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The aim of the present study was to explore the interchannel relationships of resting-state brain activity in patients with attention-
deficit/hyperactivity disorder (ADHD), one of the most common mental disorders that develop in children. Magnetoencephalo-
graphic (MEG) signals were recorded using a 148-channel whole-head magnetometer in 13 patients with ADHD (range: 8–12
years) and 14 control subjects (range: 8–13 years). Three complementary measures (coherence, phase-locking value, and Euclidean
distance) were calculated in the conventional MEG frequency bands: delta, theta, alpha, beta, and gamma. Our results showed that
the interactions among MEG channels are higher for ADHD patients than for control subjects in all frequency bands. Statistically
significant differences were observed for short-distance values within right-anterior and central regions, especially at delta, beta,
and gamma-frequency bands (𝑝 < 0.05; Mann-Whitney 𝑈 test with false discovery rate correction). These frequency bands also
showed statistically significant differences in long-distance interactions, mainly among anterior and central regions, as well as
among anterior, central, and other areas. These differences might reflect alterations during brain development in children with
ADHD. Our results support the role of frontal abnormalities in ADHD pathophysiology, which may reflect a delay in cortical
maturation in the frontal cortex.

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a persis-
tent neuropsychiatric disorder, which changes with develop-
ment from childhood through adulthood [1]. It is charac-
terized by excessive impulsivity and hyperactivity and/or by
difficulty in maintaining attention. These features predispose
the children to psychiatric and social pathology, in addition to
academic dysfunctions or chaotic interpersonal relationships
in later life [1]. Prevalence rates of ADHD depend on distinct

factors, such as the diagnostic criteria and the sampled
population. However, the prevalence rate was placed by
several studies to be about 4–6% [2, 3], making this disorder
commonly diagnosed in childhood. Despite its clear medical,
social, and familial relevance, the nature of this dysfunction
is not entirely understood and there is no neurobiological
marker defined for it. Therefore, diagnosis relies exclusively
on clinical criteria, such as Diagnostic and Statistical Manual
of Mental Disorders (DSM) and International Statistical
Classification of Diseases (ICD). Nevertheless, clinicians still
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need to collect data from informants (parents and teachers)
and follow developmental variations in symptom expression
[4].

In the recent years, neuroimaging research has evolved
rapidly, providing several ways to examine the pathophysi-
ology of ADHD and the biological effects of medical treat-
ments. The earliest neuroimaging studies used single-photon
emission computed tomography (SPECT) and positron-
emission tomography (PET), showing frontostriatal abnor-
malities in ADHD [5, 6]. Later, these techniques have
been replaced by functional magnetic resonance imaging
(fMRI), which offers better spatial and temporal resolution
for functional researches [7]. Most fMRI studies revealed
that ADHD might be related to dorsal anterior cingulate
cortex dysfunction, which has been shown to be essential in
cognition, attention, and decision making [8, 9]. In another
study, ADHD was defined as a disorder characterized by a
delay of cortical maturation, which was most prominent in
prefrontal regions [10]. Additionally, Bush et al. [7] reviewed
several functional neuroimaging studies in ADHD and con-
cluded that patients showed a consistent pattern of frontal
dysfunction in the brain. In sum, neuroimaging techniques
provide extensive evidence for brain dysfunction in ADHD.

