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Abstract—Determining the effect of a compound on /g, is a
standard screen for drug safety. Often the effect is described
using a single ICs, value, which is unable to capture complex
effects of a drug. Using verapamil as an example, we present
a method for using recordings from native myocytes at
several drug doses along with qualitative features of I, from
published studies of HERG current to estimate parameters in
a mathematical model of the drug effect on Iyx,. Ik, was
recorded from canine left ventricular myocytes using rup-
tured patch techniques. A voltage command protocol was
used to record tail currents at voltages from —70 to —20 mV,
following activating pulses over a wide range of voltages and
pulse durations. Model equations were taken from a pub-
lished Iy, Markov model and the drug was modeled as
binding to the open state. Parameters were estimated using a
combined global and local optimization algorithm based on
collected data with two additional constraints on Ix, -V
relation and [y, inactivation. The method produced models
that quantitatively reproduce both the control [, kinetics
and dose dependent changes in the current. In addition, the
model exhibited use and rate dependence. The results suggest
that: (1) the technique proposed here has the practical
potential to develop data-driven models that quantitatively
reproduce channel behavior in native myocytes; (2) the
method can capture important drug effects that cannot be
reproduced by the ICsy method. Although the method was
developed for Ik,, the same strategy can be applied to other
ion channels, once appropriate channel-specific voltage
protocols and qualitative features are identified.

Keywords—Mathematical modeling, Drug—ion current inter-
action, Parameter estimation, Global optimization, Verapa-
mil, Cardiac electrophysiology.

INTRODUCTION

Pharmacological interference of ion channels, whe-
ther designed or unintended, can modify channel
behavior and alter cellular and tissue electrical prop-
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erties.”® Modification of cardiac activity is of particular
concern for drug safety testing, due to potential pro-
arrhythmic effects of candidate compounds.'® For
example, the rapid delayed rectifier potassium current
Ik is inhibited by a large number of pharmacological
agents,'® some of which have been found to be pro-
arrhythmic in certain patients and have therefore been
withdrawn from the market.'? Scientists have identified
KCNH2 (commonly referred to as HERG—Human
Ether a go go Related Gene) as the gene that expresses
the channel-forming protein through which the Ik,
current passes.**® Hence, determining the effect of a
compound on the HERG current in cell expression
systems is a common early drug safety screen.'®> Typ-
ically the HERG current is recorded under control and
then under several concentrations of the candidate
compound, often using a simple single step voltage
clamp protocol.”>?” The effect of the drug on the
HERG current is usually reported by an ICs, value,*
which is the concentration of the drug at which the
peak tail current is reduced by 50%. Although these
HERG screens can be completed quickly, and high-
throughput screening technologies are available,>
there are at least three shortcomings in using a single
1C5, value from a HERG screen to describe the effect
of a compound on [Ik,. First, quantitative differences
between the HERG current and Ik, recorded in native
myocytes have been reported.'’ It remains unclear how
to translate an ICs, value measured in a HERG
expression system to a corresponding ICsy value for
Ik, in myocytes. Second, recent experimental’* and
computational®® studies have shown that the measured
ICsq value can depend on the particular voltage clamp
protocol used to measure the current. Thus, comparing
results from tests using different protocols is difficult.
Third, it is known that drug block may not only reduce
the peak tail current, but also change the channel
kinetics.* Given the complex and rate-dependent
interplay between ion currents during the cardiac
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action potential, these kinetic effects may be important
in determining the potential pro-arrhythmic effects of a
compound.®”

Mathematical models have a long and rich history
in electrophysiology.'”'®3! These models serve as
compact representations for quantifying ion current
properties and are useful tools for helping to elucidate
the roles of currents in determining cellular electrical
activity.'#1?-214147 A common approach for modeling
the concentration-dependent effect of a compound on
an ion current is to modify the channel conductance by
the Hill equation, in which an ICs, value measured
from experiments is used to calculate the fractional
reduction in current magnitude as a function of drug
concentration.’ Due to limitations of the ICs, method
mentioned above, this method is not able to capture
quantitative changes in channel kinetics induced by a
compound.

Another approach for modeling the effects of drug—
channel interaction on an ion current is to use a
Markov representation of the ion channel, and model
the drug as binding to specific channel states.®** Such
a model captures the physical interaction of the com-
pound with the channel protein and is able to repro-
duce a range of dynamic behaviors that are beyond the
reach of the ICsy method. However, since the binding
properties of a compound as well as the transition rates
between different channel states are usually unknown
and difficult to obtain, using a Markov representation
of drug-binding requires the estimation of a large
number of parameters, which presents a significant
model identification problem. A common strategy for
estimating parameters in complex models is to define a
“cost function”, which is a measure of the discrepancy
between the “training data”, a time series of collected
experimental data, and the model output. Parameters
are then estimated by using an optimization algorithm
to find parameter values that minimize the cost func-
tion.’>*

Many computationally efficient local optimization
methods are available, but these rely heavily on good
initial guesses for parameters if the cost landscape has
many local minima.’? Alternatively, global methods
can be used to search throughout a wider range of
parameter space,'’ although there is no guarantee of
finding a global minimum. These global methods often
produce many parameter sets that can reproduce the
training data, but that produce very different behav-
iors under other conditions, such as other voltage
clamp protocols. A straightforward way to constrain
I, model parameters in such a circumstance is to
collect data under additional voltage clamp protocols.
For example, Milescu et al. suggest that analyzing data
generated by complex stimulation protocols could
improve a maximum likelihood estimation method for

model identifiability.>® However, it is often difficult to
collect enough data to constrain the problem in native
myocytes, due to contamination from other cardiac ion
channels and to current rundown if very long protocols
are used. We study an alternative approach that uses
qualitative features from HERG experiments to help
constrain parameter estimation.

