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Current information technology practices in neuroscience make it difficult to understand the 
organization of the brain across spatial scales. Subcellular junctional connectivity, cytoarchitectural 
local connectivity, and long-range topographical connectivity are just a few of the relevant 
data domains that must be synthesized in order to make sense of the brain. However, due 
to the heterogeneity of the data produced within these domains, the landscape of multiscale 
neuroscience data is fragmented. A standard framework for neuroscience data is needed to 
bridge existing digital data resources and to help in the conceptual unification of the multiple 
disciplines of neuroscience. Using our efforts in building ontologies for neuroscience as 
an example, we examine the benefits and limits of ontologies as a solution for this data 
integration problem. We provide several examples of their application to problems of image 
annotation, content-based retrieval of structural data, and integration of data across scales 
and researchers.
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IntroductIon
Cellular networks in the brain are fundamentally 
multi-scale with relevant data derived from sub-
cellular junctional connectivity, cytoarchitectural 
local connectivity, and long-range topographical 
connectivity. Experimental limitations make it 
difficult to study all these scales simultaneously. 
Consequently, experimental methodologies tend 
to reveal only a limited aspect of nervous system 
organization. However, to generate hypotheses 
across scales, we must analyze the nervous sys-
tem across spatial dimensions spanning several 
orders of magnitude. Experimental technologies 
are now able to reveal organization within these 
scales, yet the development of tools to synthesize 
these data into more coherent models of brain 
structure and function is lagging behind.

The amount of neuroscience data now 
publicly available is significant, with contribu-
tions from both large scale efforts like the Allen 
Brain Atlas (Lein et al., 2007) and individual 

 neuroscientists. While many neuroscientists 
admirably are  making their data available in 
publicly accessible databases or web sites (Ascoli 
et al., 2007), increased availability of data has not 
occurred within an overarching information 
framework that promotes data exchange and 
synthesis. Because such a framework is not used 
routinely by those creating data resources, each 
database or source tends to use its own terminol-
ogy and is structured, reasonably so, around its 
own particular data needs. Asking even straight-
forward questions that span data sources, e.g., 
“What genes are expressed in cerebral cortex?” 
requires a human to confront and reconcile mul-
tiple different definitions of the cerebral cortex 
and descriptions of gene expression from source 
to source. Comparing data between sources 
quickly becomes a matter of comparing apples 
to oranges, as definitions of terms will frequently 
be difficult to find, incongruous, or expressed 
from irreconcilable viewpoints.
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For a multidisciplinary science like neuro-
science, frameworks are also crucial for providing 
the necessary conceptual bridges to link across 
disparate disciplines. The time-varying data and 
research protocols of an electrophysiologist and 
the spatial-varying data and research method-
ologies of the microscopist are linked through 
the neural structures they study. Humans are 
able to make the connections between a physi-
ological trace recorded from a cortical pyramidal 
neuron by researcher A and a 3D tree structure 
derived from the same type of cell from researcher 
B because they have the requisite knowledge of 
how these data types relate to the underlying biol-
ogy. But in most cases, an automated information 
system does not. The data types produced by dif-
ferent researchers rarely express the linkages that 
allow those data to be put into the broader context 
of the brain. The lesson to be drawn from this is 
that just making data digital doesn’t make it ready 
for integration.

In our work, we have used the problem of 
multiscale brain imaging to investigate how data 
acquired by different researchers, using different 
techniques and data types, can be made available 
and ready for integration. As one of the foun-
dational strategies, we employ formal ontologies 
of neuronal structure to provide the conceptual 
bridge between often disparate and fragmented 
data. In this focused review, we discuss ontologies 
for neuroscience – what they are, how they are 
constructed and how they can be used. Rather 
than covering the field extensively as in a classical 
review1, we provide a practical and personal per-
spective on the benefits and limits of ontologies as 
a solution for the data integration problem, using 
Subcellular Anatomy Ontology (SAO; Larson 
et al., 2007) as an example. We try, as much as pos-
sible, to make the often arcane world of ontolo-
gies understandable to a neuroscience audience by 
avoiding jargon whenever possible. We also discuss 
some of the lessons we have learned on how to 
build ontologies for neuroscience, and show how 
these have been applied in building ontologies on 
a broader scale for the Neuroscience Information 
Framework (NIF) project (Gardner et al., 2008a)2. 
Due to space limitations, we do not cover all other 
ontology efforts in neuroscience but refer readers 
to recent papers by Bota and Swanson (2008a), 
Gardner et al. (2008b) and Bowden et al. (2007) 
for other worthy efforts and different viewpoints 
on building neuroscience terminologies.

