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Abstract

With the expansion of offender/arrestee DNA profile databases, genetic forensic identification has become commonplace in
the United States criminal justice system. Implementation of familial searching has been proposed to extend forensic
identification to family members of individuals with profiles in offender/arrestee DNA databases. In familial searching, a
partial genetic profile match between a database entrant and a crime scene sample is used to implicate genetic relatives of
the database entrant as potential sources of the crime scene sample. In addition to concerns regarding civil liberties, familial
searching poses unanswered statistical questions. In this study, we define confidence intervals on estimated likelihood ratios
for familial identification. Using these confidence intervals, we consider familial searching in a structured population. We
show that relatives and unrelated individuals from population samples with lower gene diversity over the loci considered
are less distinguishable. We also consider cases where the most appropriate population sample for individuals considered is
unknown. We find that as a less appropriate population sample, and thus allele frequency distribution, is assumed, relatives
and unrelated individuals become more difficult to distinguish. In addition, we show that relationship distinguishability
increases with the number of markers considered, but decreases for more distant genetic familial relationships. All of these
results indicate that caution is warranted in the application of familial searching in structured populations, such as in the
United States.
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Introduction

Forensic identification via exact genetic profile matching has

become common practice in the United States [1]. In exact

genetic identification, genetic markers found in a crime scene

sample are genotyped and exactly matched to a suspect or

database entry, suggesting that the sample originates from the

matched individual. In some cases, a database search yields no

exact genetic profile matches, but does reveal partial matches

where some, but not all, alleles match. A partial match could result

from a genetic familial relationship between the individual who left

the sample and the database entrant. If the database entrant has

relatives, they might be investigated to determine if any of their

genetic profiles exactly match the sample.

Familial searching is now used fairly frequently in the United

Kingdom and was instrumental in the identification of suspects of

violent crimes for 20 cases lacking other evidence as of 2008 [2].

Its use in the United States has been more limited due to concerns

regarding civil liberty infringement, racial bias, and efficacy [3–6].

However, in July 2010, familial searching was used in a highly

publicized California case to identify a suspect serial killer (the

‘‘Grim Sleeper’’) [7–10].

Despite the increasing use of familial searching in the United

States, important questions about the method remain on both

social and scientific grounds. In order to understand these

concerns, we must appreciate that familial searching is most

useful as a database mining method in cases with no suspects. In

the United States, the Combined DNA Index System (CODIS) is

the Federally administered system for National DNA Index

System (NDIS), the national offender/arrestee database, which

includes entries from State DNA Index Systems [11]. CODIS has

standardized the use of genotypes at 13 particular short tandem

repeats (STRs) (the CODIS loci) in forensic identification. The

CODIS loci were chosen based on several criteria including

reliable multiplexed PCR amplification, availability of commercial

genotyping kits, clearly distinguishable alleles, linkage equilibrium,

Hardy-Weinberg equilibrium, and high polymorphism in exam-

ined population samples [12–15]. An NDIS entry contains

CODIS loci genotypes and a traceable index number, without

other identifying information (e.g. location, race, or ethnicity) [16].

In September 2011, NDIS included over 10 million genotype

profiles and continues to grow through new cases and expanded

inclusion criteria [1].

These features of the forensic testing landscape matter because,

unlike exact DNA identification, a typical database search for

familial matches prospectively identifies candidate suspects who,

while closesly genetically related to database entrants, are not in

themselves in the database, provoking complex privacy concerns

[4,5,9,17,18]. Additionally, social groups which both share genetic

relationships and are over-represented in the database would
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experience a disproportionate increase in genetic surveillance if

familial matching were routinely implemented, further exacerbat-

ing their over-representation in these databases [6,12,17–19].

The question of relative inference has been well-studied in other

contexts with varying marker types, relationships, and numbers of

individuals [20–28]. Here we focus on statistical and population

genetic assumptions underpinning the familial searching method-

ology in the forensic context. Specifically, we consider the effects of

both uncertainty in allele frequency estimation and population

structure. First note that allele frequency estimates calculated

within socially-defined population groups (e.g. African American,

European American, Latino) are used to estimate the probability

of an observed partial match, assuming a particular genetic

relationship. Match probabilities for some individuals may not be

accurately estimated using the available categorical socially-

defined population group model and sample allele frequency

data, particularly individuals with genetic ancestry outside of

typically studied groups or individuals whose socially-defined

population group does not inform their genetic ancestry. In exact

identification, the probability of observing two individuals with

identical specific 13-locus genotypes is astronomically low, with the

exception of monozygotic twins. With these extremely low

probabilities, differences or inaccuracies in allele frequency

estimates are almost inconsequential, possibly changing the

probability of an observed genotype a few orders of magnitude,

but unlikely to alter the conclusion of the statistical analysis [29].

However, in familial identification, the probability of observing a

coincidental partial match is much higher (e.g. for a parent-

offspring relationship exactly one allele is shared by descent per

locus). With these higher probabilities, population genetic

differences in marker informativeness and errors in allele

frequency estimation can perturb match probability estimations

to such a degree as to affect the interpretation outcome.

In this study, we aim to examine some of these concerns by

exploring how familial searching techniques behave on popula-

tions with varying allele frequency distributions and varying

accuracy of allele frequency specification. We formulate and

calculate confidence intervals for familial identification likelihood

ratio (LR) estimates, and investigate how well siblings and

unrelated individuals can be distinguished over different popula-

tion samples with varying allele frequency distributions and under

accurately and inaccurately assumed allele frequency distributions.

