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Abstract

Objective

Receptor for advanced glycation end products (AGEs; RAGE) binds to both AGEs and

amyloid-beta peptides. RAGE is involved in chronic complications of type 2 diabetes and

Alzheimer’s disease. We aimed to investigate the roles of RAGE, AGEs and the Gly82Ser

polymorphism of RAGE in mild cognitive impairment (MCI) among type 2 diabetes patients.

Methods

Of the 167 hospitalized type 2 diabetes patients recruited, 82 satisfied the diagnostic criteria

for MCI, and 85 matched control individuals were classified as non-MCI. Demographic data

were collected, and the soluble RAGE (sRAGE) concentrations, serum AGE-peptide (AGE-

P) levels, RAGE Gly82Ser genotype and neuropsychological test results were examined.

Results

The MCI group exhibited a decreased sRAGE level (0.87±0.35 vs. 1.05±0.52 ng/ml,

p<0.01) and an increased serum AGE-P level (3.54±1.27 vs. 2.71±1.18 U/ml, p<0.01) com-

pared with the control group. Logistic regression analysis indicated that each unit reduction

in the sRAGE concentration increased the MCI risk by 54% (OR 0.46[95% CI 0.22–0.96], p
= 0.04) and that each unit increase in the AGE-P level increased the MCI risk by 72% in the

type 2 diabetes patients (OR 1.72[95% CI 1.31–2.28], p<0.01). The serum sRAGE level

was negatively correlated with the score on the trail making test-B (TMT-B) (r = -0.344, p =

0.002), which indicates early cognitive deficits related to diabetes. Moreover, the AGE-P

level was positively correlated with multiple cognitive domains (all p<0.05). No significant

differences in the neuropsychological test results or serum RAGE concentrations between
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the different RAGE genotypes or in the RAGE genotype frequencies between the MCI and

control groups were identified (all p>0.05).

Conclusions

The RAGE pathway partially mediates AGE-induced MCI in diabetic patients. The serum

AGE-P level may serve as a serum biomarker of MCI in these individuals, and sRAGE rep-

resents a predictor and even a potential intervention target of early cognitive decline in type

2 diabetes patients.

Trial registration

Advanced Glycation End Products Induced Cognitive Impairment in Diabetes: BDNF Signal

Meditated Hippocampal Neurogenesis ChiCTR-OCC-15006060

Introduction
Diabetes mellitus affects the brain and other organs, such as the kidneys and eyes, as well as the
peripheral nervous system. It has been demonstrated that individuals with diabetes have a
much higher (up to a two-fold greater) risk of Alzheimer’s disease [1, 2]. Individuals with type
2 diabetes are at a 50 to 60% increased risk of developing mild cognitive impairment (MCI),
which has an annual rate of progression to dementia of 15% [3, 4]. Type 2 diabetes contributes
to cognitive impairment via several associated biological conditions, including hyperglycemia,
insulin deficiency, glucose-mediated toxicity, and amyloid-beta (Aβ) peptide accumulation,
although the underlying pathogenesis requires further study [5].

Advanced glycation end products (AGEs) are a complex and heterogeneous group of com-
pounds that have been implicated in diabetes-related complications. CML and pentosidine,
two AGEs that have been shown to contribute to Alzheimer's disease pathology and vascular
dementia, have predominantly been isolated from CSF, and a few simple and rapid analytical
procedures are available for detecting these molecules. The evaluation of AGE-peptides is a
valuable and useful alternative to the measurement of AGEs in the bloodstream; of AGE-pep-
tides for AGE-peptide evaluation are lacking [6, 7]. AGE-P is released from naturally degraded
AGEs in tissue and binds to a small peptide (AGE-peptide) of less than 10 kDa [8], which acts
as a reactive intermediate. The levels of AGE—P can be determined by immunochemical meth-
ods [9] such as flow injection assay; such methods were found to be superior to enzyme-linked
immunosorbent assay (ELISA) and fluorescence spectroscopy for the examination of AGEs
[10]. Furthermore, AGE-P exhibits the same toxic activity as AGEs, and AGE-P has been rec-
ognized to be responsible for complications of diabetes such as diabetic nephropathy [11, 12].
More importantly, a reliable and reproducible assay for determining the serum AGE-P concen-
trations has been successfully validated in previous studies [13–15].