To understand dynamic cognitive processes, neurophys-
iological techniques, such as electroencephalography (EEG)
and magnetoencephalography (MEG), are required. Both
allow acquiring neural activity with higher temporal res-
olution than SPECT, PET, and fMRI [11]. EEG and MEG
are completely noninvasive and record the electromagnetic
oscillations produced by cerebral activity directly, without the
need to interpret it in terms of proxy measure [11, 12]. Never-
theless, there are some differences between these techniques.
While electric fields are strongly influenced by several factors,
such as distance between sensors or electrode location, mag-
netic fields are reference-free and less affected by distortions
produced by the resistive properties of the skull and the scalp
[11]. However, MEG equipment is characterized by limited
availability and high costs, in comparison to EEG devices
[13]. Several studies evidenced the utility of EEG/MEG
analysis to evaluate the brain activity in ADHD. Spectral
analysis revealed that ADHD patients showed significantly
higher theta relative power and lower beta relative power,
along with higher theta/alpha and theta/beta ratios [14].
Likewise, recent studies suggested that nonlinear measures
can complement spectral analysis in order to understand
brain dynamics in ADHD [15]. For instance, MEG data were
analyzed by using Lempel-Ziv complexity [16] and fuzzy
entropy [15]. They revealed that brain activity is less complex
and more regular in ADHD patients compared to controls.
In sum, accumulating evidence suggests that EEG and MEG
are useful to explore the neurophysiological substrate of
neural dysfunction in ADHD. However, further research is
necessary to characterize the neural dynamics associatedwith
this disorder.

All the aforementioned research works analyzed EEG/
MEG activity by studying local activation patterns (i.e.,
neural activity recorded from each channel is evaluated
independently). However, several authors considered that
higher brain functions depend on a balance between local

specialization and global integration of brain processes [17].
Therefore, a better comprehension of the brain as a complex
structural and functional network is needed [18]. To achieve
this, it is important to study how neural couplings are carried
out (for a review about brain connectivity, see Friston [19]
and/or Sakkalis [20]). Although connectivity patterns have
been widely investigated in other brain disorders, only a
few studies have focused on ADHD [21–24]. For instance,
Clarke et al. [21] showed that ADHD children have an
underlying brain dysfunction in the frontal lobes, bymeans of
mean square EEG coherence. Other authors computed MEG
phase coherence during an auditory attention task, revealing
hyperconnectivity in the high frequency range in adults with
ADHD compared to controls [22].

Most of the previous coupling studies used a single
measure, mainly coherence, to analyze brain dynamics in
ADHD. In this study, three complementary measures have
been applied in order to get a comprehensive characterization
of the interchannel relationships in ADHD. To begin with,
coherence (COH) is a normalized linearmeasure widely used
to explore connectivity at a particular frequency. In essence,
it quantifies linear correlations in the frequency domain [25].
Secondly, phase-locking value (PLV) is a synchronization
measure that identifies whether frequency specific transient
phase locking exists [26]. Finally, Euclidean distance (ED) is
a similarity measure, which has been proposed to assess the
statistical distance between probability distributions [27, 28].

The aim of our study is to provide further insights into the
underlying brain dynamics associated with ADHD. For this
purpose, COH, PLV, and ED were calculated in the conven-
tional MEG frequency bands (𝛿, 𝜃, 𝛼, 𝛽, and 𝛾). We attempt
to address the following research questions: (i) How does
ADHD affect the neural interaction patterns? (ii) Can our
methodology reflect the regional abnormalities of ADHD?
(iii) Can the proposed measures provide complementary
information about neural dynamics?

2. Materials and Methods

2.1. MEG Recording. Brain magnetic fields were acquired
from each participant with a 148-channel whole-headmagne-
tometer (MAGNES 2500WH, 4D Neuroimaging) located in
a magnetically shielded room at the MEG Center Dr. Pérez-
Modrego (Spain). During MEG recording, subjects were
lying comfortably on a patient bed, in a relaxed state, andwith
their eyes closed. They were instructed to stay awake and to
avoid eye and head movements in order to reduce the pres-
ence of artifacts in the recordings. Their behavior was con-
trolled during the recording procedure by means of a video-
camera. Additionally, techniciansmay communicate with chil-
dren during MEG acquisition using a loud-speaking inter-
com. Participants included in the final sample did not exhibit
significant difficulties in maintaining their immobility.