We present here a systematic method for developing
detailed models of the effects of a compound on Iy,.
We use a Markov representation of the ion channel,
and model the drug as binding to specific channel
states. The method involves the following steps:

1. Record I, innative myocytes under control and
several concentrations of the drug under study
using a complex voltage protocol that covers a
wide range of voltages and pulse durations.

2. Gather qualitative features from published
studies of the HERG channel in transfected cell
lines and enforce those features that the Ik,
model is expected to reproduce.

3. Use a combined global and local optimization
strategy to estimate model parameters by
minimizing a cost function that includes not
only the time series data from step 1, but also
the qualitative features from step 2.

Using this approach, one can find optimal parame-
ters that allow drug—/fx, models to quantitatively
reproduce both the control Ik, kinetics and concen-
tration-dependent drug effects. Moreover, the models
thus generated conform to commonly accepted features
of Ix,/HERG current. The method was tested using I,
data recorded from canine ventricular myocytes in the
presence of verapamil, a known I, inhibitor.**
Verapamil is a particularly interesting test case;
although it inhibits Ik, it does not appear to have pro-
arrthythmic effects in patients.’® The results suggest
that: (1) the technique proposed here has the practical
potential to develop data-driven models that quanti-
tatively reproduce channel behavior in native myocytes;
(2) the method can capture important drug effects, such
as rate- and use-dependence, that cannot be reproduced
by the ICs5y method. Although the method was devel-
oped for Iy, the same strategy can be applied to other
ion channels, once appropriate channel-specific voltage
protocols and qualitative features are identified.

METHODS

Voltage Clamp Data
Isolated Myocyte Preparation

Myocytes from epicardial, midmyocardial, and
endocardial regions were prepared from canine hearts
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using techniques described previously.®” Briefly, male
and female adult mongrel dogs were anesthetized with
sodium pentobarbital (35 mg/kg i.v.), their hearts were
rapidly removed and placed in nominally Ca’®"-free
Tyrode’s solution. A wedge consisting of the left ven-
tricular free wall supplied by a descending branch of
the circumflex artery was excised, cannulated and
perfused with nominally Ca”"-free Tyrode’s solution
containing 0.1% BSA for a period of 5 min. The wedge
preparations were then subjected to enzyme digestion
with the nominally Ca®"-free solution supplemented
with 0.5 mg/mL collagenase (Type 11, Worthington),
0.1 mg/mL protease, and 1 mg/mL BSA for 812 min.
After perfusion, thin slices of tissue from the epicar-
dium (<2 mm from the epicardial surface), midmyo-
cardial (~5-7 mm from the epicardial surface), and
endocardium (<2 mm from the endocardial surface)
were shaved from the wedge using a dermatome. The
tissue slices were then placed in separate beakers
minced and incubated in fresh buffer containing
0.5 mg/mL collagenase, 1 mg/mL BSA and agitated.
The supernatant was filtered, centrifuged, and the
pellet containing the myocytes was stored at room
temperature. All animal procedures were in accordance
with previously established guidelines (NIH publica-
tion No. 85-23, revised 1985).

Solutions

The nominally Ca® " -free solution has the following
composition (mM): NaCl 135, KCl 5.4, MgCl, 1.0,
NaH,PO, 0.33, glucose 10, HEPES 10, pH = 7.4 with
NaOH. The enzyme solution has the same composition
except that it also contains 0.5 mg/mL collagenase
(Type 11, Worthington) and 0.1 mg/mL protease (Type
XIV, Sigma). For -electrophysiological recordings,
ventricular cells were superfused with a HEPES buffer
of the following composition (mM): NaCl 140, KCl
4.0, MgCl, 1.0, CaCl, 2.0, HEPES 10, and glucose 10.
pH adjusted to 7.4 with NaOH. The patch pipette
solution had the following composition (mM):
K-aspartate 125, KCl 10, MgCl, 1.0, EGTA 5,
MgATP 5, HEPES 5, NaCl 10. pH = 7.2 with KOH.

60 0.5s 0.5s

1.6s

Electrophysiology

All experiments were performed at 37 °C. Cells were
placed in a temperature controlled chamber (PDMI-2,
Medical Systems Corp.) mounted on the stage of an
inverted microscope (Nikon TE300). Voltage clamp
and conventional recordings were made using a Mul-
tiClamp 700A amplifier and MultiClamp Commander
(Axon Instruments). Patch pipettes were fabricated
from borosilicate glass capillaries (1.5 mm O.D.,
Fisher Scientific, Pittsburg, PA). The pipettes were
pulled using a gravity puller (Model PP-830, Narashige
Corp.) and the pipette resistance ranged from 1 to
4 MQ when filled with the internal solution. After a
whole cell patch was established, cell capacitance was
measured by applying —5 mV voltage steps. Ik, was
measured as the time-dependent tail current measured
at various potentials following depolarizing pulses of
variable time and duration (Fig. 1). For Ik, recordings,
HMR1556 (100 nM) an inhibitor of the slow delayed
rectifier potassium current Ix,, was added to the
recording solutions. In addition, 300 uM CdCl, was
added to the recording solutions to inhibit L-type
Ca’" current. A four-barrel quartz micromanifold
(ALA Scientific Instruments Inc., Westbury, NY)
placed 200 um from the cell was used to apply verap-
amil at various concentrations.