Receptor for AGEs (RAGE) mediates most of the toxic effects of AGEs that are associated
with diabetic complications. Additionally, RAGE functions as a signal-transducing cell surface
receptor of Aβ peptides and promotes Aβ peptide accumulation and deposition in amyloid pla-
ques, which accumulate during Alzheimer’s disease development [16, 17]. However, whether
RAGE is involved in diabetes-related dementia is unknown.

In addition to the full-length membrane-bound isoform of RAGE (mRAGE), which is
expressed on the cell surface, soluble RAGE (sRAGE), which circulates in serum, is produced

RAGE, AGEs and Cognitive Behavior in Type 2 Diabetes Patients with MCI

PLOS ONE | DOI:10.1371/journal.pone.0145521 January 8, 2016 2 / 15

http://www.chictr.org.cn/showprojen.aspx?proj=10536


via either protease-mediated cleavage of mRAGE (cRAGE) or alternative splicing of the RAGE
gene (esRAGE) [18, 19]. As it lacks a transmembrane domain and circulates in plasma, sRAGE
contributes to the removal or neutralization of circulating ligands and functions as a decoy by
competing with mRAGE for ligands [20]. The plasma sRAGE level has been associated with
vascular complications, and sRAGE has recently been proposed as a biological indicator of cog-
nitive decline [21–23].

The RAGE gene is located on chromosome 6p21.3, and a polymorphism at codon 82
(GGC!AGC) of RAGE causes an amino acid substitution from glycine to serine within its
ligand-binding domain [24]. Cells that express this S82 isoform of RAGE exhibit enhanced
ligand-binding affinity, increased inflammatory mediator generation, and a decreased plasma
sRAGE concentration [25, 26]. Many studies have demonstrated that the Gly82Ser polymor-
phism is independently involved in cardiovascular diseases, diabetes complications, and
dementia, particularly Alzheimer’s disease [27, 28]. However, no studies of the association of
RAGE Gly82Ser with diabetes-related MCI have been reported.

This cross-sectional study aimed to investigate the roles of RAGE, AGEs and the RAGE
Gly82Ser polymorphism in type 2 diabetes-associated MCI, especially in different cognitive
domains. Our results will facilitate the prediction and early intervention of diabetes-associated
MCI.

Research Design and Methods

2.1. Clinical subjects and study design
This study was conducted at the Endocrinology Division of the ZhongDa Hospital of Southeast
University. All individuals provided written informed consent prior to participation in the
study, which was approved by the Research Ethics Committee of the Affiliated ZhongDa Hos-
pital of Southeast University (S2 File).

This case-control study recruited 167 (65 female and 102 male) hospitalized patients who
satisfied the diagnostic criteria of type 2 diabetes [29]. All participants were right-handed Han
Chinese individuals who had at least eight years of education. Eighty-two patients (33 females,
49 males, mean±SD age = 60.15±7.47 years) satisfied the following diagnostic criteria for MCI
proposed by the MCI Working Group of the European Consortium on Alzheimer’s Disease
[30]: 1) cognitive complaints from the patient or the patient’s family; 2) a reported decline in
cognitive functioning relative to that in the past year by the patient or the patient’s guardian
(CDR score of 0.5); 3) cognitive disorder as evidenced by a clinical evaluation (impairment in
memory or some other cognitive domain); 4) absence of major limitations in activities of daily
living (ADL score�26); and 5) absence of dementia (based on the DSM-IV criteria). Eight-five
hospitalized type 2 diabetes patients (32 females, 53 males, mean±SD age = 59.67±7.79 years)
with healthy cognition who were matched to the type 2 diabetes patients diagnosed with MCI
according to age, sex, education level, and diabetes duration were also selected. Individuals
with a prior history of known stroke, head injury, alcoholism, Parkinson’s disease, epilepsy,
major depression or any other neurological or psychiatric illness, or any major medical illness
(e.g., cancer, anemia, or thyroid dysfunction) and those who had recently used a medication
that might interfere with cognitive testing (including central B-blockers; anti-Parkinson's dis-
ease drugs; nerve sedatives; narcotic analgesics; benzodiazepines; barbiturates; short-acting
anxiolytic or sedative drugs used more than twice a week; drugs with significant cholinergic or
anticholinergic side effects; antiepileptic drugs; warfarin; donepezil hydrochloride, memantine
hydrochloride; or any drug recently approved for the treatment of AD based on clinical trials)
were excluded from this study (Fig 1).
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2.2. Clinical measurements
2.2.1 Clinical data collection. Demographic characteristics, including age, gender, educa-