We show that population samples vary in the amount of

identifying information encoded in the CODIS loci and, therefore,

in relationship distinguishability, even with correctly specified

allele frequencies. Since completely accurate allele frequency

specification is not guaranteed and the most appropriate

population sample may not be known or available, we are also

interested in the systematic effects of assuming allele frequencies

which are appropriate for one population, but which are not

appropriate for the individuals investigated. We show that

relationship distinguishability decreases with the accuracy of allele

frequency estimates, potentially resulting in high rates of

coincidental familial identification for some groups. These results

are especially pertinent in the multiple testing context of large

database searching. In addition, we explore the relationships

between relationship distinguishability, the number and type of

markers used for identification, the relationship considered, and

the true and assumed coancestry coefficient parameter value.

Results

Likelihood ratios for relationships with confidence
intervals

To determine if a partial genotype match is better explained by

a genetic familial relationship or stochasticity, we used the ratio of

the likelihood of the observed partial match assuming the

individuals share a given genetic familial relationship, to the

likelihood of the observed partial match assuming the individuals

are unrelated. With the data available, this LR is the most

powerful statistic to separate relatives from unrelated individuals

[30]. So even though the exact methodology used by forensic

agencies for familial forensic identification is not readily publicly

available, our use of the LR optimistically assumes the most

powerful method using the CODIS loci. In the first part of this

analysis, only sibling relationships are evaluated to reduce

dimensionality. Other genetic familial relationships were explored

and are reported below.

Unrelated individuals were simulated in a randomly mating

population by independently drawing alleles from allele frequency

distributions, similarly to Bieber et al. [31]. Siblings were then

simulated by dropping alleles through a pedigree with unrelated

parents. We simulated both unrelated individuals and siblings

using allele frequency distributions from five socially-defined

population samples, Vietnamese, African American, European

American, Latino, and Navajo. Using both unrelated individuals

and siblings, we calculated the sibling relationship cLRLR and 95%

confidence interval of that estimate, assuming allele frequencies

from each population sample. We simulated siblings and unrelated

individuals under each of the five allele frequency distributions and

calculated cLRLR and 95% confidence interval of that estimate

assuming each of the five allele frequency distributions 10,000

times for each pair of population samples. As a result, we have cLRLR
with confidence intervals for sibling relationships between

unrelated individuals and siblings simulated from every population

sample, assuming allele frequencies from every population sample.

In most of the analyses presented here, we focus specifically on the

lower 95% confidence limit of cLRLR (LCL) to account for sampling

and biological variance in allele frequency estimation and to

conservatively identify relationships. We refer to the population

Author Summary

The forensic identification of criminal suspects through
DNA profiling is now common in the United States.
Indirect identification by familial DNA profiling is increas-
ingly proposed to extend the utility of DNA databases. In
familial searching, a DNA profile from a crime scene
partially matches a database profile entry, implicating
close relatives of the partial match. While the basic
principles behind familial searching methods are simple
and elegant, statistical confidence that a partially matched
profile belongs to a true genetic relative has not been fully
explored. Here, we derive relative identification likelihood
ratio statistics and consider how the ability of familial
searching to distinguish relatives from unrelated individ-
uals varies over population samples and is affected by
inaccurately assumed population background. We observe
lower relationship distinguishability for population sam-
ples with less identifying information in the genetic loci
considered. Additionally, we show that relationship
distinguishability decreases with discordance between
true and assumed population samples. These results
indicate that, if an inappropriate genetic population group
is assumed, individuals from certain marginalized groups
may be disproportionately more often subject to false
familial identification. Our results suggest that care is
warranted in the use and interpretation of familial
searching forensic techniques.

Population Structure in Familial Identification
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sample used to simulate the individuals as the true population

sample, as opposed to the assumed population sample used to

calculate the LR for their relationship. Figure S1 shows the cLRLR
95% confidence intervals for 100 simulations of unrelated

individuals, where individuals were simulated based on each

population sample and confidence intervals were computed

assuming the allele frequency distribution of each population

sample.

Note that across all of these simulations specific parameter

values were chosen and kept constant, specifically, sibling

relationships, the assumed coancestry coefficient (probability of

two alleles being identical by descent (IBD) between two

individuals not recently related) used in calculations of ha~0:01,

confidence interval length parameterized by significance level a as

1{a~0:95, and the use of the 13 CODIS STRs. Regardless of

the values of these parameters, the relative trends across true and

assumed population samples will be maintained, although the scale

may vary with parameter value choice.

Distinguishing relatives and unrelated individuals. To

understand the degree to which cLRLR distinguishes relatives and

unrelated individuals, we considered the distributions of LCLs for

sibling relationships on simulated siblings and unrelated

individuals. Figure 1 shows the density plots of the log LCL for

both siblings and unrelated individuals using different true and

assumed population samples. First we consider plots along the

diagonal of Figure 1 showing density curves for unrelated

individuals and siblings when the true allele frequency

distributions are assumed. Plots with more overlap between the

sibling and unrelated pair densities indicate less ability to

distinguish relatives from unrelated individuals, a feature we

term distinguishability, for the assumed and true population

samples. Overlap can be observed visually in both density curve

overlap and the bars above the density curves which show the

simulated empirical central 95% of LCL over genotypes. To

quantify the differences in distinguishability between population

sample pairs, ~DDVH measures the distinctness of the distributions of

LCLs for individuals who are truly unrelated and truly siblings (see

Methods). Table 1 shows ~DDVH over true and assumed population

samples. When the true population sample is assumed, ~DDVH

ranges from 5.87 for the Navajo sample to 7.38 for the African

American sample (Table 1).