IntroductIon to ontologIes
An ontology is a formal representation of knowl-
edge in a domain that takes advantage of first-
order logic, standardized relationships, and, in the 
information age, modern data exchange standards 
such as the Web Ontology Language (OWL) (www.
w3.org/TR/owl-features). Ontologies consist of a 
set of classes that represent concepts defining a field 
and the relationships among these classes. These 
are distinguished from other ways of organizing 
knowledge, such as controlled vocabularies and 
taxonomies, by the richness and expressiveness 
of relationships. A controlled vocabulary can be 
thought of as the backbone of an ontology. It is 
a set of terms in a subject domain that may have 
been given definitions and unique identifiers, but 
which has no explicit relationships among these 
terms. A taxonomy adds to a controlled vocabu-
lary by further organizing terms according to one 
or more classification criteria. A very well known 
taxonomy is the tree of life, where living organisms 
are classified into Kingdom, Phylum, and Class, etc. 
An ontology builds upon a taxonomy by adding 
the ability to define other relationships between 
entities beyond identifier, definition, and place in 
the taxonomic hierarchy. Relationships such as 
“part of” allow entities3 within the ontology to be 
related to one another across the taxonomic hierar-
chy. These relationships themselves are entities that 
can be rigorously defined based on what is required 
to describe the knowledge domain.

In order to manage and perform computations 
on the different relationships between entities, 
ontologies are usually encoded into a language 
that allows a machine to manage and utilize the 
information. Tools that act like the “word proc-
essor” of an ontology such as Protégé (http:// 
protege.stanford.edu) use a language like OWL 
as a convenient standard4,5. Once this knowledge 
has been captured in a machine processable 
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Information framework
An information framework  
is a systematic method for assembling 
knowledge and data within a given 
domain. A good information 
framework should allow scientists  
and other knowledge workers  
to easily extract, add, and recombine 
knowledge and data from various 
sources in a flexible way.

Ontology
An ontology is a formal representation 
of knowledge in a domain that  
takes advantage of first-order logic, 
standardized relationships, and modern 
data exchange standards such as  
the Web Ontology Language (OWL). 
Ontologies consist of a set of classes 
that represent concepts defining  
a field and the relationships among 
these classes.

3At this point, we switch from “term”, which connotes the 
words used to refer to a thing, to “entity”, which connotes 
the thing itself. The entities of an ontology are its classes, 
properties, restrictions, and instances; the building blocks 
of its structure. The terms of an ontology are the knowledge 
content of its classes.
4OWL is not the only formalism for encoding ontologies and 
it should be kept in mind that the notion of an ontology is 
independent of the language in which it is encoded.
5The resource description framework (RDF) is commonly 
associated with ontologies. RDF is a particular language for 
encoding knowledge in an exchangeable way, rather than a 
way of organizing knowledge. RDF can be used to encode 
controlled vocabularies, taxonomies, or ontologies, as well 
as other kinds of information. Currently, OWL 1.0 adds 
formalisms on top of RDF to express ontologies. OWL 2.0 
has defined an additional exchange format that encodes OWL 
directly in XML that does not use RDF.

1A broad overview of neuroscience-related ontologies can be 
found in Bug et al. (2008).
2All of the ontologies and tools mentioned are available 
through the Open CCDB Wiki (http://openccdb.org/wiki).
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form, it becomes easier to exchange and utilize 
this  knowledge within information systems. The 
ontology can be e-mailed or posted on the inter-
net, merged with descriptions of other domains, 
split apart, and modified algorithmically.

subcellular anatomy ontology
Our entrée into the world of ontologies occurred 
through our work in building informatics 
resources for cellular and subcellular data derived 
from the nervous system. In our previous article, 
we described a formal ontology of subcellular 
anatomy (Larson et al., 2007), specifically con-
structed to describe data from light and electron 
microscopic imaging and provide the conceptual 
bridge between whole brain anatomy and macro-
molecular scales. The SAO builds upon existing 
ontologies for subcellular components (e.g., the 
Gene Ontology) and extends them for the nervous 
system. Its 835 classes encompass cells, parts of 
cells and supracellular structures like synapses6. 
The SAO is encoded in OWL and uses 68 relation-
ships between its terms such as “is a” and “has 
part” derived from the OBO relations ontology 
(Smith et al., 2005), e.g., Neuron is a Nerve cell; 
Pyramidal cell has part Axon. Through these rela-
tionships, the SAO allows us to relate macromol-
ecules to subcellular structures, parts of cells to 
a whole cell or to higher-order brain structures. 
Thus, any part of a neuron may be localized to a 
brain region, recognizing the fact that neurons are 
large cells whose parts span many brain regions.