tional level/number of years in school, ethnicity, and occupation, were collected. The partici-
pants’medical histories (the duration of diabetes was calculated from the time of disease
diagnosis by a physician), drug use, and physical measurements (including blood pressure,
weight, height, and waist circumference) were also collected using standardized methods.
Blood and urine samples were obtained to determine the fasting blood glucose, HbA1c, triglyc-
eride, total cholesterol, low density lipoprotein cholesterol (LDL-C), high density lipoprotein
cholesterol (HDL-C), creatinine, uric acid, free triiodothyronine, free thyroxine, thyroid stimu-
lating hormone and c peptide levels after undergoing a standard oral glucose tolerance test.
Ultrasound was performed to detect liver and carotid artery plaques. The Laboratory Center of

Fig 1. Flow chart of study population.

doi:10.1371/journal.pone.0145521.g001
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the ZhongDa Hospital of Southeast University implements internal and external quality con-
trol procedures as directed by the Chinese Laboratory of Quality Control.

2.2.2 Neuropsychological test data. The following neuropsychological tests were admin-
istered to evaluate the participants’ verbal and visual functions, semantic memory, attention,
psychomotor speed, executive function, and visuospatial skills: the Montreal cognitive assess-
ment (MoCA); the digit span test (DST); the trail making test-A and B (TMT-A and B, respec-
tively); the clock drawing test (CDT); the similarities test (ST); the verbal fluency test (VFT);
and the Clinical Dementia Rating (CDR). The MoCA assesses multiple cognitive domains,
including attention and concentration, executive functions, memory, language ability, visuo-
constructional skills, conceptual thinking, calculation performance, and orientation. The DST
assesses both attention and short-term memory. The VFT, in which the ability to rapidly speak
is assessed, is very effective in measuring executive functioning and language ability. The CDT
is highly valuable for evaluating general cognitive and adaptive functions, such as memory,
information processing and vision. The ST measures verbal comprehension. The TMT, which
measures attention, visual screening ability and processing speed, is a useful measure of overall
cognitive functioning, especially executive function. The CDR was used to exclude patients
with dementia. These tests were performed by an experienced neuropsychiatrist who was
blinded to the study design. None of the participants exhibited audiovisual or motor coordina-
tion deficits that could have affected test performance.

2.3. Serum levels of sRAGE and AGE-P
Blood samples (2 ml) were collected from the diabetic patients and control subjects into tubes
that contained EDTA and were then centrifuged at 100×g for 15 min. The serum fraction was
collected and stored frozen at –80°C. The sRAGE concentration was assessed using Quantikine
sandwich ELISA kits (R&D Systems, Minneapolis, MN, USA) according to the manufacturer’s
instructions.

The AGE-P level was determined using a flow injection assay according to the method pre-
viously described by Sun [23]. Twenty-microliter serum samples were mixed with 480 μl of tri-
chloroacetic acid (TCA, 0.15 mol/l) and 100 μl of chloroform in micro-centrifuge tubes, which
were vigorously shaken and subsequently centrifuged at 13,000 g for 10 min. Twenty microli-
ters of the aqueous layer was injected into the sample injector for high performance liquid
chromatography (HPLC, Shimadzu, Japan). The HPLC flow rate was set to 0.5 ml/min, and
the emission and excitation wavelengths of the spectrofluorometric detector were 440 and 370
nm, respectively. The samples were analyzed in duplicate, and the peak height mode was used
for signal measurement. Standard AGE-Ps (0.1, 0.5, 1, 5, 10, 50, and 100 mg/l) were used to
prepare a calibration curve with units of U/ml; 1 U/ml was equal to the concentration of the
standard AGE-P obtained from the hydrolysis of 1.0 mg/l AGE from bovine serum albumin
(BSA).

2.4. Genotyping of the RAGEGly82Ser polymorphism
Genomic DNA was extracted from the EDTA-treated venous blood samples using a DNA
purification kit (Puregene, Gentra Systems, Minneapolis, MN, USA). Polymorphism-based
genotyping according to the polymerase chain reaction (PCR)-generated restriction fragment
length was performed to detect variants of the RAGE gene (the Gly82Ser polymorphism). The
following sense and antisense primers were used: 50-GTAAGCGGGGCTCCTGTTGCA-30 and
50-GGCCAAGGCTGGGGTTGAAGG-30, respectively. PCR was conducted in a 20 μl reaction
mixture containing 1.625 mmol/l MgCl2, 0.14 mmol/l deoxynucleotide triphosphates, 1 unit of
Taq polymerase, 2 μl of 10× PCR buffer, 200 ng of genomic DNA, and 0.25 μmol/l of each
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primer. Amplification was initiated at 95°C for 5 min, followed by 35 cycles of denaturation at
94°C for 30 s, 62°C for 45 s, and 72°C for 60 s and a final extension step at 72°C for 10 min.
The 397 bp PCR products were digested using 5 U of the restriction enzyme AluI at 37°C for
16 h, followed by electrophoresis on a 2% agarose gel at 75 V for 60 min. Bands corresponding
to 249, 123, and 26 bp indicated the presence of the wild-type 82G allele, and those correspond-
ing to 181, 123, 67, and 26 bp indicated the presence of the variant 82S allele.

