,
this does not mean that noise has no effect on the grids where complaints have not yet
occurred, i.e., yi = 0,

(
y∗i ≤ 0

)
. Lastly, for parameter estimation, since the commonly used

OLS estimation method is a linear regression of the whole sample, where the nonlinear
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perturbation term will be included, and will lead to inaccurate parameter estimation, the
Maximum Likelihood Estimation (MLE) method is used to estimate the model parameters.
All models are fit with the Stata statistical package.

3. Results
3.1. Spatiotemporal Patterns of Physical Noise Magnitude and Noise Complaints

The year-round mean diurnal equivalent sound levels in the study area were 55.9 dB
during the day (07–21 h) and 51.3 dB at night (22–06 h the next day). However, the number
of the “12345” noise complaints was much higher at night than during the day, 310 and
768, respectively, showing an opposite correlation with the physical noise magnitudes.

An examination of the number of different types of noise complaints during the day
shows more details of its temporal patterns (Figure 4d). On the one hand, there are more
everyday life-related noise complaints than construction-related ones during the daytime.
On the other hand, although there is a small increase in the everyday life-related noise com-
plaints at night in absolute terms, there are far more construction-related noise complaints
than everyday life-related ones at night. In particular, the daily peak of complaints after
22:00 is overwhelmingly contributed by construction-related noise complaints.
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We then consider the spatial patterns of physical noise magnitudes and noise com-
plaints. Figure 4a,b compares the physical noise environment map (a) and the noise
complaint map of the everyday life-related type of noise (b). It is obvious that the hotspot
areas of the two have significantly different distribution patterns. In some areas such as
C, D, E, and F which are marked with black circles, noise magnitudes are high, and noise
complaints are also frequent, such that the two show some form of positive correlation.
However, in other places, such as areas A, B, and G which are marked with red circles,
it can be seen that their noise magnitudes and complaint numbers do not seem to show
positive correlations. Particularly, both areas A and B have very low noise levels, yet they
have intensive complaints. On the contrary, the number of complaints in area G, which has
the highest physical level of noise in the whole study area, does not seem to be high.

Similarly, Figure 4a,c compares the physical noise environment map (a) and the noise
complaint map of the construction-related type of noise (c). The number of complaints in the
areas within the black circles, such as area E, is roughly positively correlated with physical
noise levels. This is intuitively understandable as this old town area has been undergoing
urban revitalization, and the noise from the large building and metro construction sites
may have annoyed people nearby. In contrast, areas A, B and D are distributed with
industrial parks, small factories, etc., which tend to produce long-time noise, and have
indeed generated a high volume of complaints. However, areas C and F, marked with
red circles, have lower noise levels, yet there are also a large number of complaints for
construction noise. Among them, area C is largely a residential area, while area F is a
university town.

3.2. Mechanisms for the Forming of the Physical Noise Environment

The results of the model for the physical noise environment are shown in Table 3. The
model is statistically valid overall (F = 13.051, p = 0.000). The VIFs of all variables in the
model are less than 10, indicating that there is no covariance between the independent
variables, and the model fit is reliable.

Results show that about 41% of the noise magnitude (equivalent noise levels) can
be explained by the population and POI factors (Adjust-R2 = 0.409). Population density
contributed the most to noise magnitude. The higher the population density within a
grid, the higher the equivalent sound level, which is in line with the common sense
that crowded places are noisier. Regarding the POI, or urban place semantic factors,
shopping services, office buildings, leisure and entertainment services, government and
administration agencies, financial services, and tourist attractions all have different degrees
of influence on the equivalent sound level. Specifically, the more office buildings, leisure and
entertainment services, government and administration agencies, and tourist attractions,
the stronger noise; the more shopping services and financial services, the less noise. For the
latter, we speculate that this is because of the fact that the vast majority of shopping service
and financial service POIs in the study area are actually community-level outlets, and thus
they actually become effective proxies for residential communities, which generally do
indicate lower noise levels. It is noteworthy that the POI functional mixture index is not
significant, indicating that the richness of the types of services in the study area has no
direct effect on the equivalent sound level.