Electronic compensation of series resistance to
60-70% was applied to minimize voltage errors. All
analog signals (cell current and voltage) were acquired
at 10 kHz, filtered at 2-5 kHz, digitized with a Digi-
data 1322A converter (Axon Instruments) and stored
using pClamp9 software.

Figure 1 shows the voltage protocol used in this
study. It is designed to expose the drug—channel
interaction by measuring voltage-dependent changes in
Iy, tail currents, and time- and voltage-dependent
changes in [k, activation.

Markov Model Formulation

The Markov model we studied is a set of coupled
ordinary differential equations that follows the five

1.6s

-30

-80mV 1s

-50

FIGURE 1. The voltage protocol used in this study consists of 10 sweeps, each with three components. The first component
measures tail currents at voltages from —20 to —65 mV in 5 mV decrements. The second segment tests tail current after depo-
larization to voltages from 60 to —30 mV in 10 mV decrements. The third is an envelope of tails protocol with depolarization

duration from 10 to 370 ms in 40 ms increments.



Parameter Estimation in Drug—lon Current Models 1297

[+ K
02 -

Be K

|
7 N
v ooay
= C, = O

R@%ER&[D]
i

FIGURE 2. State diagram of the I, Markov model structure.
Arrows refer to transitions between states. The rate constants
are shown above (below) the arrows.

state formulation given in Mazhari er al.** with three
closed states (C;, C,, and Cj), one open state (O), and
one inactive state (I) (Fig. 2). In this formulation, each
state variable represents the fraction of channels in a
particular conformation. The channel only conducts
current in the open state. At rest, the channels are in a
closed state. Following a depolarizing change in
membrane potential, the channels will be activated
(changing from closed to open) and will conduct cur-
rent. After sustained activation the channel will be
inactivated (changing from open to inactive) and
become non-conducting.

The Mazhari model is a detailed and widely used
model of Ix,, and therefore an appropriate model for
study. The model was based on experimental studies of
ferret Ix,>® and HERG current in transfected cells.”®
Liu ef al.®® showed that activation of Iy, involved one
voltage sensitive step and one voltage insensitive step,
and therefore proposed a model with voltage-inde-
pendent rate constants between two closed states.
Wang et al. found that at least three closed states were
required to reproduce the sigmoidal onset of the acti-
vation of the heterologously expressed HERG cur-
rent.”® The Mazhari er al. model also incorporated
single channel studies on HERG current that provided
evidence for closed-state inactivation.® The model has
been used in other studies,”’ including published
investigations of a detailed model of the human ven-
tricular action potential?! and a model of the canine
ventricular myocyte.*® All state transition rates except
for K¢ and K, (rates between C, and Cj) are expo-
nential functions of voltage: p.e””, where p, and D, are
parameters in ms~' and mV ™', respectively, and V is
the membrane potential in mV. To satisfy the micro-
scopic reversibility condition,  is defined as:
W = (B, Poi3)/(104). Results presented here consider
drug binding to the open state.’> The drug-bound state
is given by B. The binding rate is Ry,[D] where [D] is the
drug concentration in M (mol/L) and R, is in
ms~' M~ and the unbinding rate is Ry, in ms~'. All
parameters for the transition rates are estimated using

the optimization strategy described in  sec-
tion “‘Parameter Estimation Strategy”.

The macroscopic Ik, current is calculated using the
Goldman-Hodgkin-Katz (GHK) current equation®*:

FZ (AC[K'I] _ [Ko]erF/RT)
Ie = OPx 1 V=i o (1

Here Px is the permeability of the membrane to
potassium ions, and [K;] ([K,]) is the concentration of
potassium ions inside (outside) of the cell. F is the
Faraday’s constant (96.5 K coulomb/mol), R the ideal
gas constant (8314 J/mol), and T is the temperature
(310 K). The parameter A. is the activity coefficient,
which accounts for the fact that the thermodynamic
activity of an electrolyte in solution is lower than the
chemical concentration because each ion is slightly less
available at finite concentration than at infinite dilu-
tion.'” [K;] and [K,] are estimated to be 120 and 4 mM,
respectively.

Parameter Estimation Strategy

To estimate parameters in the model, we use a
combined global and local optimization algorithm
described in section “Optimization Algorithm™ to
minimize a cost function F(M) made up of three terms.

F(M) = wifi(M) +w2/2(M) +wafs(M)  (2)

Here M is a vector made up of the parameters in the
model to be estimated. The following three sections
describe each of the three terms in Eq. (2). The first
term compares the model results to the acquired patch
clamp data, the second term compares the qualitative
shape of the model’s current—voltage (/-V) relationship
to that measured in HERG channels, and the third
term compares the model’s inactivation properties to
qualitative features of HERG channels. wq, w,, and ws
are the weights for each term. f;(M), which measures
the difference between model and data, is a general
term that is likely to be included in estimating
parameters for any ion current model. The other two
terms, f>»(M) and f3(M), are designed specifically for
Ik, as described in the sections below. Studies of other
ion currents would likely need different terms that
incorporate appropriately chosen qualitative features.

f>(M) and f3(M) are calculated for control conditions

only. Thus, the drug concentration is set to 0 when
calculating these terms. f1(M) includes the difference
between model and data both in control and in the
presence of the drug. The weights are chosen to bal-
ance the trade-off between matching particular exper-
imental [Ix, recordings and reproducing important
qualitative features of the current. For convenience, we
choose w; = 1. The other weights are defined below.
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The goal of the optimization process is to find
parameter sets that minimize the cost by iteratively
changing the parameter values and evaluating all three
terms until the simulation for a given parameter set
nearly matches the experimental data and reproduces
the two qualitative features.