2.5. Statistical analysis
Statistical analyses were conducted using SPSS version 19.0 (SPSS Inc., Chicago, IL, USA). All
tests were two-sided, and statistical significance was defined as p<0.05. Student’s t test and
ANOVA were employed for normally distributed variables, and the nonparametric Mann-
Whitney U and Kruskal-Wallis tests were used for asymmetrically distributed variables. The
Chi-squared test was used to test for Hardy-Weinberg equilibrium of the allelic and genotypic
distributions (Santiago Rodriguez, Tom R. Gaunt, and Ian N. M. Day, Hardy-Weinberg Equi-
librium Testing of Biological Ascertainment for Mendelian Randomization Studies). The refer-
ence group comprised the carriers of the wild-type 82Gly/Gly genotype. Pearson or Spearman
rank correlation analysis and logistic regression analysis were performed to explore the rela-
tionships between the cognitive measures and demographic characteristics, the RAGE Gly82-
Ser genotype, and the serum sRAGE and AGE-P levels in the MCI group. The cutoff value
used in this study for suggested MCI was a MoCA score�26, with a one-point adjustment of
the total score for subjects with fewer than 12 years of education.

Results

3.1. Demographic, clinical and neuropsychological data
The demographic, clinical, and neuropsychological test data for the participants are summa-
rized in Table 1 (Table 1). The MCI and non-MCI patients were well matched in terms of age,
sex, education level, and diabetes duration. No significant differences were identified regarding
BMI, blood pressure, HbA1c level, blood lipid levels or the percentage of insulin use (all
p>0.05). Compared with the control group, the diabetic patients with MCI displayed a sub-
stantially increased frequency of carotid plaques, coronary heart disease and diabetic nephrop-
athy. Compared with the non-MCI group, the MCI group displayed significantly lower
sRAGE concentrations (1.05±0.52 vs. 0.87±0.35 ng/ml, p<0.01) and significantly higher serum
AGE-P (2.71±1.18 vs. 3.54±1.27 U/ml, p<0.01) and blood uric acid levels (254.45 ± 71.04 vs.
289.91 ± 90.63 μmol/L, p<0.01). The neuropsychological test scores for multiple cognitive
domains were significantly lower in the MCI group than in the non-MCI group (all p<0.01).

3.2. Relationships between the serum sRAGE and AGE-P
concentrations, clinical characteristics, and neuropsychological test
scores
A logistic regression model was established, and the results indicated that each unit increase in
the sRAGE level was associated with a 54% reduction in disease risk (OR 0.46[95% CI 0.22–
0.96], p = 0.04), whereas each unit increase in the serum AGE-P level was associated with a
72% increase in MCI risk (OR 1.72[95% CI 1.31–2.28], p<0.01) after adjusting for additional
risk factors such as the presence of carotid plaques, coronary heart disease or diabetic nephrop-
athy [31–33], which showed significance differences between the two groups and exerted an
impact on cognition in type 2 diabetes mellitus patients.
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Table 1. Demographic, clinical and cognitive characteristics.

Characteristic MCI (N = 82) Non-MCI (N = 85)