3.3. Mechanisms for the Occurrence of Noise Complaints

The results of the model for the occurrence mechanism of noise complaints are shown
in Table 4. The model is statistically valid with a p-value of 0.000. 61.5% of the complaints
can be explained by the independent variables (Pseudo R-squared = 0.615), and the partial
marginal effects of the variables are given in Table 5.
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Table 3. Summary of Physical Noise Model Results.

Variable Coef. St. Err. t-Value p-Value (95% Conf Interval)

Population Density 2.717 0.451 6.02 0.000 *** 1.827 3.606
Functional Mixture Index-POI 1.825 1.596 1.14 0.254 −1.322 4.971

Shopping Services −0.077 0.022 −3.51 0.001 *** −0.120 −0.034
Office Buildings 0.484 0.215 2.25 0.025 ** 0.06 0.907

Leisure and Entertainment Services 0.097 0.048 2 0.046 ** 0.002 0.193
Government and

Administration Agencies 0.13 0.047 2.73 0.007 *** 0.036 0.223

Financial Services −0.256 0.139 −1.85 0.067 * −0.530 0.018
Tourist Attractions 0.268 0.147 1.83 0.069 * −0.021 0.557

Food and Beverage Services 0.037 0.025 1.49 0.139 −0.012 0.087
Automobile Services −0.014 0.026 −0.53 0.599 −0.065 0.038

Street Vending 0.002 0.01 0.22 0.823 −0.017 0.022
Road Density −2.104 1.804 −1.17 0.245 −5.661 1.453

Constant 59.972 0.243 247.19 0 59.494 60.45

Mean dependent var 60.937 SD dependent var 2.373
R-squared 0.443 Number of obs 210

F-test 13.051 Prob > F 0
Akaike crit. (AIC) 861.082 Bayesian crit. (BIC) 904.595

Dependent Variable: Laeq; *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 4. Summary of the results of the noise complaint model (6:00–19:00) for the everyday-life-related
type of noise.

Variable Coef. St. Err. t-Value p-Value (95% Conf Interval)

Laeq *** 0.016 0.006 2.81 0.005 *** 0.005 0.027
Res *** 0.345 0.051 6.75 0.000 *** 0.245 0.446
Slu ** 0.194 0.089 2.19 0.030 ** 0.019 0.369

JZa(19_34) ** −0.936 0.455 −2.06 0.041 ** −1.833 −0.038
JZb(35_49) ** −0.965 0.472 −2.05 0.042 ** −1.895 −0.035
JZc (50_64) ** −1.494 0.669 −2.23 0.027 ** −2.814 −0.174
GZb(35_49) ** 0.845 0.330 2.56 0.011 ** 0.193 1.496

Constant −0.530 0.543 −0.98 0.330 −1.600 0.540
/Sigma 0.150 0.013 0.124 0.175

Mean dependent var 0.046 SD dependent var 0.091
Pseudo R-squared 0.615 Number of obs 210.000

Chi-square 65.478 Prob > chi2 0.000
Akaike crit. (AIC) 58.974 Bayesian crit. (BIC) 89.097

Dependent Variable: Noise Complaint Volume; *** p < 0.01, ** p < 0.05.

Table 5. Partial Marginal Effects of the Variables.

Variable y* y|y > 0 y

Laeq 0.016 0.005 0.006
Res 0.345 0.107 0.128
Slu 0.194 0.060 0.072

JZa (19_34) −0.936 −0.290 −0.347
JZb (35_49) −0.965 −0.299 −0.358
JZc (50_64) −1.494 −0.463 −0.555
GZb(35_49) 0.845 0.262 0.314