Gene diversity and distinguishability. Differences in

distinguishability between population samples are rooted in

differences in the shapes of allele frequency distributions. Since

alleles and individuals are simulated independently, varying

distinguishability over populations cannot be due to varying

consanguinity and must be attributed to varying allele frequency

distributions. In the examined population samples, the shape of

allele frequency distributions can vary substantially. As a dramatic,

but atypical, example, Figure S2 shows the different shapes of

allele frequency distributions of D3S1358 for each population

sample. Generally, the Navajo sample, and to a lesser extent the

Vietnamese sample, allele frequency distributions have lower

variance than that of the other samples, though not typically to the

extreme extent seen at D3S1358.

Intuitively, it is clear that a monomorphic locus contains no

identifying information, while a locus with a unique polymorphism

for every individual contains complete identifying information.

Along this spectrum, a locus with a low-variance allelic type

distribution is less identifying than a locus with a high-variance

allele frequency distribution.

This concept of varying identifying information can be

quantified as observed gene diversity (or equivalently, average

expected heterozygosity) [32]

~HHl~1{
X

u

~pp2
l,u

where ~HHl is the observed gene diversity for locus l and ~ppl,u is the

observed allele frequency of allele u at locus l. Observed gene

diversity can be combined across loci as the mean of observed gene

diversity at each individual locus to get average observed gene

diversity ~HH. Using this method, we calculated the average

observed gene diversity of the CODIS loci as ~HH~0.77, 0.79,

0.78, 0.79, and 0.70 for the Vietnamese, African American,

European American, Latino, and Navajo samples, respectively

(Text S1).

The calculated ~HH values show that the CODIS loci provide

varying amounts of identifying information for different popula-

tion samples. As our intuition suggests, population samples with

lower-variance allele frequency distributions, particularly the

Navajo sample, have lower average gene diversity. Even when

assuming the correct allele frequency distribution, there is

significant correlation between relationship distinguishability

( ~DDVH ) and average gene diversity ( ~HH) across population samples,

as seen in Figure 2 (r2~:95, p~2:7e{3).

Information theory can provide a more direct measure of

identifying information through entropy, which we calculate to

quantify the number of bits required to encode an equivalent

amount of information as a CODIS haplotype for each population

group. We find that relationship distinguishability is even more

correlated with entropy than observed gene diversity, which

follows since entropy quantifies information content which directly

affects distinguishability (see Text S1 and Figure S3).

Allele frequency misspecification and distinguisha-

bility. By calculating LCL under different assumed and true

population sample allele frequencies, the relationship between

allele frequency misspecification and relationship distinguishability

can be examined. By looking at plots and values off the diagonal,

Figure 1 and Table 1, it is clear that distinguishability is

particularly low when the true sample is Navajo and the

assumed sample is different. This indicates that unrelated

Navajo individuals more often appear sibling-like when non-

Navajo allele frequencies are assumed. The same is true for the

Vietnamese sample, though the trend is less pronounced.

In this study, we chose not to define a single decision threshold

for determining positive relative identifications since such a

threshold depends on a number of factors beyond the scope of

this study (e.g., the social, economic, and political cost of false

positives and negatives). For a range of decision thresholds,

Figure 3 shows the false positive rate and the power. To intuitively

calibrate ~DDVH by commonly-used statistics, Figure 3 plots ~DDVH

along with each set of false positive rate and power curves. False

positive rate and power vary by population, with the true Navajo

and assumed non-Navajo samples having particularly high false

positive rates for decision thresholds shown. If a high decision

threshold is chosen so that the false positive rate for true Navajo

cases is comparably low as it is for other population samples, the

power to identify siblings drops to levels that may render the

investigation ineffective. In Figure 3 this can be visualized by

choosing a point on the x-axis where the Navajo sample false

positive rate is low (perhaps a decision threshold of 6) and looking

up to the power to detect relationships at that threshold. A similar,

but less pronounced, pattern appears with the Vietnamese data.

Low nominal false positive rates. It is notable that even

when the correct allele frequencies are used, the false positive rate

is lower than the cLRLR confidence interval significance level a.

However, this is not surprising since the parameter a determines

Population Structure in Familial Identification
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the width of the cLRLR confidence interval, not the false positive rate.

The confidence interval describes uncertainty in the LR estimation

due to variance in the allele frequencies. In contrast, the false

positive rate is a function of the low probability that two unrelated

individuals share alleles in a pattern that resembles sibling

relationships, which is often lower than the unrelated a~:05
parameter value used here. See Text S1 for more details.

~DDVH and ĥh
We observed lower distinguishability when the true and assumed

allele frequency distributions differ more. The degree of difference

between population sample allele frequency distributions at the

CODIS alleles is quantified for every population pair using ĥh
(Table 2). To account for multiple alleles at multiple loci and

varying sample sizes, we estimate h with the method of Weir and

Cockerham [33]. Note that ĥhs reported here were calculated using

the only CODIS loci, as is appropriate for an analysis of forensic

methods. For a thorough investigation of the population genetics of

these samples, more loci would be required, producing different

results than those shown here, as reported in other studies [34,35].