For each subject, five minutes of MEG data was acquired
at a sampling frequency of 678.17Hz. A process of down-
sampling by a factor of four was carried out, resulting in a
sampling rate of 169.55Hz. Data were then digitally filtered
using a 1–65Hz band-pass filter and a 50Hz notch filter. To
minimize the presence of oculographic, cardiographic, and
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myographic artifacts, both visual inspection and independent
component analysis (ICA) were performed [15]. Finally,
artifact-free epochs of 848 samples (5 s) were selected for
further analyses.

2.2. Subjects. In this study, MEG data were acquired from
27 subjects. The clinical group comprised 13 children with
ADHD (age = 9.5±1.3 years, mean ± standard deviation, SD;
range 8–12 years). Inclusion criteria included a full DSM-IV
(DSM, Fourth Edition) diagnosis of ADHD combined type
with associated impairment in at least two settings and Con-
ners’ Parent Rating Scale (CPRS) hyperactivity rating greater
than two SD above age- and sex-specific means [29]. The
DSM-IV diagnosis of ADHDwas based on the parent version
of the Diagnostic Interview for Children and Adolescents
[30]. ADHD patients had never used any psychoactive drug
or received any psychoactive therapy.

The control group was formed by 14 healthy children
(10.4 ± 1.5 years, mean ± SD; range 8–13 years) without past
or present neurological disorders. There were not significant
differences (𝑝 values > 0.05, Mann-Whitney 𝑈 test) between
ADHDpatients and control subjects in terms of age and years
of education (6.8 ± 1.2 years in ADHD patients and 7.3 ± 1.4
years in controls; mean ± SD) and they all were strictly right-
handed. Written informed consent and assent to participate
in the study were obtained from parents and children,
respectively. The Institutional Review Board approved the
research protocol.

2.3. Neural InteractionMeasures. The study of neural interac-
tions seeks to understand how different regions of the brain
cortex communicate with each other. In this research, we
focused on three complementary points of view, which have
been developed to analyze these neural connections: COH,
PLV, and ED.

2.3.1. Coherence (COH). COH is a normalized linearmeasure
that provides information about the degree of coupling
between two signals within a given frequency band [25, 31]. It
has been commonly used in neuroscience to evaluate the cor-
relation among the neurophysiological signals measured at
different sensors [32].This measure has been previously used
to analyze the brain background activity in ADHD [21, 23,
24].

In particular, mean square coherence has been calculated.
It is a real-valued function defined as the square cross-spec-
trum normalized by the product of the two power spectra.
Having two MEG channels, 𝑥(𝑡) and 𝑦(𝑡), COH can be
calculated as follows [25]:

COHband
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[25]. COH values range from 0 to 1. A value of 0 indicates
no linear dependence between signals, whereas a value of 1 is
obtained when they are perfectly coupled.

2.3.2. Phase-Locking Value (PLV). PLV is a highly sensitive
measure of neural synchronization that specifically identifies
whether frequency transient phase locking exists. It quantifies
the relationship between the phases of 𝑥(𝑡) and 𝑦(𝑡), while
their amplitudes could be uncorrelated [33].

To calculate PLV, firstly it is necessary to constrain the
spectrum by filtering on the frequency band of interest.
Then,Hilbert transformwas used to extract the instantaneous
phase, 𝜑band

𝑥
(𝑡) and 𝜑band

𝑦
(𝑡), from the two signals, 𝑥(𝑡) and

𝑦(𝑡), respectively. Thus, the instantaneous phase difference
for epoch 𝑛 was obtained as follows [26]:
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Finally, PLV was calculated as the variability of the
instantaneous phase difference:
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where𝑁 is the number of samples per epoch and | ⋅ | indicates
the modulus of the complex value. The range of PLV values
varies between 0 (nonphase locked, random activity) and 1
(perfect phase synchrony).

2.3.3. Euclidean Distance. The concept of distance between
two probability distributions was initially developed by
Mahalanobis in 1936 [34]. It is widely used between statistical
models in signal processing applications, such as detection,
classification, pattern recognition, or coding [35]. This mea-
sure has been successfully applied to differentiate electromag-
netic brain signals in different disorders, such as schizophre-
nia and Alzheimer’s disease [28, 36].