Term 1: Training Data

The first term in the cost function is defined by

N
> (Trainga, —

fiM) ==

Simgag, (M))*

N 3)

Here Traingay, is the training data at the ith time point,
Simgats, (M) is the simulation value at the ith time point
using the parameters given by M. The sum is taken
over i = 1 to N, the total number of time points in the
recording. The factor of 2 is only for notational con-
venience.

For each cell sample, we run three iterations of the
protocol described in section “Electrophysiology”.
The first iteration is recorded in the control condition,
and the drug is applied at the beginning of the second
iteration. The training data consist of current recorded
during the first and the third iterations, representing
current under control condition and current under
steady state drug effect, respectively.

Four processing steps are used to convert the raw
time series data recorded under the complex protocol
described in section ‘““Electrophysiology” to the train-
ing data in Eq. (3). First, data collected during all
depolarization pulses and at —80 mV are removed,
since the recorded current at these voltages is con-
taminated by other ion currents. Hence for each sweep,
only the three tail currents are used for the training
data. Second, the dramatic change in voltage at step
transitions induces a capacitive transient that renders
the first few milliseconds of data unusable. Therefore,
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the first 7-20 ms (depending on the size of the tran-
sient) of data after all step transitions are discarded
from the tail currents. Third, to account for any offset
in the recording, the tail currents are shifted so that the
average of the last 100 data points at the end of each
tail current is zero. Finally, data are resampled to
reduce the number of data points, which significantly
reduces the time needed to evaluate the cost function.
For each tail current, the sampling rate of the training
data varies according to the following sequence:
5 KHz sampling for the interval between 0 and 30 ms
from the beginning of the tail current; 1 KHz sampling
between 30 and 100 ms; 500 Hz sampling between 100
and 800 ms; and 125 Hz for the rest of the tail current.

To generate model output, three iterations of the
voltage clamp protocol used in the experiments are
applied to the model. A step function is used for the
drug concentration time series. During the first itera-
tion of the voltage clamp protocol the drug concen-
tration is zero. During the second and third iterations
the concentration of the drug is held at a fixed level to
match that used in the experiment.

Term 2: IV-curve

The second term in the cost function is defined by:

1 al 5
W, (Z (0;—0.8)

+Z —0.1) (oj—o.1)>

where H(x) is the Heaviside step function. O; and O;
are the occupation probability of the open state at
different voltage levels. N; and N; are the number of
selected voltage levels where the open probability is
measured. This term is evaluated by simulating the
model under a standard I~V protocol.”” For example,
Fig. 3a shows the I~V curve obtained by simulating

HL(M) = H(0.8 — 0))

(4)
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FIGURE 3. -V and open probability-voltage curves from the published Mazhari model.?° (a) Peak tail currents were obtained
under the protocol shown in inset and plotted as a function of voltage. (b) Peak open state values under the same protocol plotted
vs. voltage. The shaded areas represent qualitative constraints used during optimization.
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the Mazhari I, model, which was developed to
reproduce data from HERG expression systems,
under the protocol shown in the inset. While the
quantitative details of the I~V curve as measured in
expression systems are likely different from the
behavior of native canine /I, it is widely thought
that the native Ik, has a similarly shaped /~V curve
to that of the HERG current. Specifically, for volt-
ages below —90 mV, the current should be negative
and approximately proportional to the driving force;
for voltages above 0 mV, the current should be close
to zero. Since the current is determined by the
product of the open probability and the driving force,
we require the open probability to be close to 1 at
voltages below —90 mV and close to 0 at voltages
over 0 mV (Fig. 3b). Therefore we set N; = 6, cor-
responding to voltages from —140 to —90 mV (in
10 mV intervals) in the /-=V protocol, and measure O,
for each voltage level. If O; > 0.8, the requirement is
satisfied and no cost is added. If O; < 0.8, then the
parameter set M will be penalized by adding a cost
given by the square of the difference between O; and
0.8. Similarly, we set N; =5 corresponding to volt-
ages from 0 to 40 mV (in 10 mV intervals) and
measure O; for each voltage. If 0;<0.1, the
requirement is satisfied and no cost is added. If
0;> 0.1, the parameter set M will be penalized by
adding a cost given by the square of the difference
between O; and 0.1. f>(M) is normalized by the total
number of voltage levels tested. The specific levels
used are chosen for convenience. Because the I~V
relation is a very important feature of the current, we
choose a large weight given by w, = N;+ N;.
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Term 3: Inactivation

The third term in the cost function is defined by:

ﬁ(M):m (Z;H(Pil _Pi)+,Z_;H(Ti_ T,-1)>
(5)

where H(x) is the Heaviside step function. P; is the
peak tail current after depolarizing voltage steps to
different values. T;is the value of the tail current 50 ms
after depolarizing voltage steps to the same values. N;
is the number of selected voltage levels in the range
between —40 and 60 mV where P; and T; are tested. In
this study, N; is set to 5, corresponding to the following
voltage levels: —40, 0, 20, 40, and 60 mV. Experiments
with HERG channels have shown that under a stan-
dard inactivation protocol (see Fig. 4a), the tail current
decays more rapidly with increasing voltage.” We
found that some parameter sets that were obtained by
minimizing a cost function that included only the first
two terms in Eq. (2) did not reproduce this qualitative
feature. An example is shown in Fig. 4b, where the
tails at higher voltage have higher peaks but do not
decay faster and therefore have higher steady state
values. In order to eliminate models with unphysio-
logical inactivation properties, we simulate the model
for a given parameter set under the inactivation pro-
tocol and measure the peak tail currents and the values
of the tail current 50 ms after the depolarizing voltage
steps mentioned above. If a peak P; is bigger than the
previous peak (P;_;), no cost is incurred. Otherwise a
cost of 1 is added. If T;is smaller than the previous tail