To explore the relationship between distinguishability and the

genetic distance between true and assumed population samples, in

Figure 1. LCL distributions for siblings and unrelated individuals by population samples. Each individual plot shows the distribution of
log LCLs for unrelated individuals (solid) and siblings (dashed). The dotted vertical lines indicate cLRLR~1. The horizontal lines show the central 95% of
observed values over genotypes. The true and assumed population samples are listed on the column and row headings, respectively. Plot coloring
indicates distinguishability where red represents low ~DDVH and blue represents high ~DDVH .
doi:10.1371/journal.pgen.1002469.g001

Population Structure in Familial Identification
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Figure 4, ~DDVH is plotted against ĥh for each pair of true and

assumed population samples. ~DDVH and ĥh are significantly

correlated (r2~0:74, p~2:6e{8), supporting the hypothesis that

incorrectly assuming allele frequencies leads to low distinguish-

ability and high false positive rates. In particular, we observe low

distinguishability when Navajo, or to a lesser extent Vietnamese, is

the true population sample, correlating with higher ĥh with the

other assumed samples.

Intuitively, when allele frequencies are misspecified, the most

likely error is assuming that common alleles are more rare simply

because truly common alleles are more likely to be observed than

truly rare alleles. In the same way, rare alleles are assumed to be

common, but by definition, rare alleles are less likely to be

observed shared between individuals, so overall the misspecifica-

tion of common alleles as rare dominates. When misspecifying

common alleles as rare, observing the same common alleles in

multiple individuals seems surprising, so a genetic relationship

model is favored over a model of no relationship. That is, the

probability of a partial match assuming a relationship is inflated

and the probability of a partial match assuming no relationship is

deflated. In this way, allele frequency misspecification results in an

increase in false positive relative identifications.

Table 1. ~DDVH between population samples.

True population sample

Vietnamese African American European American Latino Navajo

Vietnamese 6.94 6.35 6.19 6.51 5.00

African American 5.91 7.38 6.41 6.59 4.68

European American 6.23 6.64 6.98 6.90 4.71

Latino 6.31 6.80 6.83 7.07 5.21

Navajo 5.01 5.94 5.74 5.94 5.87

~DDVH between each true (columns) and assumed (rows) population sample pair calculated using the CODIS loci.
doi:10.1371/journal.pgen.1002469.t001

Figure 2.
~
DVH versus

~
H . The empirical distinguishability ( ~DDVH ) for siblings and unrelated individuals is plotted against average gene diversity ( ~HH)

for each population sample. Points are colored according to the true population sample where red signifies Vietnamese, orange African American,
purple European American, blue Latino, and green Navajo.
doi:10.1371/journal.pgen.1002469.g002

Population Structure in Familial Identification
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Although the relationship between distinguishability and allele

frequency misspecification has not yet been deeply considered in

the context of genetic familial identification (but see [36]), it has

been discussed in the forensic literature for exact matching and it

is well-known in the linkage analysis community. For exact

forensic identification using the 13 CODIS loci, discrepancies

between assumed and true allele frequencies affect the computed

match probabilities, but seldom change the ultimate outcome

[37–40]. In linkage analysis, when inaccurate population allele

frequencies are used to calculate genotype probabilities, false

linkage signals between genotype and phenotype are common

[41,42].

Additional populations. We have shown clear differences in

average observed gene diversity of the CODIS loci and resulting

differences in sibling and unrelated individual distinguishability in

the five population samples considered. To ensure that these

findings extend beyond the samples examined, we considered a

larger dataset with a total of 32 population samples [43]. As in the

five-population sample dataset, average observed gene diversity at

the CODIS loci varies between samples, with particularly low

Figure 3. Power and false positive rate over thresholds and by population samples. The empirical power (dashed) and false positive rate
(solid) are shown for a range of sibling versus unrelated log LCL decision thresholds. In each plot, the indicated population sample is assumed in the
calculations. Within each plot, the colored curves indicate the true population sample allele frequencies used to simulate individuals. Red signifies
Vietnamese, orange African American, purple European American, blue Latino, and green Navajo. Similarly color-coded crosses indicate ~DDVH for each
population sample pair.
doi:10.1371/journal.pgen.1002469.g003

Population Structure in Familial Identification
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values for Native American samples (Text S1). We performed a

comparable analysis of average observed gene diversity versus

distinguishability using ten population samples and found again

that ~DDVH is correlated with ĥh over true and assumed population

samples (r2~:74, p~2:2e{16, Figure S4).

Distinguishability over parameters
In the analysis presented thus far, we showed how distinguish-

ability varies over true and assumed population samples with

varying allele frequency distributions. To maintain manageable

dimensionality, some key parameters likely to vary in forensic

analyses were kept constant. Here we explore the relationships

between these parameters, particularly different genetic relation-

ships, varying marker data, and varying the true and assumed

coancestry coefficients (h and ha). To focus on the relationships

Table 2. ĥh between population samples.

African
American

European
American Latino Navajo

Vietnamese 0.038 0.026 0.021 0.068

African American 0.017 0.015 0.067

European American 0.000 0.059

Latino 0.041

ĥh between each population sample as calculated using the CODIS loci.
Estimates less than 0.0 are reported as 0.0.
doi:10.1371/journal.pgen.1002469.t002

Figure 4.
~
DVH versus

^
h. The empirical measure of distinguishability ( ~DDVH ) for siblings and unrelated individuals is plotted against ĥh for each pair of

true and assumed population samples. Points are colored according to the true population sample and take a shape according to the assumed
population group where red and circles signify Vietnamese, orange and triangles African American, purple and plus marks European American, blue
and multiplication marks Latino, and green and diamonds Navajo. ĥh estimates less than 0.0 are reported as 0.0.
doi:10.1371/journal.pgen.1002469.g004

Population Structure in Familial Identification
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between these parameters, in these analyses the correct known

allele frequencies were used.