Based on Tables 4 and 5, in the case of y|y > 0, i.e., in the sample of grids with the
number of complaints greater than 0, the average marginal contribution of the physical
noise magnitude (equivalent sound level) is 0.005. This is to say, each 1 dB increase in
noise magnitude increases 0.005 complaints per unit area (grid). In comparison, each
1-fold increase in the proportion of residential land use increases 0.107 complaints per
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unit area, and each 0.1 increase in land use mixture index increases 0.006 complaints
per unit area. For the demographic variables, the marginal effect on noise complaints is
negative for all residential groups from 19 to 64 years old, while a positive marginal effect of
0.262 is generated for the working group from 35 to 49 years old. Apparently, the working
population in specific age groups is likely to be an important component of the complainants
for daytime, everyday life-related noise. Overall, the mechanistic model of noise complaints
suggests the following picture: while increased ambient noise magnitude does push up
the number of complaints, the place semantics and demographic characteristics of the
city significantly distort the simple positive correlation between physical noise levels and
volume of complaints, thus validating our hypothesis that people’s subjective perception,
as well as their individual preference on noise would give rise to a different picture of the
noise problem with what a physical noise map would indicate.

4. Discussion

The findings reveal the spatiotemporal patterns of the physical and perceived noise
landscapes, most of which are subject to intuitive interpretations. For example, regarding
the spatiotemporal heterogeneity of the physical and perceived noise as found in Section 3.1,
the dramatic increase in noise complaints at nighttime might be explained by the probable
stronger negative emotions caused by noise compared to those in daytime, considering
the negative effects of noise on sleep such as increased wakefulness, reduced sleep length,
fragmented sleep cycles, and reduced deep sleep [44–46]; also, an intuitive explanation
of the spatial inconsistency between the noise magnitude and complaints as shown in
Figure 4a,b is that areas A and B are largely residential areas, while area G is a bar district.
The difference in urban function between the two may have led to people’s different
expectations of the quietness of the acoustic environment, and thus they show different
levels of tolerances to noise. The same rationale may also apply in interpreting the pattern
differences as shown in Figure 4a,c.

Further, through a comparative analysis of the occurrence mechanisms of the physical
noise magnitude and the perceived noise seriousness as proxied by people’s noise complaint
records, this research relates physical noise to people’s perception and preferences regarding
noise, thus providing an alternative, psychological angle to understand the urban noise
problem that complements existing practices, which characterize urban noise environments
purely in physical terms. Our findings uncover the structural difference between the
physical and perceived noise landscapes in both spatial and temporal terms. Temporally,
the acoustic environment in the study area is quieter at night than during the day overall,
but there are far more noise complaints at night than during the day. Spatially, noise
complaints occur not only in areas which are physically noisier, but also in areas where
people’s subjective factors including demographic attributes and place semantics may
induce complaints about noise despite a quieter environment in physical terms. Particularly,
we find specific factors that might contribute to the soar of noise complaints, such as people
of certain age groups (over 50) or urban places of certain land-use types (residential), which
are in accordance with the “common sense”.

4.1. Necessity for Inclusion of the Social Sensing Perspective in Urban Studies to Fill the
Grunalarity Gap

These findings confirm that traditional sensors, such as noise monitors, can only
obtain objective decibel values of noise and yet lack a human-centered value concern. This,
coupled with their generally high cost, makes traditional sensing approaches significantly
limited in their ability to directly address people-related urban problems. The Social
Sensing approach, on the contrary, by using the people as “sensors”, is less costly in terms
of data collection, and are advantageous in observing the city states which are more human-
focused. Therefore, the Social Sensing approach can serve as an “information bridge” for
urban science and planning disciplines, and it is especially so under the “high frequency”
city perspective. In the past, when data were scarce, people would focus more on large-scale
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changes in cities over long periods of time, with little attention paid to high-granularity
dynamics [21,47]. The introduction of the socially-sensed data can fill this gap, as they
provide urban planners and managers with perspectives that might otherwise be hidden
or too obscure to detect. One support of this argument is that our noise perception model,
which used one Social Sensing data source (complaints) as the proxy for people’s noise
perception, actually yields better explanation power than much previous research which
utilized direct survey data on noise perception in that ours has a considerably higher
R2 [9,48,49]. Thus, the introduction of the Social Sensing data may help bridge the gap
between macro-scale knowledge and specific phenomena, and have great potential for
application in urban studies, as well as planning and governance practices [35].