Current (pAlpF)
Lt

Time (ms)

FIGURE 4. Channel inactivation. Inset shows the protocol used to test inactivation at different voltages. (a) Tail currents gen-
erated by the published Mazhari model.?° At higher test voltages, the tail current has a higher peak but decays faster. (b) Tail
currents generated by a model that resulted from fitting to data using only the first two terms in Eq. (2). Tail currents at higher
voltages do not decay faster. In both (a) and (b), the black traces represent the currents used in calculating the third term of the
cost function. The two dashed lines show where peaks (P;) and tails (T;) are obtained.
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value (7;_;), no cost is incurred. Otherwise a cost of 1
is added. The total cost f3(M) is normalized by the
total number of comparisons. Its weight ws is defined
as 0.01 x 2(N; — 1). The factor 0.01 is included because
the noise level of the raw data is on the order of 0.001
or less. In general, this weight should be chosen to be
larger than the noise of the data so that a parameter set
M that does not have correct inactivation properties
would be eliminated from consideration.

In experimental studies of Ik, or HERG, the fol-
lowing standard features are usually characterized:
activation, I-V relation, inactivation, recovery from
inactivation, and deactivation. After using the -V
relation and inactivation as additional constraints in
the optimization, the resulting models produce proper
activation, deactivation, and recovery from inactiva-
tion properties. Hence, the two terms (f>(M) and
f3(M)) used here can be considered comprehensive
qualitative constraints for Ik,.

Optimization Algorithm

The optimization routine uses a combination of
global and local methods. The global method, Differ-
ential Evolution,*> uses the following strategy. A
population of parameter sets is generated randomly,
and the cost of each parameter set is evaluated. New
parameter sets are generated by first adding a weighted
difference between two randomly selected parameter
sets to a third random parameter set, and then by
exchanging a fraction of the resulting parameter set
with a member of the population according to a cross-
over probability. The cost of the new parameter set is
then evaluated and compared to the cost of a randomly
chosen set in the population. The lower cost set is kept
in the next generation of the population. The optimi-
zation strategy consists of using Differential Evolution
for a total of four thousand generations. After each
thousand generation, the Levenberg-Marquardt®-*?
local method is applied to each parameter set in the
population to quickly take each parameter set to a
local minimum. Optimizations using more generations
(for example, 5000 generations) were tested and the
lowest cost did not improve significantly after 4000
generations (results not shown). Changing the random
seed used by the Differential Evolution algorithm does
not qualitatively change the results of the optimization
(see Data Supplement).

Optimization using Differential Evolution yields
many parameter sets, each with an associated cost. The
lowest cost parameter set is typically considered the
“best fit” to the data. However, often several param-
eter sets appear to reproduce the training data.
Therefore, we define a cutoff value of the cost function
by determining the expected fluctuations in cost due to

experimental noise (details in Appendix). Parameter
sets with a cost less than this cutoff value are accepted
for further analysis.

Simulation Details

All simulations and optimizations were run on a
Dell Inspiron 9100 computer and a 16-node Linux
cluster of Intel Xeon dual processors using custom
written C+ + computer code. Each model is repre-
sented by a set of differential equations of the form
dx/dt = f(x,t,M), where x is a vector describing the
current state of the system, ¢ is time, and M is a vector
of model parameters. Because the model we studied is
linear for a constant value of V" and [D], we can find
solutions on the time intervals between changes in V' or
[D] by computing the eigenvalues and eigenvectors of
the system.* We use automatic differentiation to
calculate the Jacobian derivative of the function f.
Optimization requires about 12 h on the Linux cluster.

RESULTS

Testing Parameter Identifiability

To illustrate the impact of the complex protocol and
the qualitative features on parameter estimation, we
estimate parameters in the control /i, model using
three different cost functions. The first cost function
uses training data chosen to be similar to data from
standard protocols. We extract two control tail cur-
rents measured at —30 mV after voltage steps from
—80 mV to 60 and 20 mV, respectively, which are
similar to protocols used in previous studies.” No
qualitative features are included. The second cost
function uses training data from the full complex
protocol; again, no qualitative features are included.
The third cost function uses training data from the
complex protocol as well as the two qualitative features
as described in the method section. Figure 5 shows
results from the three cases. For the first case, 71
parameter sets are accepted. However, we only show 5
best parameter sets for clarity. In the third case, five
parameter sets are accepted, and for the second
example three are accepted. Panel a shows the activa-
tion curve (top), the /-7 curve (middle) and currents
under a simple step pulse (bottom) for the accepted
parameter sets using the first cost function. Voltage
protocols are shown as insets in each panel. Although
all five parameter sets resulting from optimization
reproduce the training data, none of the parameter sets
produce physiological Ik, currents: the activation
curves appear abnormal at voltages higher than
20 mV, the I~V curves exhibit little rectification at