Pairs of individuals were simulated taking into account the true

coancestry coefficient, h, using the genotype probabilities de-

scribed in the Text S1, for the following genetic relationships:

parent-offspring, sibling, half-sibling, first cousin, second cousin,

and unrelated. Note that in contrast with the analyses presented

above, here h is used to model background relatedness. LRs were

computed comparing the probabilities of the simulated data

assuming the true relationship and assuming the individuals are

unrelated. This analysis was repeated over varying numbers and

types markers and a variety of assumed ha values.

Varying number and type of markers. We simulated two

types of markers with equi-frequent alleles: 10-allele STRs and 2-allele

SNPs. We varied the number of simulated markers over 10, 20, 30, 40,

50, and 60 STRs and 10, 50, 100, 150, 200, and 250 SNPs in

independent simulations. Distinguishability between the LCL

distributions of true relatives and unrelated individuals were

calculated for each of these simulations (Figure S5). Distinguishability

varies widely over relationships, with sibling ~DDVH being two or three

orders of magnitude higher than second cousin ~DDVH . We also see

distinguishability increase with the number of markers.

For unrelated individuals, cLRLR for a parent-offspring relationship

is often exactly 0 since unrelated individuals are unlikely to share

at least one allele at each locus. As a result, the distribution of

log(cLRLR) is not definable and distinguishability cannot be

computed, so parent-offspring relationships are excluded from

these results.

Varying h and ha. The genetic similarlity of relatives can be

quantified with the kinship coefficient, which is the probability that

a pair of alleles from relatives are IBD. The kinship coefficient for

parent-offspring, sibling, half-sibling, first cousin, and second

cousin relationships are 0:25,0:25,0:125,0:0625, and 0:015625,

respectively. Intuitively, as the kinship coefficient of the tested

relationship approaches the population background relatedness

(h), it will become increasingly difficult to discern relatives from

unrelated individuals.

To explore the relationship between true coancestry coefficient

h, assumed coancestry coefficient ha used in probability calcula-

tions, genetic similarity of relatives, and ~DDVH , we consider 15

STRs and 100 SNPs and simulated individuals with true

population h~0:00,0:01,0:03,0:05,0:07, and 0:09. We then

calculated LRs using ha~0:00,0:01,0:03,0:05,0:07, and 0:09.

For each type of marker, distinguishability decreased as h
increased and the slope of that decrease flattens as ha increased

(Figure S6). Again, distinguishability varied over relationships

where ~DDVH for siblings was about three orders of magnitude

greater than ~DDVH for second cousins. This consistent with findings

by Anderson and Weir that IBD sharing estimation accuracy

increased with the number of markers considered and decreased as

h increased [44].

Discussion

The analysis presented here confirms and quantifies the

intuition from population genetics that for particular loci, groups

with comparatively low-variance allele frequency distributions

have less identifying information encoded in genotypes. Decreased

identifying information results in lower relationship distinguish-

ability, even when the correct allele frequency estimates are used

(Figure 2, Figure S2). This is abundantly apparent for the Native

American samples considered in this analysis.

With a basic understanding of population genetics, it is clear

that socially defined groups, like Navajo, Latino, or European

American, have very different underlying population structures

reflecting distinct demographic history, degrees of genetic

diversity, and admixture. It is hardly surprising that a group

which has undergone multiple population size reductions, like the

Navajo, has a lower-variance allele frequency distribution than a

group with a history of genetic diversity and social inclusion, like

African Americans. This is particularly evident at the CODIS loci,

which were chosen in part because of their broad allele frequency

distributions in a few studied populations, without considering all

relevant populations [13–15].

These population differences in allele frequency distributions

are key when considering a potential source of error: inappropri-

ately assumed allele frequency distributions. When the allele

frequency distributions for an inaccurately specified population

group are assumed, the probabilities of the observed data under a

sibling relationship and under no close genetic relationship

become less distinct, so relationship distinguishability decreases.

We found that distinguishability decreases with increased distance

between assumed and true allele frequency distributions, as

measured through ĥh. Specifically, both Navajo and Vietnamese

samples are more genetically distant to the other three samples

considered and show decreased distinguishability when allele

frequencies of one of those three samples are assumed.

The results of this analysis indicate that when a decision

threshold is chosen so that the power to identify siblings is

reasonably high, population samples with allele frequencies which

differ from those assumed would experience disproportionately

higher rates of false positive familial identification (Figure 3). This

could be exacerbated by unknown population-based differences in

genotyping which would distort allele frequencies, for example,

population-specific mutations in PCR primer binding sites [45–

51]. More extensive genotyping of genetically diverse populations

may make available more appropriate allele frequency distribu-

tions. However, it is not clear how or if the most appropriate allele

frequency distribution for a pair of samples can be determined.

Population-based differential distinguishability will persist, regard-

less of additional population-specific allele frequency distributions

or uniformly applied corrections. One possible correction would

be increasing the value of the parameter h, however, in Figure S6

we see that even when the true allele frequencies are assumed,

increasing h decreases distinguishability. If more genetic data were

used, particularly markers on the Y chromosome or mitochondrial

DNA, as are in some states but not Federally, profile informa-

tiveness could be increased to the point where allele frequency

approximations made little difference in the ultimate outcome

(Figure S5) [10,52]. However, additional Y chromosome and

mitochondrial markers will only inform matrilinial or patrilinial

relationships and any additional markers will be subject to similar

population-specific variation, and will be limited by practical

genotyping constraints and the need to avoid medically-associated

regions. Additionally, it is not clear if more distant relationships

(cousins, second cousins, etc) would be confidently identified, even

with more independent genetic loci (Figure S5) [53,54]. As it is, the

core 13 CODIS loci, or the minimum 10 loci recommended by

the Scientific Working Group on DNA Analysis Methods Ad Hoc

Committee on Partial Matches (SWGDAM), seem inadequate to

implement sibling matching with low false positive rate and high

power in structured populations [52,55]. More complex situations,

like mixed or low-template DNA samples, require further study

and may not be feasible with the 13 CODIS loci [55,56].

