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The medical and scientific literature is dominated by highly cited historical theories
and findings. It is important to question these theories and report findings that are deemed
to be less significant, as this could introduce new perspectives in theoretical models,
which will aim to better understand disease processes and their treatments. The gaps and
limitations in theoretical models are usually identified as molecular basic science models
are translated into biological models and then further into clinical ones, especially when a
wide range of treatment options exist.

There are many examples in various areas of medicine, including diseases related to
iron metabolism, where the translation of basic science information, which is potentially
insufficient, could lead to errors when operating disease models and suboptimal treatment
for patients. Billions of people are affected by iron-related diseases worldwide, and most
of these involve iron deficiency and iron overload, which are treated using iron chelator
complexes and chelators that eliminate iron, respectively [1–4]. Most of the other common
diseases affecting humans, such as cancer, neurodegenerative and haematological diseases,
infections including COVID-19 and also many others, appear to cause changes in iron
metabolic pathways. In most cases, these changes are characterized by abnormal levels
in iron diagnostic indices such as the level of haemoglobin, serum ferritin, serum iron,
abnormal focal iron deposition in specific cells or tissues, etc. Despite the fact that iron may
not be directly implicated in many of these diseases, interventional therapies that restore
or improve iron related imbalances may facilitate the treatment of or even improve the
prognosis for patients with such diseases [5].

In general, the control of iron, which is involved in many iron containing enzymes
and metabolic pathways in all organisms including humans, may play a central role in
therapeutic protocols involving both common and rare diseases [5]. Similar roles and
treatment approaches are considered in the case of other essential metals such as copper
and zinc [6–11].

Abnormal metal metabolic changes and associated metal interactions can also affect
therapeutic interventions and the overall treatment of patients. For example, changes
in iron metabolism such as iron overload can also affect the metabolism of many other
metals including essential, xenobiotic and diagnostic metals. Most of these metals share and
compete for the metal transport properties of transferrin and subsequently interfere with the
metabolic, therapeutic or diagnostic effects of other metals [12]. Similarly, the metabolism
and therapeutic effects of many drugs, as well as the metabolism and nutritional effects of
many nutrients, most of which have metal binding properties, can also be affected [13–16].
All these interactions and their implications on health and disease have not yet been
fully investigated.

Int. J. Mol. Sci. 2022, 23, 1364. https://doi.org/10.3390/ijms23031364 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23031364
https://doi.org/10.3390/ijms23031364
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-3364-7340
https://doi.org/10.3390/ijms23031364
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23031364?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 1364 2 of 8

The lack of in-depth investigations and inaccurate reporting, as well as distorted,
misleading or poorly promoted findings, may also lead to insufficient information and
suboptimal patient treatments. This influence is related in most cases to the level of
academic promotion and the number of citations of particular theories and is also generally
observed to take place in relation to the marketing activities of private companies involved
mainly in the sale of new, very expensive medicines and medical devices [17].

There are many examples in the literature questioning established theories in the
risk/benefit assessment for the use of different drugs, dietary components and other
medicines. In particular, the benefits, including the efficacy and low toxicity of tradi-
tional/folk medicines, are questioned in the medical literature despite the fact that millions
of people are preferably using them in comparison to synthetic drugs. Similarly, millions of
people are using routinely old/generic drugs such as the chelating drug ethylenediaminete-
traacetic acid (EDTA) because of the perceived multiple health benefits [18,19].

The existence of several drugs for each disease can be beneficial in cases of adverse
reactions from one particular drug. In contrast, the selection of a specific drug that is
randomly selected from a group of drugs for a particular disease can also lead, in many
cases, to suboptimal treatment for patients. For example, the conflict of opinion in the
use of different chelating drugs and metal complexes in different clinical conditions and
categories of patient is highlighted in the medical literature [17,20–27].

In contrast to conflicts that arise from the selection of drugs, differences of opinion
in the biology and metabolism of iron and other metal ions is on a much smaller scale
compared to the use of different drugs for diseases related to abnormal iron or other
metal metabolism. However, such differences and related discussions are necessary for
exploring the role of metal ions and their metabolic pathways in the maintenance of metal
homeostasis under normal conditions and also for the treatment of many diseases.