Parameter Estimation in Drug—lon Current Models

1301

(@ (b) 1 (©
0.9 4 0.9 4 0.8
..E. 0.8 1 = 0.8 4 = 08
£ 07+ £ 07 £ o7+
) o 3
= 064 056 S 0.6+
: § 3
& 051 @ 054 o 051
T o
5044 5 o044 & 044
] = =
E 0.3 1 E 034 E 034
Z 0.2+ 2 0.2 4 -=-PV1 2 0.2 4
- PVZ ¢
0.1 4 0.1 4 -) —PV3 0.1
1] ] » T o o » g » T T T "
0 £0 <0 <20 0 20 40 60 80 60 -0 =20 1] 20 40 60
Voltage (mV) Voltage (mV)
3 9 09 4 11 PVt
. PV P2
25 4 08 4 b4 = *Py2 0.8 4 s =PV
E 07 =N =PV4
Ty g L] L 069 L] PVS
£ a5l € s : & . .
P-4 < <
8 8 £ 04 " -
Z 15 = 054 - £
£ E 041 = 5 024 » .
S ) 5} = o M .
= E 034 ® L} 3
= K. - s 0 ————— 4
% 054 % 024 . % A0 120 10780 60 40 20 0 20 40
e 4 . o 021
= 1
0.1 - ] [
0 T T T T T ] B C—_ 04 4
4}0 120 100 80 &£0 40 20 0 20 40 b i % s X x. x 3 .
05 _0.11 0 120 100 &0 H£0 40 20 0 20 40 05 4
Voltage (mV) Veltage (mV) Voltage (mV)
16 15 15
&0
1.2 80 J_I; =30 1.2 1.2 1
5 N o
209 2 o9 £ o9
8 2 &
H : g
E 06 0.6 0.6
3 3 3
03 0.3 0.3
0.0 T T T T 1 0 - T T y J 1] - T T J
3000 3500 4000 4500 5000 5500 3000 3600 4000 4500 5000 5500 3000 3500 4000 4500 5000 5500
Time {ms) Time {ms) Time (ms)

FIGURE 5. Comparison of models resulting from three different cost functions. Top panels: voltage dependent activation (nor-
malized peak tail currents under protocol in inset). Middle panels: IV relations (peak tail currents under protocol in inset). Bottom
panels: model-generated Ik, (dark lines) and data (light curves) under a simple pulse (shown in inset). (a) 5 accepted models from
fitting to data under a simplified two pulse protocol show non-physiological behavior and significant divergence. (b) 3 accepted
models from fitting to data under the complex protocol are almost identical but show non-physiological -V relations. (c) 5
accepted models from fitting to data under the complex protocol plus the two qualitative constraints.

higher voltages, and currents under the step pulse to
60 mV are unphysiological. Panel b shows features of
the three acceptable parameter sets resulting from the
second cost function. Since the complex protocol
probes a wider range of voltages and time scales, it has
much greater power in constraining the model
parameters. Unlike parameter sets from the first
example, parameter sets from the second example
produce Ig, currents that appear almost identical
under all three test protocols. In addition, the activa-
tion curves appear physiological. However, the -V
curves are not physiological at voltages near —80 mV.
Information on the behavior of Ik, at these voltages is
needed to develop a more physiological model, but
measuring [, in native myocytes at these voltages is
confounded by other contaminating currents. Panel ¢

shows the results from the third cost function. In this
case, all parameter sets produce physiological currents.
In addition, these currents are nearly identical, except
for during the 60 mV activating pulse (Panel c, bot-
tom). All five currents exhibit qualitatively similar
inactivation during this pulse, due to the inclusion of
the inactivation features from section “Term 3: Inac-
tivation” in the cost function. However, since no
quantitative training data recorded at 60 mV are
included in the cost function (again, due to contami-
nating effects of other cardiac ion currents), small
differences in the model currents are observed during
the activating pulse.

To further test the results from the third cost func-
tion, we incorporated the resulting Markov type Ik,
models into a canine ventricular myocyte action
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potential model'® by replacing its original Hodgkin—
Huxley type Ik, model. We then simulated action
potentials at various cycle lengths, and measured both
the Ik, currents and the action potentials (Fig. 6). The
different parameter sets produce very similar results, as
the maximal difference in peak current compared to
the mean is 10%, and the maximal difference in action
potential duration compared to the mean is 1.5%.

As illustrated by these examples, the parameter
estimation method described in section ‘“Methods”
does not necessarily yield a unique parameter set.
However, multiple parameter sets resulting from opti-
mization reproduce the training data and also produce
physiological, nearly identical currents under other
conditions. With control Ik, kinetics well constrained
by this method, we next apply the method to identify
drug binding parameters using Ik, data recorded in the
presence of verapamil.

Blocking of I, by Verapamil

It is known that the inhibition of an ion channel by
a compound often depends on voltage, depolarization
time, and/or frequency. The protocol described in

(a)o12

01
0.08
0.06

0.04

Current (pA/pF)

0.02

[}

0.02
Time (ms)

(b) ]

49ISO 49500 49550 49600 49650 49700 49750 49800

ZHou et al.

section ““Electrophysiology” was designed to expose
changes in drug block with respect to three variables:
the first segment reveals dependency on the repolari-
zation voltage, the second varies the depolarizing
voltage, and the third exposes dependency of the effect
of the drug on the duration of the depolarization pulse.
Before developing models of the interaction of verap-
amil with the Ik, current, we first test if the protocol
reveals changes in the effect of the drug with respect to
these three variables. For simplicity, we choose two out
of the ten sweeps from each segment, and calculate the
ratio of post-drug peak tail current to control peak tail
current for both sweeps in each segment. We then
apply a two-way ANOVA test for each segment.! We
select the two sweeps by first identifying all sweeps that
result in peak currents large enough to detect, and then
choose the sweeps with the largest difference in the
independent variable (voltage or time). Table 1 shows
the ratio of post-drug peak tail currents to control
peak tail currents from sweeps 1 (V11) and 8 (V18) for
segment 1, sweeps 1 (V21) and 5 (V25) for segment 2,
and sweeps 2 (T2) and 10 (T10) for segment 3, under 4
doses of verapamil (0.2, 2, 3, 5 uM). For each condi-
tion, three cell samples were collected. The results from

20 1
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FIGURE 6. Action potential simulations. 5 accepted models from fitting to data under the complex protocol plus the two quali-

tative constraints in an action potential model'*

at a cycle length of 500 ms. In order to produce action potential durations similar to

the original model, all 5 Markov type models were scaled by a factor of 5. (a) k., currents. (b) Action potentials.