lessons learned
Formalizing knowledge about poorly understood 
biological systems presents many obstacles to the 
development of ontologies. Those who are tasked 
to do so can find it a daunting and ultimately 
unproductive task. However, through multiple 
iterations and by application of ontology best 
practices formulated and promulgated by the 
Open Biological Ontologies (OBO) community, 
we distilled a few guidelines that help make the 
problem manageable (Bug et al., 2008). First and 
foremost, we limited our scope to design ontolo-
gies for the purpose of applying them to data. 
The ontologies were designed to provide the links 
between data acquired by a researcher and the bio-
logical concepts used to communicate about their 
meaning and significance. Our goal at first was 
not, therefore, to encapsulate within the ontology 
everything that we know about biological systems, 
but rather to create a structure that enabled clear 
communication about data.

structurIng neuroscIence knowledge: 
classes vs. instances
Because we are designing systems to be applied 
to data, we found it useful to draw a clear distinc-
tion between classes and instances. In an ontology, 
classes represent the canonical description of an 
entity while instances represent individual exam-
ples of that entity. The Purkinje cell class will have 
a definition that is consistent with what is gener-
ally known about the Purkinje neuron. In contrast, 
an instance of the class Purkinje cell refers to a 
specific Purkinje cell that has been encountered in 
an experiment or described in a published report. 
Thus, we distinguish between Purkinje cells in 
general (class) and a specific Purkinje cell under 
investigation (instance). However, it should be 
noted that this definition of instances is not always 
consistent across ontologies. For example, Bota 
and Swanson (2008), consider all members of a 
class to be instances.

Having these separate views confers several 
advantages when confronting the complexity of 
biological systems. Early in our efforts to build 
ontologies, we tied ourselves in knots trying to 
capture all of the class-level rules that define 
something like a Purkinje neuron. We attempted 
to conservatively define those rules that must be 
true such as the characteristic number of den-
drites or diameter of the cell body. We quickly ran 
into the well-known problem that these proper-
ties exist as wide ranges of legitimate values that 
differ from species to species and across time and 
perhaps space. Encoding this information into 
the class-level descriptions is problematic. On the 
technical level, ontology languages such as OWL 
are not particularly good at dealing with numeri-
cal values such as ranges or probabilities. On a 
philosophical level, we know that we have very 
few examples of even well-studied cells such as 
Purkinje neurons from which to make generaliza-
tions. Because we do not yet have the capability 
of studying biological organisms across scales 
without significantly perturbing them, we also 
know that much of what we observe is colored 
by the experimental procedures used to prepare 
and image biological specimens.

As we discuss in Larson et al. (2007), we 
turned to the ontological instance as the vehicle 
by which individual examples of Purkinje neu-
rons encountered during an experiment or in 
the literature could be described in a consistent 
way, and through which biological objects were 
associated with experimental and data properties. 
A specific Purkinje neuron is stained according 
to a particular protocol and imaged with a par-
ticular type of microscope. It has numerous pri-
mary dendrites and other attributes that can be 

Class
In an ontology, classes represent  
the canonical description of an entity. 
The Purkinje cell class will have  
a definition that is consistent with  
what is generally known about the 
Purkinje neuron. Thus, we distinguish 
between Purkinje cells in general  
(class) and a specific Purkinje cell  
under investigation (instance).

Instance
In an ontology, instances represent  
the individual example of a class.  
An instance of the class Purkinje cell 
refers to a specific Purkinje cell that  
has been encountered in an experiment 
or described in a published report. 
Thus, we distinguish between Purkinje 
cells in general (class) and a specific 
Purkinje cell under investigation 
(instance).

6The SAO contains 43 neuron classes that have been identified 
across multiple species.
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measured and described. By tying these attributes 
to formal ontologies like the SAO and NIFSTD, 
observations taken by different researchers can 
be aggregated together so that questions like 
“How many primary dendrites does a Purkinje 
cell have?” can be answered statistically based 
on all of the available instances. In this way the 
instances of the ontology can be used to integrate 
information about things in neuroscience and 
their associated properties.

names, labels and defInItIons
A second guiding principle promoted by OBO is 
the use of clear definitions for each entity. When 
we assert that something is an instance of a class, 
we are asserting that the thing is identical to the 
class, not just close in meaning. We therefore 
require an explicit declaration of the meaning of 
the entity so that it can be applied appropriately. 
Thus, annotating with an ontology is somewhat 
different than choosing keywords to describe 
data or trying to determine the most appropriate 
category under which a paper belongs. In these 
cases, we often chose the closest fit even if it is 
not an exact match. Because meaning is para-
mount for consistent application, when build-
ing our ontologies, we found it useful to start 
with a lexicon, i.e., a dictionary of the classes 
accompanied by a human-readable definition. 
Following best practices, this human-readable 
definition is expressed in a way that it is consist-
ent with the machine-readable definition, i.e., the 
graph structure, in the ontology. For example, the 
human readable definition “A Purkinje neuron is 
a type of neuron that is found in the Cerebellar 
cortex” would be reflected in the class hierarchy 
(Purkinje cell is a Neuron; Purkinje cell has loca‑
tion Cerebellar cortex).