An example of a molecular interaction of physiological and toxicological significance,
which has been neglected for more than a half a century, is the ferroxidase and potent
antioxidant activity of transferrin [12,28]. Despite the fact that caeruloplasmin is promoted
and cited in hundreds of relevant textbooks and papers as the protein required for the
oxidation of ferrous to ferric iron before its uptake by transferrin, transferrin has also
previously been shown to be able to oxidize ferrous to ferric iron before its chelation and
the formation of the transferrin ferric iron complex [29–34]. The extent of the participation
of either caeruloplasmin or transferrin in the ferroxidase activity under physiological con-
ditions has not yet been fully investigated. In the meantime, similar properties have been
shown by the iron chelating drugs deferiprone, deferasirox and deferoxamine, which can
rapidly oxidize ferrous to ferric iron at physiological conditions before the formation of the
corresponding ferric iron complexes [15,35–37]. The ferroxidase and iron complex forma-
tion activity of the iron chelating drugs is the cornerstone of their antioxidant activity in the
Fenton reaction and has been utilized and shown to be related to the powerful antioxidant
effects exerted in many in vitro, in vivo and clinical models of oxidative stress [38]. The
therapeutic application of chelating drugs in many diseases associated with free radical
pathology, as well as the role of transferrin, is currently under investigation [28,39,40].
One major characteristic of chelators including transferrin and chelating drugs is their
pro-oxidant effects under certain conditions [41–43]. In particular, the pro-oxidant effects of
some selective chelator iron and copper complexes have been used in different experimental
models for the development of new anticancer drugs [44–46].

The transport of iron and other metal ions in and out of different cells is of physi-
ological, pharmacological and toxicological importance. The factors affecting metal ion
transport in and out of cells is the subject of continuous investigations and discussions in
health and disease. In particular, changes in the regulatory molecules, mechanisms and
homeostatic controls involved in the transport of iron and other metal ions could have
serious implications for the health statuses of many categories of patients [4,5,47]. Despite
the fact that emphasis in the medical literature is primarily given to molecular biology effect
changes, chelation and other molecular effects involving metal ions could also have major
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implications on the transportation, distribution and deposition of metal ions, as well as on
the causes or progression of different diseases [4,5,47–52]. In general, natural or synthetic
lipophilic metal chelator complexes can increase cellular metal ion intake and increase
metal ion absorption, whereas hydrophilic chelators can remove intracellular metal ion
and increase metal ion excretion [4,5,44,49]. In particular, the increase of iron absorption by
lipophilic iron chelator complexes is important for all those affected by iron deficiency and
mostly vegetarian populations [53].

In addition to the effects of the chelation of metals, there are many other unexplored
areas in relation to metal ion metabolism and associated diseases. One such example is the
impact of the regulatory excretion of natural and xenobiotic metal ions. Despite the fact
that the homeostatic controls, mechanisms and route of the regulatory excretion of copper
and zinc have been partly determined, no such information is available for iron and many
of the diagnostic metal ions, all of which are important for the diagnosis and treatment of
different diseases including iron overload [54–59]. In particular, the elimination of excess
iron in the absence of chelation therapy in post-transplanted thalassaemia patients and
some other categories of patients requires further investigation [60,61].

A major unexplored area related to many diseases is the identification of the mechanisms
and factors involved in the abnormal distribution and deposition of metal ions in different
cells and tissues. In particular, the abnormal distribution and deposition of iron has been
observed in many diseases with high morbidity and mortality rates, including many cancer,
haematological, neurodegenerative and infectious diseases including COVID-19 [4,5]. Al-
though iron may not directly be implicated in the fatal or serious pathophysiological effects in
these diseases, iron abnormalities can constitute a major factor in the progress and outcome
of the pathological effects of the underlying disease and also their treatment. Within this
context and whenever appropriate, iron chelating drugs and other chelators and chelator iron
complexes could be introduced to restore iron balance and improve the overall therapeutic
effects, including combination therapies with other drugs [4,5].