TABLE 1. Verapamil block of Ik, is voltage dependent.
0.2 uM 2 uM 3 uM 5 uM
p1 0.024 Vi1 0.83 0.85 1 0.5 0.44 0.27 0.48 0.48 0.43 0.35 0.42 0.14
V18 0.4 0.89 1 0.45 0.28 0.11 0.23 0.38 0 0.18 0.18 0.08
p2 0.0008 V21 0.60 0.88 1 0.41 0.31 0.23 0.32 0.38 0.33 0.22 0.25 0.26
V25 1 1 1 0.58 0.53 1 0.38 0.48 0.68 0.35 0.58 0.42
p3 0.126 T2 0.76 1 1 0.40 0.59 0.47 0.38 0.47 0.36 0.32 0.40 0.35
T10 0.58 0.78 1 0.51 0.56 0.20 0.29 0.39 0.26 0.32 0.41 0.18

Ratio of post-drug peak tail to control peak tail currents are shown in the right four blocks. Data in the same column come from the same cell.
V11 and V18 refer to sweeps 1 and 8 for segment 1, V21 and V25: sweeps 1 and 5 for segment 2; T2 and T10: sweeps 2 and 10 for segment
3. p values from the two-way ANOVA test are shown in the left most column. A p value <0.05 is considered significant.
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the ANOVA tests for each segment are listed in the
leftmost column. A p value <0.05 is considered sig-
nificant. These data show that the inhibition of Ik, by
verapamil depends significantly on both the depolar-
ization and repolarization voltage, with a p value of
0.0008 and 0.024, respectively, but does not seem to
change with prolongation of the depolarization step
(p value = 0.126).

I~ Verapamil Models

We next study I, —verapamil models from 12 dif-
ferent cell samples: three cells for each dose. Each
Ix,—verapamil model is generated by using training
data from a particular cell. One or more parameter sets
results from each optimization. Figure 7 illustrates a
typical result. Figure 7a compares the model results to
the training data for tail currents of the third sweep
both under control and at a verapamil concentration
of 2 uM. Figures 7b and 7c shows sweeps 5 and 7; the
model reproduces the control /i, kinetics and the effect
of verapamil.

As cells differ from each other, so do models gen-
erated from data from different cells. Figure 8 shows
the activation curves, I-V curves, and binding and
unbinding rates for all 12 best fits (some of the fittings
yielded multiple acceptable parameter sets which have
almost identical activation and /- curves, hence only
the best fit is shown here), as well as representative tail
current recordings for all cells. The variability in model
parameters corresponds to observed cell-to-cell vari-
ability in the measured currents (see Data Supplement
for parameter values for each model).

We next use the verapamil-Ix, models to explore
the use- and frequency-dependent block of Ik, by
verapamil. Three different methods are used to predict
the rate- and use-dependence of verapamil from the
models. First, all 12 models (generated from data from
all 12 cells) are simulated, producing a range of pre-
dictions. Second, 3 data sets at the same dose were
averaged, and a single model is produced by estimating
parameters using four averaged data sets simulta-
neously. Third, the 12 parameter sets are averaged to
produce a single model. This method assumes that the
model parameters vary independently from one cell to
the next. As shown in Fig. 9, results from all three
methods are qualitatively similar: verapamil block is
both use- and rate-dependent, as inhibition of the
current increases with both the number of pulses and
at faster rates. These behaviors cannot be reproduced
by using an ICsy value to modify the conductance of
the current based on drug concentration. The model
shown in Fig. 9¢ (from averaging the 12 parameter
sets) exhibits a stronger drug effect than the model in
Fig. 9b because it has a significantly larger binding
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FIGURE 7. Comparison of model to data. Each subfigure
shows one sweep. (a) Sweep 3; (b) sweep 5; (c) sweep 7.
Training data under control are shown in light gray, data
under steady state 2uM verapmil effect are shown in dark
gray. Model generated traces are in black. Protocol of each
sweep is shown on top.

rate; averaging the parameters biases the result toward
larger values (see the Data Supplement for parameter
values). A significant benefit of the first method is that
it produces a range of predicted results that matches
the variability of the cells used to generate the models.
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as shown in the inset were

applied at intervals of 0.6, 1, and 2 s. Normalized peak tail current is plotted vs. time. (a) Mean and SD (Standard Deviation) of all
model predictions. SD is shown one-sided for clarity. Results for the 1-s interval not shown for clarity. (b) Prediction of the model
from fitting to the averaged data. (c) Prediction of the model from the averaged parameters.

Finally, we take advantage of the form of the
Markov model to relate the observed time scale of the
onset of drug block from the use-dependence simula-
tions to time scales that can be calculated directly from
the model. For a fixed value of voltage, the equations

of the model are linear. Thus, we can find the steady-
state solution as well as the eigenvalues (and therefore
time constants) of the system as a function of voltage.
The system has five degrees of freedom, and therefore
five time constants. Figure 10 shows the two largest
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parameters). The other three time constants are very
fast compared to the two largest and therefore not
shown. The dashed line represents the time scale
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associated with the action of the drug. This time scale
is faster at those voltages where the drug bound state
of the channel is maximal. Comparing Figs. 10a to
10c, the time scale over this voltage range decreases
with increasing drug concentration. Furthermore, the
model in Fig. 10, left, has smaller drug bound state
than that shown in Fig. 10, right, which corresponds to
the weaker effect of drug block in Fig. 9b as compared
to Fig. 9c.