Age (years) 60.15 ± 7.47 59.67 ± 7.79†

Female, n (%) 33(40.2%) 32(37.6%)§

Education level (years) 9.28 ± 3.63 10.21 ± 3.95 †

Smoking, n (%) 38(46.3%) 33(38.8%) §

BMI (kg/m2) 25.06 ± 3.71 25.10 ± 3.10 †

Hypertension, n (%) 42(51.2%) 42(49.4%) §

Diabetes duration (years) 8.56 ± 5.90 7.65 ± 3.66 †

HbA1c (%) 8.83 ± 2.10 8.84 ± 2.00 †

Fasting blood glucose (mmol/L) 9.05 ± 2.35 8.78 ± 3.92 †

Fasting C peptide (ng/mL) 1.89 ± 1.1 2.09 ± 1.10 †

C peptide (60 mins) 2.94 ± 1.51 3.62 ± 1.74 †

C peptide (120 mins) 4.60 ± 2.03 5.79 ± 2.93 †

Triglyceride (mmol/L) 1.47(0.97–2.18) 1.59(1.19–2.59)‡

Total cholesterol (mmol/L) 5.19 ± 1.59 4.89 ± 1.15 †

LDL cholesterol (mmol/L) 3.06 ± 0.90 2.95 ± 0.70 †

HDL cholesterol (mmol/L) 1.24 ± 0.29 1.27 ± 0.28 †

Serum creatinine (μmol/L) 64.61 ± 18.7 65.26 ± 18.98 †

Blood uric acid (μmol/L) 289.91 ± 90.63 254.45 ± 71.04 †*

Free triiodothyronine (pg/mL) 2.66 ± 0.32 2.74 ± 0.33 †

Free thyroxine (ng/dL) 1.23 ± 0.18 1.26 ± 0.17 †

Thyroid-stimulating hormone (uul/mL) 2.11(1.27–3.01) 2.23(1.33–3.71) ‡

Systolic pressure (mmHg) 130(120–160) 136(126–150) ‡

Diastolic pressure (mmHg) 80(78–90) 85(80–90) ‡

NAFLD 50(61.0%) 45(52.9%) §

Carotid plaques 49(59.8%) 37(43.5%) §*

Coronary heart disease 18(21.9%) 9(10.6%) §

Diabetic nephropathy 17(20.7%) 8(10.4%)§*

Drinking 18(28.1%) 16(25.8%)§

sRAGE (ng/mL) 0.87 ± 0.35 1.05 ± 0.52 †*

AGEs (U/mL) 3.54 ± 1.27 2.71 ± 1.18 †*

Use of insulin (%) 56 (68.3%) 57 (67.1%) §

Cognition test scores

MoCA 22 (19–23.3) 27 (26–27) ‡*

TMT-A 79.21 ± 26.54 65.28 ± 20.05 †*

TMT-B 195.36 ± 64.87 163.4 ± 58.0 †*

CDT 4 (3–4) 4(3.5–4) ‡*

DST 11 (9–12) 12 (11–13) ‡*

VFT 16.43 ± 3.94 19.29 ± 4.36 †*

ST 7.54 ± 2.54 9.75 ± 2.69 †*

The data are presented as n (%), the mean±SD, or the median (interquartile range) unless otherwise specified. Abbreviations: BMI, body mass index;

MoCA, Montreal Cognitive Assessment; TMT-A and TMT-B, Trail Making Test-A and Trail Making Test-B, respectively; CDT, Clock Drawing Test; DST,

Digit Span Test; ST, Similarities Test; VFT, Verbal Fluency Test. MCI, participants with mild cognitive impairment; Non-MCI, participations without MCI;

NAFLD, nonalcoholic fatty liver disease; sRAGE, the soluble form of the receptor for advanced glycation end products.
†Student’s t test was employed for normally distributed variables.
‡The Mann-Whitney U test was employed for asymmetrically distributed variables.
§The Chi-square test was employed for categorical variables.

*p<0.05

doi:10.1371/journal.pone.0145521.t001
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We subsequently explored the associations between the different neuropsychological test
scores and the sRAGE and AGE-P levels in the MCI group using Pearson correlation or Spear-
man rank correlation analyses (Table 2). The sRAGE level negatively correlated with the
TMT-B score (r = -0.344, p = 0.002). Additionally, significant negative correlations were identi-
fied between the serum AGE-P level and the MoCA, DST, VFT, and CDT scores (r = -0.279,
-0.443, -0.528, and -0.225, respectively, all p<0.05), and the AGE-P levels positively correlated
with the TMT-A and TMT-B scores (r = 0.377 and 0.223, respectively, both p<0.05).

3.3 Comparisons of the neuropsychological test scores and the serum
RAGE concentrations between different RAGE genotypes and of the
RAGE genotype frequencies between the MCI and non-MCI groups
The distributions of the RAGE genotypes were consistent with Hardy-Weinberg equilibrium
in both the non-MCI (χ2 = 0.17, df = 1, p>0.05) and MCI groups (χ2 = 4.68, df = 1, p>0.05)
[34]. No significant differences in the RAGE genotype and allele distributions were identified
between the MCI and non-MCI groups (χ2 = 2.199, p = 0.333, and χ2 = 0.480, p = 0.489, respec-
tively, Table 3). Considering the 82Gly/Gly genotype as a reference, the OR of either variant
genotype (82Gly/Ser or 82Ser/Ser) was 1.51 (95%CI 0.78 to 2.95, p = 0.225) after adjustment
for age, education level, sex, hypertension, coronary heart disease, and diabetic nephropathy.