In this study, ED was used to evaluate the differences
between the spectral contents in the normalized power spec-
tra of two MEG sensors. ED is defined as follows [27]:
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the normalized power spectra for a given frequency band
from the signals 𝑥(𝑡) and 𝑦(𝑡), respectively. ED ranges from
0 to 1, corresponding to the highest and lowest similarity,
respectively. Therefore, to have a direct relation with COH
and PLV, ED = 1 − ED was considered.

3. Results

In this study, the three methods (COH, PLV, and ED) were
computed for the following frequency bands: 𝛿 (1–4Hz),
𝜃 (4–8Hz), 𝛼 (8–13Hz), 𝛽 (13–30Hz), and 𝛾 (30–65Hz).
Results for the artifact-free epochs were averaged. The result
of computing the three measures (COH, PLV, and ED) for
all pairwise combinations of channels was an𝑀×𝑀matrix
(𝑀 = 148) for each method, where each entry 𝑀

𝑖𝑗
con-

tains the interaction value between the channels 𝑖 and 𝑗.
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Figure 1: Distribution of MEG regions and illustration of (a) short-
distance, (b) interhemispheric long-distance, and (c) intrahemi-
spheric long-distance connections.

To facilitate the interpretation of the results, these values
were grouped into (left and right) anterior, central, lateral,
and posterior regions to obtain long-distance intra- and
interhemispheric (within one hemisphere and homologue
regions of two hemispheres) and short-distance local mea-
sures [37]. Short-distance measures involved interactions
within one region and were calculated by averaging the
coupling values between all pairs of sensors within one
brain area. On the other hand, long-distance measures
(12 intrahemispheric measures: anterior-central, anterior-
lateral, anterior-posterior, central-lateral, central-posterior,
and lateral-posterior, both in the left and right hemispheres; 4
interhemisphericmeasures: anterior, central, lateral, and pos-
terior) involved interactions between two different regions.
Long-distance values were calculated averaging coupling val-
ues for pairs of sensors, where each sensor was in a different
brain region. The distribution of MEG channels is displayed
in Figure 1.

Statistical analyses were performed to study the differ-
ences in the interchannel relationships between ADHD and
control groups using Mann-Whitney 𝑈 test. In order to deal
with multiple comparison problem, 𝑝 values were corrected
with false discovery rate (FDR) method. Statistically sig-
nificant results have been considered when 𝑝 values were
lower than 0.05. Detailed results for each measure are shown
in Figure 2 (COH), Figure 3 (PLV), and Figure 4 (ED).
In these figures, (a) and (b) illustrate the averaged values
for each group, while the corresponding FDR-corrected 𝑝
values (Mann-Whitney 𝑈 test) at each frequency band are
displayed in (c). It is important to note that connections
across regions in (c) were only displayed when statistically
significant differences between groups were obtained.

To begin with, short-distance COH values showed sta-
tistically significant increases in ADHD patients compared
to controls in the right-anterior (𝛿 and 𝛽), left-central (𝛿, 𝛽,
and 𝛾), right-central (𝛿, 𝛼, 𝛽, and 𝛾), and left-posterior (𝛾)
areas. This effect was more pronounced in central region (𝛿,
𝛽, and 𝛾). Moreover, interhemispheric long-distance values
revealed a significant interaction increase between anterior
(𝛿, 𝛼, 𝛽, and 𝛾), central (𝛿, 𝛼, 𝛽, and 𝛾), and lateral areas (𝛿).
Finally, intrahemispheric long-distance values also showed a
significant increase between anterior and central regions (𝛿,
𝛼, 𝛽, and 𝛾) and between central and lateral areas (𝛿 and
𝛽 in both hemispheres, as well as 𝛾 only in the right one).
Additionally, significant differences were also found between
central and posterior regions (𝛿) and between left-anterior
and left-posterior areas (𝛿 and 𝛾).