By focusing on the definition of a thing, the 
name by which it is identified becomes less impor-
tant. As Shakespeare wrote, “A rose by any other 
name would smell as sweet”. In fact, again adhering 
to standard practices in the ontology community, 
in the SAO, the name of the class is a meaning-
less numerical ID. To make it understandable to 
a human, each class is also assigned a “preferred 
label” as an annotation property, which can serve 
in lieu of the class identifier. For example, class 
sao471801888 has the preferred label “Purkinje 
Cell”. Similarly, multiple alternate labels such as 
synonyms can be assigned to the same class. If 
the preferred label turns out to be undesirable 
for some reason, it can be switched without 
altering the structure of the ontology. However, 
if the definition changes, the class is retired and 
a new class created even though it may still have 
the same preferred label. Biology also certainly 

suffers from its share of homographs, words that 
are spelled the same but with different meanings, 
e.g., nucleus as brain region and nucleus as cell 
part. As these homographs have clearly different 
definitions, they are distinguished in ontologies 
by their unique identifiers and positions within 
the graph.

A common misconception about ontologies 
is that once they are created they are intended 
to be rigid definitions that must be agreed to by 
all who use them. Rather, we see ontologies as a 
flexible formal medium for arriving at an explicit 
shared understanding of concepts that define a 
field and for exposing areas where such shared 
understanding does not yet exist. By declaring 
the definition of a thing, the ontology serves as 
a standard by which other understandings can 
be compared. When annotating data, the essen-
tial point is not whether the researcher agrees 
wholeheartedly with the entity definition, but 
that the definition is clear and can be applied 
correctly. In these circumstances, ontologies 
can be powerful tools to facilitate clarity in 
communication and data exchange across sub-
disciplines.

As our understanding of ontologies and 
ontology languages have increased, we have 
begun to take advantage of more of the class 
level operations available in OWL to enhance 
the computing power of the SAO. While using 
the ontology as a standard way of constructing 
instances, the advantages of OWL as an ontol-
ogy language are more fully realized at the level 
of classes. As a first order logic language, OWL 
allows the user to define a class not only through 
its place in the hierarchy but also through a 
logical definition constructed by the addition 
of necessary and sufficient conditions, called 
“restrictions”, and additional rules. Restrictions 
allow a description logic reasoner such as Pellet 
(Evren et al., 2005) to make classification infer-
ences about these classes. For example, a set of 
restrictions about a Purkinje cell in the cerebel-
lum can specify that all instances of a Purkinje 
cell must have a cell body and that the cell 
body must be located in the Purkinje cell layer, 
while the dendritic tree must be located in the 
molecular layer. Of course, we know that we 
are likely to encounter instances of displaced 
Purkinje cells that may violate this constraint, 
for example, during development or in a patho-
logical condition. Such inconsistencies would be 
identified by an algorithm checking for consist-
ency between the definitions of the classes and 
instances as being in an error state. Several steps 
could then be taken. These include: the defini-
tion of the class of Purkinje neuron could be 
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revised and made more general; the notion of a 
displaced Purkinje cell could be formalized; or 
the instance could be thrown out as not quali-
fying as a Purkinje cell for the purposes of the 
analysis. In this way, inconsistencies that might 
otherwise be buried inside a data set are made 
transparent.

OWL also allows the definition of classes that 
must be disjoint from one another. When such 
a restriction is added, we are declaring that two 
classes cannot overlap with one another. For ana-
tomical brain regions, this type of restriction 
can be used to define a set of cerebellar regions 
that, when added together, would account for the 
entire cerebellum. Again, we know that through 
gross anatomy and cytoarchitectural characteri-
zations of brain regions, some brain regions may 
be declared disjoint, e.g., cerebellar cortex and 
the deep cerebellar nuclei, while others are not, 
e.g., cerebellar cortex and the cerebellar hemi-
spheres. In this case, we can generate a set of 
non-overlapping territories by forming cross 
products between different anatomical par-
cellations, e.g., cerebellar cortex of cerebellar 
hemispheres.