The serum RAGE concentration was significantly lower in the MCI group, especially in
the 82Gly/Ser subgroup (p = 0.003, Table 4), than in the non-MCI group. No difference was
identified between the MCI and non-MCI groups in the frequency of the 82Ser/Ser homozy-
gote subgroups or various RAGE genotypes in the case or control subgroup or the total group
(all p>0.05).

No differences in the neuropsychological test scores were identified between the RAGE
Gly82Ser genotype and the other examined genotypes (all p>0.05, Table 5).

Discussion
Our results demonstrated that the diabetic patients with MCI displayed a decreased serum
RAGE concentration compared with the diabetic patients without MCI. Furthermore, the
extent of the decrease in the serum RAGE concentration was correlated with reduced executive

Table 2. Relationships between the serum sRAGE and AGE-P concentrations and the neuropsycho-
logical test results.

Serum AGE-P level Serum RAGE level

r p r p

MoCA -0.279 0.011* -0.032 0.774

TMT-A 0.377 <0.001* -0.087 0.435

TMT-B 0.223 0.046* -0.344 0.002*

CDT -0.225 0.042* 0.160 0.151

DST -0.443 <0.001* 0.109 0.328

VFT -0.528 <0.001* 0.114 0.359

ST -0.053 0.672 -0.143 0.247

Abbreviations: MoCA, Montreal Cognitive Assessment; TMT-A and TMT-B, Trail Making Test-A and Trail

Making Test-B, respectively; CDT, Clock Drawing Test; DST, Digit Span Test; ST, Similarities Test; VFT,

Verbal Fluency Test; sRAGE, the soluble form of the receptor for advanced glycation end products.

*p<0.05

doi:10.1371/journal.pone.0145521.t002
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Table 3. Distributions of the RAGE genotypes and risk estimates for type 2 diabetes mellitus patients with MCI or normal cognition.

RAGE genotype MCI, n (%) Non-MCI, n (%) Crude OR (95% CI) p-value Adjusted OR (95% CI)* p-value

Overall 82 85

Gly82 allele 112(68.29) 122 (71.76)

Ser82 allele 52(31.71) 48(28.24)

GG 34(41.46) 43(50.59) 1.000

GS 44(53.66) 36(42.35) 1.55(0.82–2.90) 0.174 1.64(0.83–3.23) 0.157

SS 4(4.88) 6(7.06) 0.84(0.22–3.23)† 1.0 0.77(0.14–4.29) 0.765

GS+SS 48(58.54) 42(59.41) 1.45(0.78–2.66) 0.237 1.51(0.78–2.95) 0.225

The genotype and allele frequencies were compared between the groups using Pearson`s χ2 tests, except for the cases labeled with †, in which the

frequency was determined using continuity-corrected Pearson`s χ2 tests.

Abbreviations: MCI, mild cognitive impairment; sRAGE, the soluble form of the receptor for advanced glycation end products; G, Gly82 allele; S, Ser82

allele.

*Adjusted for age, education level, sex, hypertension, coronary heart disease, and diabetic nephropathy.

doi:10.1371/journal.pone.0145521.t003

Table 4. The serum level of sRAGE (ng/ml) in type 2 diabetes mellitus patients with MCI or normal cognition.

Genotype

Group GG GS SS p-value‡

Non-MCI 1.04 ± 0.55 1.10 ± 0.51 0.85 ± 0.43 0.557

MCI 0.91 ± 0.43 0.80 ± 0.27 1.20 ± 0.35 0.086

p-value† 0.244 0.003 0.254

The data were expressed as the mean±SD. Abbreviations: MCI: mild cognitive impairment; sRAGE: the soluble form of the receptor for advanced

glycation end products; G: Gly82 allele; S: Ser82 allele.
†Student’s t test for the comparison of the serum level of sRAGE between Non-MCI and MCI patients with type 2 diabetes mellitus
‡One-way ANOVA for the comparison of the serum level of sRAGE between the different genotypes

doi:10.1371/journal.pone.0145521.t004

Table 5. Comparison of cognitive test scores in the MCI group according to the RAGE genotype.