4.2. Turning the Self-Sorting Bias in Social Sensing Data into Useful Governance Tools through the
“Nudging” Strategy

One methodological issue that is worthy of discussion, though, is the potential bias
inflicted by the nature of the Social Sensing approach. Researchers have found that Social
Sensing data are often biased in terms of demographics and spatiotemporal distribution,
and thus do not reflect the full picture of the observed objects [50–52]. However, this paper
proposes an alternative way of interpreting, and even exploiting, such biases enabled by
the decomposition of the sources of biases in Social Sensing data. Based on the framework
in Figure 1, the generation of Social Sensing data actually consists of two stages, namely, the
stage of perceiving objective reality, and the stage of acting based on the perceived outcome.
The first of these stages generates perceptual bias, which may be due to differences in
the perceptual abilities of the perceiver, or to sampling bias of the perceiver relative to
the overall population. Fortunately, by statistical principles and techniques, both biases
can be controlled in applied research. For the former, as the distribution of basic sensory
perceptual abilities is approximately normal in the population [53], the bias can therefore
be controlled for by large sample sampling, which is usually not an obstacle given the
big-data nature of Social Sensing data. For the latter, it can be corrected by resampling
the sample [54], or by synthetic population construction [55] techniques, when the joint
distribution of the control variables is known for the overall population.

As for the second stage, since the reactions based on perceived outcomes (in this paper,
it refers to people’s behavior of making complaints) are made by the perceivers based
on their behavioral preferences, the bias here undoubtedly arises from the self-sorting
effect in such decisions. Admittedly, this bias cannot be simply eliminated with statistical
techniques. However, in certain circumstances where the patterns and mechanisms of such
self-sorting effects per se are the central concern, the bias is not a nuisance but rather an
advantage that can be exploited as it presents exactly what is needed: the characteristics of
people’s behavioral preference. For example, from the perspective of urban governance,
it can be argued in a sense that those noise problems that are complained about have a
high priority for resolution. In other words, for the governance of the urban noise problem,
people’s subjective perception of noise and their consequent behavior (complaints) may
be as important as, if not more important than, the objective, physical magnitude of noise.
Hence, we are brought to the context of “nudge” theory [56], which states that people’s
“predictable irrationality” can be utilized to serve certain policy purposes. In the context of
this research, people’s “predictable irrationality” is reflected in the fact that they appear
to care more about the perceived rather than the physical noise level, and the former is
precisely what the Social Sensing data, such as complaints, can record. Thus, through
proper understandings of the former, one can accordingly design policies with typical
“nudge” techniques, such as information exposure and feedback provision to encourage
people’s complaint activities, such that the hot spot of noise problems can be located and
measures be taken subsequently. In a broader sense, in any research with Social Sensing
data, as long as the cognitive-behavioral process involved conforms to the framework
in Figure 1, the data can be decomposed with the above-mentioned methods for bias
control and self-sorting effects observation. Thus, the research framework of this paper
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has implications for a wide range of research topics, as well as urban governance practices
in general.

4.3. Policy Implications: Update of the National Acoustic Environmental Quality Standard,
and Beyond

Practically, this study would help us to accurately infer the noise events that lead
to complaints, i.e., people’s expressed dissatisfaction, thus contributing to more targeted
and precise control of urban noise and improvement of the quality of the urban acoustic
environment in general. Therefore, this study also has a direct policy implication. Compar-
ing the acoustic environment functional zoning map of the study area as directed by the
National Standard (Figure 5a) with the monitored noise magnitudes (Figure 5b background),
we yield the blue areas where the physical noise level meets the standard, and areas with
the other three colors where the physical noise exceeds the noise limit in the standard.
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The darker the color, the greater the magnitude of noise exceeding the standard. It
can be seen that only about half of the areas meet the standard, which are basically water
bodies and large areas of farmland or industrial areas. Further, by overlaying this map
with the noise complaint points (Figure 5b foreground), it can be found that although most
of the locations with noise complaints are in the areas that exceed the standard, there are
also complaints in the areas that partially meet the standard. Moreover, the areas where the
noise complaints are dense are not necessarily the areas where the standard is exceeded
the most: there are also many complaints in the areas where the standard is exceeded only
by 0 to 5 dB. These patterns illustrate that, on the one hand, the unsatisfactory level of
enforcement of the National Standard; and on the other hand, even if the National Standard is
fully complied with, noise complaints will still not be avoided. This finding again confirms
that physical noise magnitude and people’s subjective tolerance of noise are not the same
thing. Therefore, the introduction of the Social Sensing perspective in possible future
revisions of the National Standard, with people’s perception rather than objective physical
measures as the policy objective, is expected to better respond to the actual needs of people,
and thus help shape a more satisfying urban environment.