Motivated by the question of forensic familial searching, in this

analysis we focus on distinguishing relatives with a specified

relationship and unrelated individuals. In other contexts, it may be

more appropriate to distinguish different kinds of relatives (e.g.
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siblings and parent-offspring) or relatives with an unspecified

relationship and unrelated individuals. In the former case, the

ratio of LRs for the relationships of interest versus unrelated

individuals reduces to the LR comparing the two specified

relationships. In the later case, models allowing IBD sharing

probabilities to vary can be formulated and incorporated into the

LR. For example, when comparing a null model with set IBD

sharing probabilities for unrelated individuals and an alternative

where the likelihood of data is maximized over any IBD sharing

probabilities, a LR test can be formulated which follows a x2
2

distribution under the null hypothesis.

This analysis considers familial identification in a forensic

context, but is applicable to tests for relatedness applied in the

various contexts especially when considering unlinked genetic

markers as in paternity investigation, ecological surveys, and

conservation biology. When more extensive genotype or sequence

data are available, it is appropriate to use more sophisticated tests

for relatedness considering linkage or shared haplotype length

[28,57,58].

The population genetic model used in forensic identification is

remarkably coarse. In direct identification, the CODIS loci

provide ample data to determine identity and non-identity, even

with the coarse population genetic model of a small number of

discrete homogenous genetic groups corresponding to social racial

groups. We have shown that under this model, new concerns arise

with familial searching. However, the model itself requires some

scrutiny. It is clear that human genetic population structure is

complex and humans are not easily split into a small number of

discrete homogenous genetic groups [59–62]. Even with carefully

chosen and defined population samples, it is practically impossible

to account for human genetic variation and the discrete population

group model fails to account for individuals with mixed ancestry.

Additionally, individuals are typically assigned to genetic popula-

tion groups based on social race. While there is correlation

between genetic ancestry and social race, one does not determine

the other [63]. As a result, in the discrete population group model,

some individuals may not be grouped with the most similar genetic

group.

Forensic familial searching will most likely be implemented in the

context of a large offender/arrestee database, introducing questions

of multiple testing over both database entrants, and the number of

genetic familial relationships considered. Because forensic method-

ology practice varies over jurisdictions, it is not clear how these

multiple testing issues have been, or will be, addressed. However, it

is reasonable to assume that familial searching will result in a list of

partial database matches with cLRLR for genetic familial relationships.

The parameter values used in the cLRLR calculations must be

conservative to keep the number of high cLRLR partial matches

manageably short, but the parameters also must allow enough

leniency so that a true match will appear in the list considered.

Ideally, parameter values used in practice should be tuned using

simulations based on real genotype data representing realistic

cryptic relatedness and population structure appropriate to the

database and relevant population. When tuning parameters, as

power increases, false positive rate will as well. Both of these values

must be considered in deciding on appropriate parameter values.

However across parameter values, some groups may have higher

rates of false identification, as we have shown here, raising questions

about the practicality of familial searching. Without access to

accurate database or population information, or to a clear decision

procedure practice, we refrain from making specific recommenda-

tions about parameter choice or methodology in this analysis.

Individual and population genotype information is necessary to

determine the extent to which inaccurately assumed allele

frequencies cause high false positive rate in familial matching in

practice. For instance, in this study, we considered unrelated

individuals, conforming to exactly one of five allele frequency

distributions, in completely randomly mating populations. How-

ever the use of familial searching rests on the premise that relative

groups are in the database and population structure is undeniably

present in most databases [64]. Access to suitably secure and

encrypted database information would enable analyses with an

accurate portrayal of relatedness and population substructure. As

recommended by Krane et al., increased transparency in database

makeup, search procedure, and database access are required for

rigorous analyses of forensic methodology [65].

If implemented with the core CODIS loci, familial searching

may result in low distinguishability and potentially high false

positive rates among certain groups, especially if only African

American, European American, Southeastern Latino, and South-

western Latino allele frequency distributions are in assumed LR

calculations, as recommended by SWGDAM [55]. Because some

of these groups (Native Americans and some immigrant groups)

are correlated with social groups already over-represented in the

criminal justice system, group members would be more likely to

have a relative in the database, and that relative would be more

likely to have a coincidental partial match with a crime scene

sample [3–6,9,17,18,66–68]. Cumulatively, members of these

groups are more likely to be investigated as a familial match due to

over-represention in the database, and an unusually high false

positive familial identification rate.

Methods

Data
Our analysis makes use of allele frequency data for the 13

CODIS loci over different population samples socially defined by

race. Note that alternate schemes to group individuals will also

produce genetic differences between groups [56,63,69]. Here, we

consider genetic differences between socially-determined groups

which are relevant to the practice of genetic familial forensic

identification. To do so, we used the allele frequencies reported by

Budowle and Moretti [29] for samples from ‘Vietnamese,’ ‘African

American,’ ‘Caucasian,’ ‘Hispanic,’ and ‘Navajo’ populations. In

this manuscript, these same samples are refered to with the

following labels: Vietnamese, African American, European

American, Latino, and Navajo. As short hand, we refer samples

derived from individuals from each sample as the sample name,

for example ‘the Latino sample.’ The number of individuals

genotyped to estimate allele frequencies for each sample varied,

with n~213,200,150,210, and 182 individuals sampled for

Vietnamese, African American, European American, Latino,

and Navajo samples, respectively.