PLV results supported the patterns discussed previously.
Short-distance values were higher in ADHD children com-
pared to controls, and these differences were statistically
significant within left-central (𝛿) and right-central (𝛿 and
𝛾) regions. Furthermore, interhemispheric long-distance val-
ues also showed statistically significant differences between
central regions (𝛿 and 𝛾). Finally, intrahemispheric values
revealed significant differences between anterior and central
regions (𝛿 and 𝛾), central and lateral areas (𝛿), and central and
posterior regions (𝛿).

In the same way as COH and PLV values, short-distance
ED values were higher in ADHD children in comparison
to controls. There were statistically significant differences
within right-anterior (𝛿, 𝛽, and 𝛾), left-central (𝛿, 𝛽, and 𝛾),
right-central (𝛿, 𝛼, 𝛽, and 𝛾), right-lateral (𝛽), and right-
posterior (𝛽 and 𝛾) regions. Long-distance values also showed
significant differences in the same frequency bands and
regions. Interhemispheric long-distance values were statisti-
cally significant between anterior (𝛿, 𝛽, and 𝛾), central (𝛿,
𝛼, 𝛽, and 𝛾), lateral (𝛽), and posterior regions (𝛽). Finally,
𝛿, 𝛽, and 𝛾 showed several significant differences in intra-
hemispheric neural relationships. Significant differenceswere
found between anterior and central regions (𝛽 and 𝛾 in both
hemispheres, as well as 𝛿 only in the right hemisphere),
central and posterior regions (𝛾 in both hemispheres, as well
as 𝛿 and𝛽 only in the right one), and right-anterior and right-
posterior regions (𝛽 and 𝛾). Additionally, it is noteworthy
that 𝛾 revealed statistically significant differences among all
regions with the exception of the connection between left-
lateral and left-posterior areas.

Finally, receiver operating characteristic (ROC) curves,
with a leave-one-out cross-validation procedure, were used
to assess the ability of COH, PLV, and ED to discriminate
ADHD patients from control children. Only interactions
that showed significant differences between groups were
evaluated with this technique. For COHmeasure, the highest
accuracy was reached in 𝛿 band for short-distance values
at the right-central region: 88.89% (76.92% sensitivity; 100%
specificity). In the case of PLV, an accuracy of 81.48%
(69.23% sensitivity; 92.86% specificity) was obtained for
central interhemispheric values, also in 𝛿 band. Lastly, the
highest accuracy value for ED was achieved in beta band for
long-distance interhemispheric values between central areas
(85.19% accuracy; 69.23% sensitivity; 100% specificity).
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Figure 2: COH spatial analyses. (a) and (b) depict COH values for controls and ADHD patients, respectively. (c) displays statistically
significant values between groups, where connections among regions were only displayed when statistically significant differences within
groups were obtained (Mann-Whitney 𝑈 test, FDR-corrected 𝑝 values < 0.05).

4. Discussion

4.1. Neural Interactions in ADHD. Thefirst research question
pointed out in Introduction addressed the characterization
of ADHD neural interaction patterns. Previous researches
revealed that neural oscillations are an essential instrument
for enabling coordinated synchronous activity during normal
brain functioning [38]. They also suggest that different
frequency bands are involved in distinct functional and

computational interactions [32, 39]. In this research, the
patterns showed statistically significant differences in 𝛿, 𝛼,
𝛽, and 𝛾 bands. The main differences were found in 𝛿, 𝛽,
and 𝛾, especially in central and anterior regions. Further-
more, these findings indicate an increase of the neural
interactions in ADHD patients in comparison to control
subjects. Consequently, this study provides evidence for brain
hyperconnectivity in ADHD, which has been associated with
higher levels of fluctuations in brain signals [40].
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Figure 3: PLV spatial analyses. (a) and (b) depict PLV values for controls and ADHDpatients, respectively. (c) displays statistically significant
values between groups, where connections among regions were only displayed when statistically significant differences within groups were
obtained (Mann-Whitney 𝑈 test, FDR-corrected 𝑝 values < 0.05).