Beyond the National Standard, there could be other lessons taken from the study.
Rather than serving as direct basis for the local government to impose penalties on noise-
producing or complaint-eliciting entities, the National Standard in China’s centralist system
plays more of a role for higher-level governments to evaluate the governance performance
of lower-level ones. The latter would create specific locally imposed measurements to
solve noise-related problems if they feel the pressure from above, and this is the time when
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specific knowledge on the spatiotemporal pattern and occurrence mechanism of noise
(complaints) may weigh in. For example, the road density variable does not enter the noise
perception model. Although not directly supported by empirical evidence, we speculate
that this is because of the local regulation on traffic noise. Ningbo City had issued the
Circular of the Ningbo Municipal People’s Government on the Implementation of the New Four
Traffic Prohibitions within the Central City Area, in which the prohibition of horn sounding
was stipulated as: all kinds of motorized vehicles equipped with electric or gas horns are
prohibited from sounding their horns in the central city area 24 h a day. In addition, in order
to strengthen regulation, Ningbo’s traffic control department activated the illegal horn
sounding capture system on urban roads on 7 April 2018, which has played a suppressive
role in traffic noise in the central city area. If this hypothesis can be testified in future
research with more empirical data then the imposition of such regulations could prove to
be effective measures for suppressing traffic-related noise, which could serve as a useful
lesson for other cities.

4.4. Limitations and Future Work

The research still has certain limitations. First of all, due to data availability issues,
we were not able to include fine-grained noise monitoring data with longer time periods,
nor nighttime noise monitoring data in the physical noise model. Although for stable
spatiotemporal pattern and mechanism analysis, our assumption that the long-time noise
pattern should be stable in an established urban area appears a fairly reasonable one, direct
empirical evidence is after all much preferable for stronger findings. Also, for similar
data availability reasons, we were not able to include census tract-level demographic and
socioeconomic statistics data as explanatory variables for both models, which appears to
have at least affected the explanatory power of the physical noise model. Overall, the
missing of potentially influential data might have negatively affected the generality of the
research, and is one issue subject to enhancement in future research.

Future research may also benefit from the introduction of other Social Sensing data
sources of noise perception. For example, other research has utilized social media data on
environmental noise to produce the “chatty map” [17] for urban areas. Such alternative
Social Sensing data sources may prove good complement to our research, and they together
may portray a more comprehensive perceptual acoustic landscape. Furthermore, one can
also consider including physiological indicators that reflect noise’ health impacts, such as
those recommended by the WHO [57], such that the physical-psychological-physiological
effects of the noise environment can be investigated within one unified analytical frame-
work to yield a more comprehensive understanding of the subject.

5. Conclusions

In this paper, we borrowed from environmental perception theories, and argued that
the physical magnitude of urban noise and the perceived level of noise by urban residents
are equally important in noise governance, and consequently established an analytical
framework that integrates the two perspectives. Empirically, aside from new noise mon-
itoring data that fills the spatiotemporal granularity gaps of official noise monitoring,
we introduced the “12345” urban complaint hotline records as a proxy for the residents’
perceived noise levels, and constructed mechanistic models for physical magnitude and
perceived seriousness of urban noise, respectively by taking the Jiangbei District of Ningbo
City, China as an example. We found that the semantics of urban places, temporal rhythms
of life, and population demographics significantly influenced people’s tolerance of noise,
making the perceived noise problem map presenting a vastly different picture from the
physical noise map as sensed by infrastructural sensors. We concluded that the existence of
perceptual bias and behavioral preference effects in the noise perception process explained
the difference, and that the existing National Acoustic Environmental Quality Standard
does not adequately meet the needs of urban noise governance, and should be updated to
reflect the perceptual aspect of the urban noise problem.
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Appendix A. The Acoustic Environment Functional Area Regulations in the National
Acoustic Environmental Quality Standard (GB 3096-2008) and Rough Comparison
with WHO Recommendations

Table A1. Environmental noise standards and ISO recommendations (Unit: Decibels). Source:
National Acoustic Environmental Quality Standard (GB 3096-2008) [7]; New WHO Guidelines for
Community Noise [57].