The consent and population grouping procedures used in

obtaining these data are not clear. In the time since these data

were collected, dominant cultural ethics regarding informed

consent process have changed considerably, motivated largely by

several cases of severe misuse of samples provided by Indigenous

communities [70–73]. As a result, today it is becoming less

acceptable to gather data in the same way [74–78]. We use the

data because of its public availability, however we look forward to

working with data collected using transparent informed consent

methodology.

Likelihood ratio for relationship
LRs are used to compare the probability of observed genotypes

for two individuals under two different hypotheses: the individuals

are unrelated (Hu) and the individuals share a specified genetic
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familial relationship (Hr) [79]. The LR is defined as [79]

LR~
P(GjHr)

P(GjHu)

where G is the observed pair of genotypes. When LRv1, the

observed data are more likely for unrelated individuals and when

LRw1, the observed data are more likely for individuals with the

specified genetic relationship.

By assuming independence between all CODIS loci, LR can be

broken down as

LR~P
l

P(Gl jHr)

P(Gl jHu)

where Gl is the observed genotype for each individual at locus l.

Relationships between individuals can be described using the

identical by descent (IBD) sharing probabilities k0, k1, and k2,

which are the probabilities that individuals with the specified

relationship share 0, 1, and 2 alleles IBD, respectively [79]. For

example, for a parent/offspring relationship k0~0, k1~1, and

k2~0 and for a sibling relationship k0~0:25, k1~0:5, and

k2~0:25.

Using these IBD sharing probabilities, the LR becomes

LR~P
l

P(Gl jk0,k1,k2)

P(Gl jk0~1,k1~0,k2~0)

where the IBD sharing probabilities in the numerator are specified

by the specific genetic relationship considered. The probability of

the observed genotype combinations given IBD sharing probabil-

ities depends on the specific combination of alleles observed. The

probabilities of all observed genotypes, given IBD sharing

probabilities, are defined in Text S1. These probabilities include

a correction for expected background relatedness using the

coancestry coefficient h. In the first part of this study, we use the

value of h~0:01 based on standard methodology in population

genetics and as recommended by SWGDAM [55,80].

Likelihood ratio confidence intervals
The LR described above provides information about whether

the observed data are more likely for unrelated or related

individuals. However, the true population allele frequencies (pi)

are unknown, so LR needs to be estimated with the observed allele

frequencies. Available sample allele frequencies are subject to

sampling variation and variation due to demographic history [81].

Observed allele frequencies follow directly from observed

genotype frequencies. Using p̂pi, the probability of the data is

calculated under different IBD sharing schemes, so the estimate of

the likelihood ratio (cLRLR) can be computed. By considering the

distribution of p̂pi, we can find the distribution of cLRLR and calculate

confidence intervals on reported cLRLR values.

Sampling variation is inherent in allele frequency estimation

since a random sample must be chosen for the estimate. By their

nature, different random samples vary in their representation of

specific alleles, resulting in different allele frequency estimates.

Additionally, random genetic sampling exists in the historical

differentiation of populations, resulting in population groups

with distinct allele frequencies. Since all present-day human

population groups descend from a common ancestral popula-

tion, the alleles present in each present-day population group

reflect a sample of the alleles from the common ancestral

population.

Under evolutionary equilibrium and a simple model of

demographic history, the relationship between population group

allele frequencies (p̂pi) can be modeled using a Dirichlet

distribution informed by the coancestry coefficient (h), accounting

for genetic and sampling variation in estimated allele frequencies

[81,82]. With this model, we define the cLRLR confidence interval in

order to express uncertainty conferred by allele frequency

estimate.

Using the same approach as Beecham and Weir [81], we note

that the total log(cLRLR) is the sum of the log(cLRLRl) for each locus l.
The central limit theorem indicates that, for even as few as 13

independent loci, this sum will be approximately normally

distributed [81]. Thus, the confidence interval for log(cLRLR) is

[81]

CI~log(cLRLR)+za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var (log(cLRLR))

q

where var (log(cLRLR)) is the variance of log(cLRLR) and za=2 is the

standard normal value for the given a, in this study a~:05 and

so za=2~1:96. While the typical arbitrary value of a~:05 is used

in this study, the trends explored will be maintained with

different values of a. Also note that a one-sided confidence

interval can be derrived similarly with za. This confidence

interval is in log space, so we can exponentiate the results to get

the confidence interval of cLRLR. The value of var( log(cLRLR))

(derived in Text S1) depends on the variances of the observed

allele frequencies. These, in turn, depend on h to accommodate

evolutionary variation over populations and this is why

numerical techniques such as bootstrapping cannot be used to

calculate likelihood ratios, as explained by Beecham and Weir

[81].

Simulating individuals
Using the data provided by Budowle and Moretti [29],

individuals were simulated based on the allele frequencies

reported for each of the five population samples. For the

population structure analysis, individuals are simulated from a

given population sample by independently drawing two alleles

from the appropriate allele frequency distribution for every

locus. Note that the total independence between drawn alleles

implicitly creates a population with a coancestry coefficient of

zero (h~0). Independently generated individuals are unrelated.

Related individuals are simulated by generating unrelated

individuals and randomly dropping alleles through a pedigree

to achieve the desired relationship. In this way, we simulate pairs

of both unrelated and related individuals from each population

sample.

The total lack of population structure or cryptic relatedness

(h~0) in our simulated populations causes unrelated individuals to

share fewer alleles than would be expected in a real population.