Our findings are consistent with different previous
researches. For instance, Montagu [41] showed a significantly
higher intrahemispheric COH at frequencies up to 8Hz in
ADHD compared to a control group. Similar results were
reported by other studies, which revealed an increased inter-
hemispheric and intrahemispheric COH in frontal and cen-
tral regions [42, 43]. More recent researches also associated
ADHD with an increased intrahemispheric COH in 𝛿 and 𝛽
[44]. Additionally, Heinrichs-Graham et al. [22] applied PLV

to evaluate neural coupling in adults with ADHD during
an auditory attention task. They obtained that adults with
ADHD showed higher functional coupling in 𝛽 (14–30Hz)
and 𝛾 (30–56Hz) than controls. These coupling alterations
may arise from an aberrant balance of excitation and inhi-
bition in local neural circuits of ADHD children [45].

It should be noted that most of the studies that examine
functional connectivity in children with ADHD focused
on low frequencies. However, several experiments have
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Figure 4: ED spatial analyses (ED). (a) and (b) depict ED values for controls and ADHD patients, respectively. (c) displays statistically
significant values between groups, where connections among regions were only displayed when statistically significant differences within
groups were obtained (Mann-Whitney 𝑈 test, FDR-corrected 𝑝 values < 0.05).

suggested that gamma-frequency activity also plays an
important role in attention and memory [46]. Indeed,
our research revealed a statistically significant increase of
interchannel relationships in ADHD patients compared to
controls in 𝛾. In sum, our findings agree with previous studies
about children with ADHD, which showed an increase in
neural coupling in comparison to controls. Notwithstand-
ing, our results revealed alterations also in high frequency
bands.

4.2. Regional Abnormalities of ADHD. The second research
question posed the issue about whether there is a relationship
between our results and ADHD regional abnormalities. Our
results revealed several coupling differences, mainly in ante-
rior and central regions. These changes differ depending on
the interaction measure, the frequency band, and the region
considered. Regarding short-distance values, COH and PLV
values showed higher connectivity in ADHD compared to
controls in central and anterior regions at low frequencies,
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while ED barely showed statistically significant differences.
However, ED showed more differences than COH and PLV
at higher frequencies (𝛽 and 𝛾), especially in 𝛾. Further-
more, our results showed that frontal and central regions
are the most affected in ADHD patients in comparison to
controls.

Over the past two decades, structural and functional
imaging studies have associatedADHDwith abnormalities in
frontal brain regions (for a review, see Bush et al. [8]). A recent
EEG study revealed a similar conclusion with ADHD chil-
dren: most EEG differences were related to increased fron-
tocentral activity in ADHD children [47]. This frontocentral
increase was interpreted as a sign of cortical hypoarousal
in ADHD patients and might represent a delay in regional
cortical maturation. Shaw et al. [10] studied the growth
trajectory of each cortical point.They concluded that ADHD
is characterized by a maturational delay, which is more
prominent in the prefrontal cortical regions essential for
control of cognitive processes, including attention andmotor
planning [10]. Finally, Fernández et al. [16] found a significant
decrease of Lempel-Ziv complexity values in theMEG frontal
activity of ADHD patients, which might reflect a delay
during brain development. In summary, our findings revealed
that ADHD abnormalities in frontal cortex affect neural
interactions between different brain areas. Additionally, these
results suggest that the brain development in children with
ADHDdiverges from that of controls. Such divergencemight
consist of a delayed or altered cortical maturation, which
mainly affects frontal cortical regions.