Cognitive test GG GS SS† p-value‡

MoCA 21.12±2.847 21.45±2.72 20.5±3.87 0.747

TMT-A 78.09±29.65 78.84±24.64 92.75±19.7 0.580

TMT-B 190.41±72.2 193.67±57.8 255.5±54.6 0.161

CDT 4(3–4) 4(3–4) 3(3–3.75) 0.614

DST 10.53±2.12 10.59±1.60 10.25±1.71 0.936

VFT 16.28±4.20 16.63±3.89 16.00±1.73 0.925

ST 7.59±2.56 7.59±2.49 6.33±3.51 0.708

The data are presented as the mean±SD or median (interquartile range), unless otherwise specified.

p-value for the difference between the GG, GS, and SS groups. Abbreviations: MoCA, Montreal Cognitive Assessment; TMT-A, Trail Making Test-A;

TMT-B, Trail Making Test-B; CDT, Clock Drawing Test; DST, Digit Span Test; VFT, Verbal Fluency Test; ST, Similarities Test; MCI: mild cognitive

impairment.
†One-way ANOVA.
‡Kruskal-Wallis test.

doi:10.1371/journal.pone.0145521.t005
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function. An elevated serum AGE-P level was associated with a higher MCI risk in the type 2
diabetes patients and was inversely correlated with overall cognitive function in these individu-
als. No significant differences in the neuropsychological test scores or the serum RAGE con-
centrations among the different RAGE genotypes or in the RAGE genotype frequencies
between the MCI and non-MCI groups were identified.

The included type 2 diabetes patients with MCI exhibited overall cognitive deficits, and
many of the clinical parameters of the two groups were matched, including age, sex, education
level, and diabetes duration. We discovered that the MCI group exhibited a substantially
increased prevalence of carotid plaques, coronary heart disease and diabetic nephropathy com-
pared with the non-MCI group; these findings are consistent with those of a previous report
[31–33], as diabetes mellitus is a systemic disease. Both microvascular and macrovascular dys-
function can contribute to changes in cerebral blood flow [35] and can even cause cortical and
subcortical atrophy, which influence cognition. Moreover, the accumulation of AGE-P and
uric acid was observed in the MCI group. Both AGE-P and uric acid are peripheral markers of
oxidative stress [36], and their accumulation suggests an interaction of oxidative stress with the
formation of AGEs during the onset of cognitive decline in type 2 diabetes patients.

AGEs contribute to cognitive dysfunction via the AGE-RAGE pathway or via direct toxic
effects, such as the release of reactive oxygen species [37, 38] and the reduction of glucose con-
sumption, ATP production and mitochondrial activity in neurons [39]. We determined that
each unit increase in the AGE-P level increased the MCI risk by 72% and that each unit
increase in the sRAGE level reduced the MCI risk by 54%. Furthermore, a modest association
was identified between the sRAGE level and the TMT-B scores but not the MoCA scores. In
contrast, a previous cross-sectional study has demonstrated a close relationship between the
RAGE levels and MoCA scores [40]. Differences observed between studies may be explained as
follows: First, the patients enrolled in both studies were recruited from hospitals, but Chen’s
study was designed as a normal cross-sectional study, whereas our study is a case-control
study. Thus, the test groups between studies are not equal, and associations between serum
sRAGE, AGE-P concentrations, clinical characteristics, and neuropsychological test scores can
only be analyzed in the MCI group and not in all of the patients. Second, our patients were rela-
tively younger (60.15 ± 7.47 years; 59.67 ± 7.79 years) than those in Chen’s work (63.90 ± 8.73
years; 62.84 ± 7.94 years). Another recent study showed that RAGE levels in the blood stream
increased with MCI progression in diabetic patients [41], their design and the ethnics of the
participants were different from that of the current study, additionally, their average ages
(73.6 ± 4.8) are ten years older than ours. We found that AGE levels were higher in MCI
patients than in healthy-cognition patients and that RAGE level was negatively correlated with
MoCA scores. These findings indicate that RAGE levels are expressed more in the elderly and
that RAGE may be as compensatory elevation as, AGEs aggregated among the older people,
further study is need to clarify the uncertain and difference between us. Unlike other works,
our study measured total RAGE levels in serum and found a relationship between decreases in
serum RAGE levels and TMT-B scores. In diabetic patients, TMT-B scores are used to evaluate
executive function, which is impaired early on in the evolution of diabetes, even in individuals
with normal cognition. Executive dysfunction is considered to be an important feature of dia-
betic cognitive impairment. The results suggested that sRAGE plays a protective role in early
cognitive impairment in diabetic patients partly by blocking AGEs-RAGE interactions. At this
point, however, we cannot exclude the possibility of counteractive toxic effects arising from Aβ
and RAGE interactions.