One of the recommendations of the OBO 
Foundry, which has elicited much misunder-
standing and heated argument in ontology 
meetings, is that ontologies be constructed 
as single inheritance trees. In a single inherit-
ance tree, each entity has only a single parent 
(super class) and is ideally organized along a 
single dimension. We found that adhering to 
the principle of single inheritance actually 
helps in the construction of ontologies. This is 
because we do not have to manually create all 
possible hierarchies to which an entity belongs. 
Of course, we know that biological entities are 
complex things and can belong to many differ-
ent superclasses. For example, a Purkinje cell 
is a member of the class “neuron”; it is also a 
member of the class “GABAergic neuron” and 
the class “spiny neuron”. We have interpreted 
the rule of single inheritance to mean that each 
class should only have a single asserted parent 
in the core ontology. However, through the 
use of properties and logical definitions, addi-
tional hierarchies may be inferred, again using 
reasoners applied to the ontology. In the case 
of neurons, the property has neurotransmitter 
is assigned to members of the class Neuron. We 
then create a class “GABAergic neuron” defined 
by a restriction that states “it is any neuron that 
has neurotransmitter GABA”. A reasoner then 
will classify all neurons for which this condi-
tion holds under that class (see Figure 5; Larson 
et al., 2007).

applIcatIon of ontologIes to data
For the past few years, we have been exploring 
not only the best means to develop ontologies, 
but how they can be effectively used within 
information systems to enhance data exchange 
and search. Here, we illustrate several uses spe-
cifically for application to imaging data obtained 
from light and electron microscopy housed in 
the Cell Centered Database (CCDB; http://ccdb.
ucsd.edu), an on-line web-accessible database cre-
ated to disseminate high resolution microscopic 
data to the scientific community (Martone et al., 
2008).

taggIng neuroanatomIcal data  
wIth ontologIes
Annotation with ontologies is typically per-
formed after data is acquired, often by dedicated 
annotators or curators. While an effective model, 
not all databases have the resources to hire full 
time annotators or those with the expertise to 
interpret highly specialized data such as that 
derived from 3D electron microscopy. Within 
the CCDB project, we have been developing 
ways in which ontologies can be incorporated 
into biologists’ tools so that annotation occurs 
as a researcher is analyzing data. In the realm 
of electron microscopy, this approach makes 
sense because electron microscopists spend 
many hours carefully segmenting structures 
of interest from their data, typically through 
manual tracing. The SAO has been deployed 
through Jinx, a segmentation program designed 
principally for looking at micrographs that are 
the result of electron tomography experiments 
(Martone et al., 2008). While segmenting, users 
create objects as instances of SAO classes. Jinx 
retrieves the latest version of SAO from the 
web, so that all users of Jinx are accessing the 
same ontology. Users can also use a subset of 
SAO relations to provide information about 
the relationship among segmented structures, 
e.g., Mitochondrion.000 has part Cristae.000. 
These instances are stored within an adjunct to 
the CCDB called the Cellular Knowledge Base 
(CKB), an RDF triple store with pointers to the 
datasets stored within the CCDB.

Query of ImagIng data through ontology
At the simplest level, annotation with the SAO 
provides a controlled vocabulary for describing 
subcellular structures, thus avoiding customized 
and often unrecognizable names assigned to 
objects. However, the advantages of  describing 
CCDB data as instances of the SAO go well beyond 
the benefits of a controlled vocabulary. Through 
the CKB, we can query CCDB data through the 



Frontiers in Neuroscience www.frontiersin.org May 2009 | Volume 3 | Issue 1 | 65

Larson and Martone Ontologies for neuroscience

 relationships between segmented objects, thereby 
taking advantage of knowledge encoded both at 
the class and instance level.

To provide a simple example, the CCDB con-
tains several datasets of neurons filled with an 
intracellular dye to reveal cellular morphology. 
If one were to issue a query to the CCDB for all 
examples of “GABAergic neuron”, CCDB would 
return zero results even though it has many exam-
ples of neurons that use GABA as a neurotrans-
mitter (e.g., Purkinje neurons). The data model 
of the CCDB primarily represents information 
about how a dataset was produced. If an experi-
ment does not explicitly look for GABAergic 
markers, the relationship between GABA and 
a cell type is not made explicit. The SAO, how-
ever, records knowledge about nerve cell classes, 
including the neurotransmitter. As described 
above, using the inference capabilities of OWL, 
the CKB can generate a list of neurons that use 
GABA as a neurotransmitter and then query the 
CCDB for instances of those classes.