4.3. Complementarity of Neural Interaction Measures. We
raised the third research question about whether the pro-
posed measures provide complementary analyses. Several
studies suggested that the interactions between pairs of
sensors can be useful to understand the underlying neural
mechanisms [18, 48]. However, while most of the previous
coupling studies applied a single measure, mainly COH, we
calculated three different measures (COH, PLV, and ED).
Consequently, we analyzed both phase, which is related to
neuronal firing, and amplitude, which is associated with the
discharges of assemblies of neurons [38, 49, 50]. The com-
bination of the three measures could constitute a sensitive
methodology for functional disconnectivity of local and
large-scale networks in ADHD.

It should be noted that COH, PLV, and ED are not equiva-
lent, but they provide three complementary points of view for
neural characterization.COHhas beenused in several studies
to assess functional connectivity for resting-state approaches
[21, 43, 44]. On the other hand, PLV and phase coherence
are better suited to address attentional processes associated
with ADHD, such as visual or auditory recognition [22].
Besides COH and PLV, similarity approaches, such as ED,
may gain novel insights into brain activity by providing a
phase-independent measure of resting-state neural interac-
tions. There is a lack of studies that have applied statistical
distances to characterize EEG/MEG recordings in ADHD.
In this regard, one of the main contributions of our study is
the application of ED to describe the similarity patterns in
ADHD.

To sum up, different interaction patterns were found in
our study depending on the frequency band, the region of
cortex, and the measure considered. As shown in Figures
2, 3, and 4, COH and PLV obtained the largest statistically
significance results compared to ED in 𝛿 frequency band. On
the other hand, ED was more sensitive in 𝛽 and 𝛾 bands,
providing further significant differences. Hence, our results
also suggest that the three measures are complementary.

4.4. Limitations and Future Research Lines. Several concerns
of this research merit consideration. Firstly, the size of the
sample is small to be useful as a diagnostic tool. Therefore,
this study should be extended on a larger patient population.
Secondly, the current study was carried out during a resting-
state condition. This condition has the limitation of being
subjective, since it relies on the particular introspective
capabilities of each subject [51]. The coupling patterns would
be significantly different during the performance of visual
or memory tasks. In this regard, it would be interesting to
analyze the interaction patterns associated with these tasks in
future works. Thirdly, interaction values were grouped into
predefined brain regions to facilitate the interpretation of the
results, despite the loss of MEG spatial resolution. Future
studies might benefit from exploring the affected regions
in detail. Likewise, COH, PLV, and ED were computed in
conventional EEG frequency bands to facilitate the clinical
interpretation of the results. However, the choice of the
spectral bandwidth can affect the sensitivity of PLV and ED
[26]. Further studies should be devoted to exploring whether
other divisions of the frequency range using, for instance,
a uniform spectral bandwidth distribution can be useful
to improve ADHD identification. In addition to this, the
detected increase in connectivity is not specific to ADHD.
It also appears in other pathological and physiological states
in children, such as autism spectrum disorder [52]. Finally,
as aforementioned, it is noteworthy that neuronal processing
comprises interactions between oscillations at different fre-
quencies [53]. Therefore, it might be interesting to evaluate
cross-frequency coupling, which provides a plausible mech-
anism for the neural coordination during action functions,
perception, and cognition [54].

5. Conclusions

This study investigated COH, PLV, and ED of MEG signals
in children with ADHD. Our results suggest that ADHD
is associated with a neuronal hyperconnectivity in central
and right anterior regions for 𝛿, 𝛽, and 𝛾 frequency bands.
Moreover, COH provided a maximum accuracy of 88.89%
to discriminate between ADHD patients and controls. To
the best of our knowledge, this is the first study to analyze
the interchannel relationships in ADHD with three com-
plementary measures, providing original and global insights
of neural interactions in this disorder. Our results agree
with previous researches that have associated ADHD with
abnormalities in frontocentral brain region. Furthermore,
these findings support the hypothesis that brain development
in children with ADHD diverges from that of controls.
Changes seem to be associated with a delay in cortical
maturation in the frontal region of ADHD patients.
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15), and by “Consejeŕıa de Educación de la Junta de Castilla y
León” (VA059U13). A. Bachiller was in receipt of a PIF-UVA
grant from University of Valladolid.