Moreover, our study demonstrated that each unit increase in the AGE-P level was associated
with a 72% increase in MCI risk and that the AGE-P level correlated with the MoCA, DST,
VFT, CDT, TMT-A, and TMT-B scores, especially between the AGE-P level and the DST and
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VFT scores. These findings indicate a relationship between the AGE-P level and attention, con-
centration, and proceeding speed but not verbal comprehension, as assessed based on the ST
scores. As the typical pathological characteristic of diabetes mellitus [42], increased AGE for-
mation represents accumulation of reactive oxygen species [43] and impairment of antioxidant
systems. AGEs are involved in the diabetes-related microvascular complications such as dia-
betic retinopathy [44], diabetic nephropathy [45], and even diabetic neuropathy [46] as well as
diabetes-related macrovascular complications [47] by amplifying vascular stress and accelerat-
ing atherosclerosis and neointimal expansion [48]. Furthermore, in addition to vascular injury,
AGEs participate in the formation and aggregation of Aβ peptides [49] and neurofibrillary
tangles (NFTs) [50], which cause neuronal injury in the brain. Consistent with these patho-
physiological mechanisms, relationships were observed between the AGE-P level and the
MoCA, DST, VFT, CDT, TMT-A, and TMT-B scores, which demonstrated overall cognitive
impairment, especially in terms of attention, short-term memory (DST), executive function
and language ability (VFT). The higher the AGE-P level, the poorer the cognitive function of
the patient. However, little relationship was found between the AGE-P level and the cognitive
function of verbal comprehension in our trial. Although impaired verbal comprehension was
observed in our MCI group and was even reported in type 1 diabetes patients [51], AGE-P
does not appear to serve as a predictor of verbal comprehension impairment in type 2 diabetes
mellitus patients. This finding may have occurred because unlike the hippocampus, which is
vulnerable to hyperglycemia and inflammation [52], the language and verbal comprehension
centers are located in multiple lobes of the brain [53]; thus, multiple factors besides AGE-P
may be involved in the impairment of these centers. Nevertheless, AGE-P may serve as a serum
biomarker of MCI among diabetic patients.

Previous studies have demonstrated that the Gly82Ser polymorphism of the RAGE gene
plays a role in the development of microvascular complications in type 2 diabetes and Alzhei-
mer’s disease [26, 28]. However, we failed to identify a significant association between this gene
polymorphism and cognitive decline in type 2 diabetes patients. There are several factors that
may explain the negative findings of our study. First, diabetes mellitus is a very complicated
disease that can be influenced by several environmental factors and gene mutations. It is diffi-
cult to identify a small association in such a varying condition. Second, because the heritability
of a disease may originate from many genes, a large sample size is needed to detect a weak effect
of a single gene because each gene exerts a very small effect. Third, other gene polymorphisms
near the RAGE gene may be involved in the pathogenesis of MCI in type 2 diabetes mellitus
patients, and the Gly82Ser polymorphism could be in linkage disequilibrium with the actual
gene variants related to the disease.

Conclusions
Despite these limitations, the results of this study suggest that the RAGE pathway partially
mediates AGE-induced MCI in diabetic individuals. The serum AGE-P level may serve as
serum biomarker of MCI, and the sRAGE level is a predictor and even a potential intervention
target of early cognitive decline in type 2 diabetes patients. Thus, the AGE-RAGE system may
participate in the development of early cognitive decline in type 2 diabetes patients. Additional
evidence, especially from longitudinal studies, is needed to elucidate whether the serum levels
of AGE-P and RAGE could serve as predictive biomarkers of MCI in diabetic patients.

The interpretation of the data presented in this study exhibits certain limitations. First and
most importantly, the present work is a case-control study, and a causal relationship between
RAGE and cognitive function in T2DM could not be determined because data from magnetic
resonance imaging or autopsy were unavailable. Thus, the relationship between brain
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pathology and diabetes mellitus could not be causally linked. Second, all of the recruited
patients were hospitalized, and high rates of delirium and cognitive changes may be observed
in a hospital environment. These factors may add some bias to our findings. Finally, the sample
size was relatively small.
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