The goal of many imaging databases is 
to provide “content-based retrieval”, that is, 
retrieval of images based on their content and 
not on high level descriptions of that content. 
Real-time feature analysis of images remains a 
difficult challenge, made more so by the mul-
tidimensional and heterogeneous content of a 
database like the CCDB. When a user specifies 
relationships among segmented objects using 
Jinx, the content of a very complex scene is 
turned into a machine-parseable graph. Thus, 
these relationships can be used to provide con-
tent-based retrieval through the CKB. A query 
to “Find all instances of spines that contain 
membrane-bound organelles” returns an elec-
tron tomography dataset in which the dendritic 
spine of a Purkinje cell contains smooth endo-
plasmic reticulum. Note that this example takes 
advantage of both class-level (Dendritic spine 
is a Spine; Smooth endoplasmic reticulum is 
a Membrane-bound organelle) and instance-
level operations (Dendritic Spine.000 has part 
Smooth endoplasmic reticulum.000).

scalIng up:  
the neuroscIence InformatIon framework
The value of ontologies for facilitating data 
exchange has been recognized in the Neuroscience 
Information Framework (NIF) project (http://
neuinfo.org). Funded through the NIH Blueprint 
consortium, this project has as its goal the crea-
tion of a framework for describing and access-
ing neuroscience resources that are on the web 
(Gardner et al., 2008a). At the core of the NIF 
is an expansive ontology covering the broader 

domain of neuroscience. The NIFSTD (for NIF 
standardized) ontology was built using the same 
core principles outlined previously (Bug et al., 
2008) through importing existing ontologies and 
other terminology resources and standardizing 
them under the same foundational ontologies 
used by the SAO (Smith et al., 2005).

The NIFSTD (http://purl.org/nif/ontology/
nif.owl) was created in OWL using a modu-
lar design, with separate modules covering the 
domains of gross brain anatomy, nerve cells, sub-
cellular anatomy, molecules of excitability, nerv-
ous system function, nervous system dysfunction 
(disease) and technique. Whenever possible, the 
NIFSTD imported an existing ontology rather 
than re-inventing one. For example, the SAO 
was imported to cover subcellular structures in 
the nervous system. Each class is named with a 
numerical ID; if the class was imported from an 
existing ontology, the ID remained unchanged. 
The NIFSTD provides a preferred label for each 
class and a set of synonyms, acronyms and abbre-
viations, along with human readable definitions. 
Each of the modules consists of a single inher-
itance tree with a relatively flat class hierarchy. 
Cross-domain relationships, e.g., nerve cell to 
brain region, were deliberately not included in 
the core ontologies but are included in separate 
files called “bridge files”. This modular structure 
was chosen in order to make it easy for other 
applications to import parts of the NIFSTD 
ontology and build separate extensions and 
applications around these base ontologies for 
their specific applications. This approach show-
cases another feature of OWL – entities can have 
their definitions extended in a file external to the 
authoritative ontology that first defines them. 
This feature is important because it allows an 
authoritative ontology to contain only the most 
conservative statements about a domain while 
allowing other derivative ontologies to fill in 
more controversial or customized views within 
their local domains.

buIldIng on nIfstd
From the base ontologies established in the 
NIFSTD, we can now create more complex 
ontologies that contain a much richer set of 
intra- and cross-domain relationships. As an 
example, we illustrate how we are redesigning 
the SAO so that it is built on top of the NIFSTD 
core ontologies. In the original SAO, we had 
a class “Cell” that elaborated different types 
of nerve cells and “Molecule” which enumer-
ated molecules found in the nervous system. 
However, when the NIFSTD imported the SAO, 
many duplicate classes were created because 
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it imported cell types from other ontologies 
as well. We then had to spend considerable 
effort removing and reconciling these dupli-
cate classes. The new SAO imports multiple 
NIF modules: NIF Cell, Molecule, Anatomy 
and Subcellular structure, directly from NIF, 
rather than recreating them. Instead, the SAO 
confines itself to providing the relationships 
among these classes, e.g., Subcellular Structure 
is located in Brain Region; Subcellular structure 
has part Molecule. Subcellular structure is part 
of Cell. NIF Cell, Molecule, Brain Anatomy and 
Subcellular Anatomy. By utilizing the core classes 
of the NIFSTD, ontologies for neuroscience can 
be built covering almost any domain. Because 
they all reference the same core classes, we can 
aggregate information together through knowl-
edge networks. In addition, in this way, the SAO 
can take advantage of community contributions 
to the NIFSTD ontologies from other sources.

cross-scale Inferences
One of the stated goals of providing a formal 
ontology in a logic language such as OWL is the 
ability to perform automated reasoning. While 
algorithms may not yet be able to make scien-
tific discoveries for us, reasoning and classifica-
tion tools have been developed for OWL which 
can significantly aid a researcher trying to wade 
through a sea of heterogeneous data. In previous 
papers (Larson and Martone, 2007), we described 
the use of logical rules and the SAO to infer bio-
logical structure across spatial scales from lim-
ited scenes obtained from electron microscopy. 
We were able to show that from an annotation 
of electron microscopic data showing a synapse 
onto a dendritic spine, connectivity across multi-
ple scales (brain region to brain region; cell to cell) 
could be automatically inferred7. This inference 
was made possible because the ontology encoded 
the relationship between different parts of a neu-
ron and their relationship to higher order brain 
regions.