References

[1] P.H.Wender,Attention-Deficit Hyperactivity Disorder in Adults,
Oxford University Press, New York, NY, USA, 1995.

[2] W. E. Pelham, E. M. Gnagy, K. E. Greenslade, and R. Milich,
“Teacher ratings of DSM-III-R symptoms for the disruptive
behavior disorders,” Journal of the American Academy of Child
and Adolescent Psychiatry, vol. 31, no. 2, pp. 210–218, 1992.

[3] S. Lindgren, M. Wolraich, A. Stromquist, C. Davis, R. Milich,
and D. Watson, “Diagnostic heterogeneity in attention-deficit
hyperactivity disorder,” in Proceedings of the Fourth Annual
NIMH International Research Conference on the Classification
and Treatment of Mental Disorders in General Medical Settings,
Bethesda, Md, USA, 1990.

[4] J. Biederman and S. V. Faraone, “Attention-deficit hyperactivity
disorder,”The Lancet, vol. 366, no. 9481, pp. 237–248, 2005.

[5] M. Ernst, A. J. Zametkin, J. A. Matochik, L. Liebenauer, G.
A. Fitzgerald, and R. M. Cohen, “Effects of intravenous dex-
troamphetamine on brain metabolism in adults with attention-
deficit hyperactivity disorder (ADHD). Preliminary findings,”
Psychopharmacology Bulletin, vol. 30, no. 2, pp. 219–225, 1994.

[6] J. B. Schweitzer, T. L. Faber, S. T. Grafton, L. E. Tune, J. M.
Hoffman, andC.D.Kilts, “Alterations in the functional anatomy
of working memory in adult attention deficit hyperactivity
disorder,”American Journal of Psychiatry, vol. 157, no. 2, pp. 278–
280, 2000.

[7] G. Bush, E. M. Valera, and L. J. Seidman, “Functional neuro-
imaging of attention-deficit/hyperactivity disorder: a review
and suggested future directions,” Biological Psychiatry, vol. 57,
no. 11, pp. 1273–1284, 2005.

[8] G. Bush, P. Luu, and M. I. Posner, “Cognitive and emotional
influences in anterior cingulate cortex,” Trends in Cognitive
Sciences, vol. 4, no. 6, pp. 215–222, 2000.

[9] S. Durston, “A review of the biological bases of ADHD: what
havewe learned from imaging studies?”Mental Retardation and
Developmental Disabilities Research Reviews, vol. 9, no. 3, pp.
184–195, 2003.

[10] P. Shaw, K. Eckstrand, W. Sharp et al., “Attention-deficit/hyper-
activity disorder is characterized by a delay in cortical matu-
ration,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 104, no. 49, pp. 19649–19654, 2007.

[11] P. M. Rossini, S. Rossi, C. Babiloni, and J. Polich, “Clinical neu-
rophysiology of aging brain: from normal aging to neurodegen-
eration,” Progress in Neurobiology, vol. 83, no. 6, pp. 375–400,
2007.

[12] L. B. N. Hinkley, J. P. Owen, M. Fisher, A. M. Findlay, S. Vino-
gradov, and S. S. Nagarajan, “Cognitive impairments in schizo-
phrenia as assessed through activation and connectivity mea-
sures of magnetoencephalography (MEG) data,” Frontiers in
Human Neuroscience, vol. 3, article 73, 2010.

[13] E. Niedermeyer and F. H. L. da Silva, Electroencephalography:
Basic Principles, Clinical Applications, and Related Fields, Lip-
pincott Williams &Wilkins, Baltimore, Md, USA, 2005.

[14] R. J. Barry, S. J. Johnstone, and A. R. Clarke, “A review of elec-
trophysiology in attention-deficit/hyperactivity disorder: II.
Event-related potentials,” Clinical Neurophysiology, vol. 114, no.
2, pp. 184–198, 2003.
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