DISCUSSION

This paper presents a method for developing
mathematical models of the effect of a drug on native
Ix.. This method incorporates two types of informa-
tion about Ik,: time series recordings of the current
and qualitative features of the current from published
studies. One term in the cost function used to estimate
model parameters includes recordings of Iy, using a
complex voltage protocol designed to probe voltage-
and time-dependence. Data from the first and third
iterations of the protocol are used for parameter esti-
mation: during control, and when the effect of the drug
had reached its full extent. Including data from these
two iterations produces models that can reproduce
native channel kinetics, and that capture the steady-
state dose-dependent changes in the current due to the
compound. An important aspect of the method is the
inclusion of qualitative features of the current to fur-
ther constrain parameter estimation and to produce
physiological results for conditions in which it is dif-
ficult to measure Ik, in myocytes. Thus, the method
generates models that reproduce “typical” features of
Ik, but also reproduce behavior specific to Ii, from the
cell (or group of cells) that were used to estimate model
parameters. The two qualitative features used in this
study are -V relations and inactivation. When the
method is applied to other channels, one may need to
choose different qualitative features to constrain a
certain model appropriately. While global optimiza-
tion may result in more than one parameter set, the
method developed here produces parameter sets that
behave quite similarly. This method is computationally
intensive, yet it is practical using relatively modest
clusters (one optimization took about 12 h using 29
processors).

Although the dependence of the model output
(namely the current) is a nonlinear function of the
system parameters, the model used in this investigation
is a piecewise linear system, if piecewise constant
voltage protocols and drug concentrations are chosen.
While solving linear systems is conceptually (though
not necessarily numerically) straightforward and
results in a sum of exponential functions, estimating

time constants and coefficients in a sum of exponentials
is notoriously difficult.’® Thus, the particular model
studied here is a worthy example system. Extending the
method to a model that is a nonlinear dynamical sys-
tem may be more difficult, since the cost function
landscape may well be more complex. Still, the method
itself does not require an underlying linear system.
Thus, the method presented here is general and can be
applied to study other ion currents.

One choice for investigators using this method
involves how to use models that result from a number
of cells. The results presented here explored three
possibilities: averaging all of the data to generate a
single “average model” from the data, generating a
model for each cell and then averaging the parameters
in those models to generate an ‘“‘average” model, or
generating a model for each cell, and then studying the
whole population of models in subsequent simulations
(see Fig. 9). A benefit in using all model samples is that
it allows one to generate predictions about the vari-
ability of a result, which is similar to the approach
taken in many experimental studies. If an investigator
desires a single model for studying qualitative features
of a compound’s effect on /Ix,, an averaged model can
be used; as shown in Fig. 9, all three methods pro-
duced qualitatively similar results. Developing models
specific to a particular cell or group of cells presents an
interesting potential strategy for exploring functional
differences in Iy, in different cardiac cell types, in
different species, or due to genctic variants. These
differences are known to have important consequences
in the presence of certain compounds.™®

Application of this method requires an initial esti-
mate of the model structure and parameters. If no
accurate model of the current under study exists, then
the method presented here can complement computa-
tional techniques for addressing the issue of model
identifiability that have been discussed by others.*’
For example, the method can be helpful in discrimi-
nating between different model topologies. It can also
help identify the state-specific action of a drug on a
channel, such as which state or states it might bind, or
if the drug binding rate might be voltage dependent. If
two possible topologies yield significantly different cost
values after optimization, the one with lower cost
could be considered the more likely structure. In the
example we studied, the block of Ik, by verapamil is
rate-dependent, suggesting open or inactivated state
block.? The results presented here assumed that the
drug binds to the open state; we also investigated
models in which the drug bound to the inactive state.
Optimization using models with binding to the inactive
state yielded similar minimum cost values as well as
similar simulation results to model structures with
drug binding to the open state. Thus, for the purposes
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of this study verapamil may bind to either the open or
inactive state, with similar functional effects. These
results are consistent with experimental observations
that suggest that verapamil could bind to either the
open or inactive state.>>

Finally, verapamil is an interesting test compound
because although it is a potent I, inhibitor, it does not
appear to pose a risk for inducing acquired Long QT
Syndrome or Torsades de Pointes.’® Verapamil is a
multi-channel inhibitor; its effects on other currents,
such as the L-type calcium current and the late sodium
current, may be protective.’’>> An interesting future
direction of this work would be to develop similar
strategies for generating data-driven models of the
effect of compounds on the other major cardiac ion
currents, and then to use these models to link the
multi-channel activity of compounds such as verapamil
to the effect of the compound on the ventricular action
potential.

APPENDIX

Calculating the expectation of fluctuations in the
cost function caused by noise in the experimental
recordings: Ac.

N Number of data points in the training data

T; Training data at the ith data point

S; Simulation value at the ith data point

R; Real value of data (without noise) at the ith
data point

n; Noise at the ith data point

¢ Cost function

o’ Standard deviation of Gaussian noise. This
derivation assumes we know 2. To esti-
mate it, we take 600 data points (d;) at the
beginning of each sweep when the voltage
is at resting potential, shift them so the
average of these 600 points is 0, and cal-
culate the normalized average of each point
squared across all sweeps, i.e.,
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