lookIng forward
Ontologies can be difficult to construct and 
maintain and so it is important that any effort 
spent results in significant returns. By taking a 
graduated approach in their construction and 
deployment, we applied ontologies simply and 
effectively as a framework to solve some basic 
problems in data annotation and data retrieval. 
They can be combined with other information 
systems like relational databases and analysis 

tools to provide a semantic means by which data 
are reported and queried. At the same time, we 
are exploring more advanced features involv-
ing reasoning and classification to see how far 
we can go in utilizing machine-based systems 
to look for patterns in data and perform the 
same types of conceptual leaps routinely per-
formed by humans (e.g., reasoning about elec-
tron micrographs across spatial scales). Although 
valuable, we also recognize the limitations of cur-
rent ontology tools for dealing effectively with 
very large numbers of concepts, e.g., genes and 
proteins, and partially overlapping classes, e.g., 
different brain parcellation schemes. With the 
construction of the NIFSTD, we believe that we 
have provided a solid foundation for talented 
knowledge-engineers to explore such issues in 
the context of neuroscience data. We also hope 
that neuroscientists will see the value of knowl-
edge frameworks as a critical part of neuroscience 
in the digital age and actively participate in the 
refinement and utilization of these frameworks 
to advance the practice of neuroscience8.

contrIbutIons
In this review we have:

Characterized a problem of information •	
management crucial to understanding the 
organization of the brain across spatial scales 
and across data modalities
Introduced ontologies, what they are, and •	
how they can be used to describe the structure 
of the brain
Enumerated several examples of the diverse •	
applications of ontologies to help solve 
the information management problem in 
neuroscience.

acknowledgements
Supported by NIH grants NIDA DA016602 
(CCDB), NINDS RO1NS058296 and NCRR 
RR04050. The Neuroscience Information 
Framework is supported by NIH Neuroscience 
Blueprint Contract HHSN271200577531C via 
NIDA. The Protégé resource is supported by 
grant LM007885 from the United States National 
Library of Medicine. The authors wish to thank 
Christopher Aprea and Sarah M. Maynard for 
helpful comments.

7See Figure 2, Larson and Martone (2007) for an example.

8The Neuroscience Information Framework (http://neuinfo.
org) has made community ontology building a priority. The 
subcellular anatomy ontology has been adopted as one of 
its core ontologies for bringing neuroscience data together. 
The NIF project is continuing to refine the SAO as part of 
the NIFSTD.



Frontiers in Neuroscience www.frontiersin.org May 2009 | Volume 3 | Issue 1 | 67

Larson and Martone Ontologies for neuroscience

Martone, M. E., Tran, J., Wong, W. W., 
Sargis, J., Fong, L., Larson, S., 
Lamont, S. P., Gupta, A., and 
Ellisman, M. H. (2008). The cell-
 centered database project: an update 
on building community resources for 
managing and sharing 3D imaging data. 
J. Struct. Biol. 161, 220–231.

Smith, B., Ceusters, W., Klagges, B., Köhler, J., 
Kumar, A., Lomax, J., Mungall, C., 
Neuhaus, F., Rector, A. L., and Rosse, C. 
(2005). Relations in biomedical ontolo-
gies. Genome Biol. 6, R46.

Conflict of Interest Statement: This 
research was conducted in the absence of 
any commercial or financial relationships 
that could be construed as a potential con-
flict of interest.

Received: 23 September 2008; paper pend‑
ing published: 04 November 2008; accepted: 
22 March 2009; published: 01 May 2009.
Citation: Front. Neurosci. (2009) 3,1: 
67–60. doi: 10.3389/neuro.01.007.2009

Copyright © 2009 Larson and Martone. This 
is an open‑access article subject to an exclusive 
license agreement between the authors and 
the Frontiers Research Foundation, which 
permits unrestricted use, distribution, and 
reproduction in any medium, provided the 
original authors and source are credited.

Robert, A., Shepherd, G. M., Sternberg, 
P. W., Van Essen, D. C., and Williams, 
R. W. (2008a). The neuroscience infor-
mation framework: a data and knowl-
edge environment for neuroscience. 
Neuroinformatics 6, 149–160.

Gardner, D., Goldberg, D. H., Grafstein, B., 
Robert, A., and Gardner, E. P. (2008b). 
Terminology for neuroscience data 
discovery: multi-tree syntax and 
investigator-derived semantics. 
Neuroinformatics 6, 161–174.