Acoustic Environment
Functional Area Area Description Daytime/dB Laeq Nighttime/dB Laeq

Comparison with WHO
Recommendations/dB Laeq

Class 0 Rehabilitation area 50 40 30 for hospitial, ward rooms,
treatment rooms

Category 1

Residential, medical and health care,
culture and education, scientific

research and design, administrative
office areas

55 45
35–45 for indoor residential and

education environments; 50–55 for
outdoor living areas

Category 2 Commercial, financial and market
trade-oriented areas 60 50 70–85 for commercial or

public environments

Category 3 Industrial production, storage and
logistics areas 65 55 70 for industrial environments

Category 4 The area within a certain distance on
both sides of traffic arteries 70 55–60 85 for public addresses; 100 for

public events

Appendix B. Example of the “12345” Complaint Records

Table A2. Example of the “12345” Complaint Records. Source: Ningbo City Government.

ID Date Time Complaint Content Category Long Lat

201704369 29 April 2017 20:46
Near Wanda Plaza’s Gate on Yunfei Road,

someone has built a stage where
performance sound is too loud.

Everyday life 121.5266218 29.9184564

201707161 1 July 2017 20:57

Barbecue store near the Hongtang Baixin
kindergarten recently set up night stalls that

open all night and after five o’clock in the
morning. very noisy.

Everyday life 121.5030490 29.938677

201804157 8 April 2018 10:00

The construction of the west side of New
Seaview Garden disturbs the public and
affects children’s rest during the college

entrance examination

Construction 121.5390441 29.89676918

201906192 8 June 2019 23:48 Construction of Metro Line 4 in Double East
Place of Cypress Garden disturbs the public Construction 121.5288853 29.89494373
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Appendix C. Mobile Phone Signaling Data Classification Standards

Table A3. Classification Standards of the Mobile Phone Signaling Data. Source: China Unicom.

Class Under 18 Years
Old 19–34 Years Old 35–49 Years Old 50–64 Years Old Over 65 Years Old

Resident
population

Observation period: 21:00–8:00 of the next day; the number of seconds observed by the user daily during the
observation period is accumulated monthly and ranked, and the highest ranked one is identified as the

user’s place of residence.

Working
population

Observation time period: 9:00 to 17:00; the number of seconds observed during the observation time period
on the user’s working day, accumulated monthly and ranked; the highest ranking is identified as the user’s

working place.

Visiting population Short stay (30 min or more) at a place of residence or work nature where a person does not live or work is
identified as a visiting record of the user.

Appendix D. Land Use Classification Table

Table A4. Land Use Classification Table. Source: [39].

Primary Classification Secondary Classification Description

1 Residential land 101 Residential land Residential areas

2 Commercial Land 201 Office Building Office buildings, commercial buildings, etc.

Commercial Land 202 Markets and shopping centers Shopping centers, malls, commercial plazas,
markets, etc.

3 Industrial Land 301 Industrial Land Factories, industrial parks, etc.

4 Transportation Land 401 Road land Roads at all levels
Transportation Land 402 Bus Station Bus station and outer square

5

Public Facility Land 501 Government and administrative land Government land, administrative unit land
Public Facility Land 502 Educational and Research Land Land for schools and research institutions
Public Facility Land 503 Medical Land Hospital and nursing home land

Public Facility Land 504 Cultural and Sports Land Museums, large theaters, gymnasiums,
cultural centers, etc.

Public Facility Land 505 Open Space Parks, squares, etc. at all levels

6 Production land 601 Farmland Farmland
Production land 602 Water bodies Water bodies
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