The targeting of specific mechanisms and pathways involving iron and other metal ion
abnormalities is important for many diseases. An example is the major role of macrophages
in the abnormal distribution and deposition of iron in many malignant, inflammatory
and infectious diseases including COVID-19, which in most cases is also characterized
by an elevation in serum ferritin and a reduction in serum iron levels [62–67]. The mech-
anisms involved in these changes are not yet fully clarified. Similarly, therapeutic in-
terventions, which may include chelating drugs for the targeting of specific pathways
involving macrophage iron and related changes, as well as other relevant targets need
further investigation [28,68–70].

The diagnosis and treatment of different conditions related to iron and other metal
metabolic abnormalities are among the major areas of conflict and controversy involving
marketing tactics for the promotion of different medical diagnostics and drugs by phar-
maceutical and other companies. In general, the marketing activities of private companies
affect academic research and the reporting of clinical findings and also, most importantly,
the morbidity and mortality rate of billions of patients [4,5,25,53,71–73]. For example, in the
case of iron deficiency anaemia, hundreds of different chelator and other iron complexes
are promoted, especially of new and expensive formulations claiming effective treatments
and superiority over other inexpensive, generic formulations [53,74,75].

Similar competition takes place in the case of iron chelation therapy for the removal
of excess toxic iron in iron overload conditions, where there is conflicting opinion in the
selection of the appropriate drug between deferoxamine, deferiprone and deferasirox.
However, only deferiprone and the deferiprone/deferoxamine combination have been
shown to remove iron from the heart and all other major organs effectively, as well as
returning body iron levels to those similar to normal individuals [76–78]. Furthermore,
in a long term follow up study, it has been shown that the deferiprone/deferoxamine
combination can increase the long term survival of thalassaemia patients [79]. It should
be noted that the combination of drugs with similar pharmacological activity such as the
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deferiprone/deferoxamine combination is more effective than either of the monotherapies,
but such therapeutic strategies are not promoted by pharmaceutical companies or even by
drug regulatory authorities [72].

Conflicting theoretical models and research findings involving academic researchers
sponsored by pharmaceutical companies are also widely discussed in the medical and other
academic literature. In many cases, elite journals are also involved in such promotions by
pharmaceutical companies, especially when publishing questionable theoretical models
and findings, causing confusion to patients [72]. There are many examples such as the
categorization of thalassaemia intermedia in the so called “non-transfusion-dependent-
thalassaemia” group, where deferasirox was promoted as a new therapy despite the fact
that deferoxamine and deferiprone have been used in this category of patients for over
50 years [72,80,81].

Another major issue affecting the safety and survival of patients in diseases related
to iron and other metal metabolism, as well as chelation therapies, is the interaction of
chelating drugs and chelator metal complexes with other drugs and therapies [13,14,82–86].
In this context, such interactions may be critical and established related treatment protocols
involving such interactions have to be modified. In particular, the safety and efficacy of
newly approved drugs in many cases is questionable because of the lack of sufficient long
term clinical outcome data. For example, the introduction of erythropoietic biologics such
as luspatercept (Reblozyl) has been considered for reducing red blood cell transfusions
in haematological diseases including thalassaemia, where it has been suggested that a
20% reduction is possible [87–89]. However, the use of luspatercept in thalassaemia major
is questionable since, even if haematopoiesis can be increased in patients, this can only
produce abnormal, non-functional haemoglobin. Similarly, serious concerns remain in
other aspects of therapy, such as the safety, efficacy and the cost of luspatercept and also of
other biologics, including those used in the treatment of COVID-19, since, in general, the
immunogenicity and other toxic side effects of these compounds have not yet been fully
investigated [90,91].

In conclusion, established theoretical models and principles in science and medicine
have to be scrutinized and re-evaluated at all times, with an emphasis on the improvement
of knowledge and, where appropriate, the introduction of better treatments for the increased
survival and safety of patients. In cases of pharmaceutical products, the influence of
private companies including the promotion of their new products through the medical
literature may affect the morbidity and mortality rate of many categories of patients. Herein,
several examples examining the validity of a number of established theoretical models and
drugs associated with diseases related to iron and other metal metabolic diseases have
been questioned. It is hoped that further discussions and re-evaluation could lead in the
design of better theoretical models in science and medicine related to iron and other metal
metabolism and, most importantly, for safer and more effective treatments for patients.
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