Larson, S. D., Fong, L. L., Gupta, A., 
Condit , C. , Bug, W. J. , and 
Martone, M. E. (2007). A formal 
ontology of subcellular neuroanatomy. 
Front. Neuroinformatics 1, 3.

Larson, S. D., and Martone, M. E. (2007). 
Rule-Based Reasoning With a Multi-
Scale Neuroanatomical Ontology. 
CEUR Workshop Proceedings 258, 
ISSN 1613-0073.

Lein, E. S., Hawrylycz, M. J., Ao, N., 
Ayres, M., Bensinger, A., Bernard, A., 
Boe , A . F. ,  Boguski , M. S . , 
Brockway, K. S., Byrnes, E. J., Chen, L., 
Chen, L., Chen, T. M., Chin, M. C., 
Chong, J., Crook, B. E., Czaplinska, A., 
Dang, C. N., Datta, S., Dee, N. R., 
Desaki, A. L., Desta, T., Diep, E., 
Dolbeare, T. A., Donelan, M. J., 
Dong, H. W., Dougherty, J. G., 
D uncan , B . J . ,  Ebb er t ,  A . J . , 

Eichele, G., Estin, L. K., Faber, C., 
Facer, B. A., Fields, R., Fischer, S. R., 
Fliss, T. P., Frensley, C., Gates, S. N., 
Glattfelder, K. J., Halverson, K. R., 
Hart, M. R., Hohmann, J. G., 
Howel l ,  M. P. , Jeung , D. P. , 
Johnson, R. A., Karr, P. T., Kawal, R., 
Kidney, J. M., Knapik, R. H., Kuan, C. L., 
Lake, J. H., Laramee, A. R., Larsen, K. D., 
Lau, C., Lemon, T. A., Liang, A. J., Liu, Y., 
Luong, L. T., Michaels, J., Morgan, J. J., 
Morgan, R. J., Mortrud, M. T., 
Mosqueda, N. F., Ng, L. L., Ng, R., 
Orta, G. J., Overly, C. C., Pak, T. H., 
Parry, S. E., Pathak, S. D., Pearson, O. C., 
Puchalski , R. B. , Ri ley, Z. L. , 
Rockett, H. R., Rowland, S. A., 
Royall, J. J., Ruiz, M. J., Sarno, N. R., 
Schaffnit, K., Shapovalova, N. V., 
Sivisay, T., Slaughterbeck, C. R., 
Smith, S. C., Smith, K. A., Smith, B. I., 
Sodt, A. J., Stewart, N. N., Stumpf, K. R., 
S u n k i n ,  S .  M . ,  S u t r a m , M . , 
Tam, A., Teemer, C. D., Thaller, C., 
Thompson, C. L., Varnam, L. R., 
Vi s e l ,  A . ,  Wh i t l o c k ,  R .  M . , 
Wohnoutka, P. E., Wolkey, C. K., 
Wong, V. Y., Wood, M., Yaylaoglu, M. B., 
Young, R. C., Youngstrom, B. L., 
Yuan, X. F., Zhang, B., Zwingman, T. A., 
and Jones, A. R. (2007). Genome-wide 
atlas of gene expression in the adult 
mouse brain. Nature 445, 168–176.

references
Ascoli, G., Donohue, D., and Halavi, M. 

(2007). NeuroMorpho.Org – a central 
resource for neuronal morphologies. 
J. Neurosci. 27, 9247–9251.

Bota, M., and Swanson, L. W. (2008). 
BAMS neuroanatomical ontology: 
design and implementation. Front. 
Neuroinformatics 2, 2, Epub 22 May 
2008.

Bowden, D. M., Dubach, M., and Park, J. 
(2007). Creating neuroscience 
ontologies. Methods Mol. Biol. 401, 
67–87.

Bug, W. J., Ascoli, G. A., Grethe, J. S., 
Gupta, A., Fennema-Notestine, C., 
Laird, A. R., Larson, S. D., Rubin, D., 
Shepherd, G. M., Turner, J. A., and 
Martone, M. E. (2008). The NIFSTD 
and BIRNLex vocabularies: building 
comprehensive ontologies for neuro-
science. Neuroinformatics 6, 175–194.

Evren, S., Parsia, B., Grau, B. C., 
Kalyanpur, A., and Katz, Y. (2005). 
Pel let :  A Practical  OWL-DL 
Reasoner. UMIACS Technical Report, 
2005–2068.

Gardner, D., Akil, H., Ascoli, G. A., 
Bowden, D. M., Bug, W., Donohue, D. E., 
Goldberg, D. H., Grafstein, B., 
Grethe, J. S., Gupta, A., Halavi, M., 
Kennedy, D. N., Marenco, L., Martone, 
M. E., Miller, P. L., Müller, H. M., 