This contrasts with our use of the h~0:01 correction in cLRLR
calculations, conservatively lowering our calculated cLRLR. This is

consistent with forensic applications, where a conservatively high

value for h is chosen for the anticipated populations. Specifically,

h~0:01 and 0:03 have been suggested for use with populations

primarily of European and Native American descent, respectively

[43,83].

In the second part of this analysis, when we consider the

interplay between various parameters, it is necessary to simulate

unrelated individuals from a population with a given non-zero

coancestry coefficient (h). To simulate unrelated and related

individuals from a population with h=0, random alleles are drawn
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using the probabilities of two-individual genotypes, given h and a

specified relationship, as written in Text S1.

Comparative distribution analysis
We are interested in comparing LCL distributions generated

with different parameters, particularly LCL distributions for truly

unrelated individuals and truly related individuals. If the

relationship cLRLR perfectly distinguished relatives and unrelated

individuals, these two distributions would be totally separate. The

degree of overlap between the related and unrelated distributions

roughly indicates the degree of genetic similarity of relatives and

unrelated individuals, and so, how well cLRLR distinguishes the two.

To quantify distinguishability, we use an empirical version of

the measure proposed by Visscher and Hill [56]

~DDVH~
(log(LR)r{log(LR)u)2

s2
r zs2

u

where log(LR)r and log(LR)u are the sample means of log(cLRLR)
for the simulations of related and unrelated individuals, respec-

tively, and s2
r and s2

u are the sample variances of log(cLRLR) for the

simulations of related and unrelated individuals, respectively. Note

that ~DDVH is analogous to the non-centrality parameter of the LR

test statistic distribution under the alternative hypothesis. Higher
~DDVH indicates greater LR distribution differentiation and more

distinguishability, while lower ~DDVH indicates more overlap and less

distinguishability. The statistic ~DDVH accurately describes the

differentiation in LR distributions, and is particularly appealing

because it describes the difference in distributions, so it does not

rely on a parameterized decision procedure to discretely determine

relationship status.

Supporting Information

Figure S1 Confidence intervals by population samples. Each

plot shows the 100 replicates of cLRLR 95% confidence intervals for a

sibling relationship between unrelated individuals, assuming allele

frequencies based on the named population sample. Within each

plot, the colored bands show the population sample allele

frequencies used to simulate the unrelated individuals. Red

signifies Vietnamese, orange African American, purple European

American blue Latino, and green Navajo. The vertical line

indicates cLRLR~1.

(EPS)

Figure S2 Allele frequency distributions. Each plot shows the

D3S1358 allele frequency distribution for each population.

(EPS)

Figure S3 ~DDVH versus entropy. The empirical distinguishability

( ~DDVH ) is plotted against entropy for each population sample.

(EPS)

Figure S4 Distinguishability ( ~DDVH ) versus distance between true

and assumed population samples (ĥh). The empirical distinguish-

ability ( ~DDVH ) is plotted against ĥh for each pair of true and assumed

population samples. Points are colored according to the true

population sample in the stated color scheme. ĥh estimates less than

0.0 are reported as 0.0.

(EPS)

Figure S5 ~DDVH over number of markers and relationships. ~DDVH

is shown when simulating different numbers of STRs (first column)

and SNPs (second column) for a variety of relationships, as labeled.

(EPS)

Figure S6 ~DDVH over h, ha, and relationships. ~DDVH is shown

when simulating 15 STRs (first column) and 100 SNPs (second

column) with different values of h used in the simulation and ha

used in probability calculations for a variety of relationships, as

labeled.

(EPS)

Text S1 Supporting work is presented, specifically genotype

probability equations, var( log(cLRLR)) derivation, low nominal false

positive rates, relationship distinguishability and entropy, and

tables.

(PDF)
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74. Arbour L, Cook D (2006) DNA on loan: Issues to consider when carrying out

genetic research with Aboriginal families and communities. Community

Genetics 9: 153–160.

75. Goering S, Holland S, Fryer-Edwards K (2008) Transforming genetic research

practices with marginalized communities: A case for responsive justice. Hastings

Center Report 38: 43–53.

76. Anderson J (2009) Commentary on implications of the Genographic Project.

International Journal of Cultural Property 16: 213–217.

77. Kaye J, Heeney C, Hawkins N, de Vries J, Boddington P (2009) Data sharing in

genomics – re-shaping scientific practice. Nature Reviews Genetics 10: 331–335.

78. McIness R (2011) 2010 presidential address: Culture: The silent language

geneticists must learn – genetic research with Indigenous populations. American
Journal of Human Genetics 88: 254–261.

Population Structure in Familial Identification

PLoS Genetics | www.plosgenetics.org 12 February 2012 | Volume 8 | Issue 2 | e1002469



79. Weir B, Anderson A, Helper A (2006) Genetic relatedness analysis: modern data

and new challenges. Nature Reviews Genetics 7: 771–780.
80. Holsinger K, Weir B (2009) Genetics in geographically structured populations:

defining, estimating and interpreting fST. Nature Reviews Genetics 10: 639–650.

81. Beecham G, Weir B (2011) Confidence interval of the likelihood ratio associated
with mixed stain DNA evidence. Journal of Forensic Sciences 56: S166–S171.

82. Curran J, Triggs C, Buckleton J, Weir B (1999) Interpreting DNA mixtures in

structured populations. Journal of Forensic Sciences 44: 987–995.

83. National Research Council: Committee on DNA forensic science (1996) The

evaluation of forensic DNA evidence. National Academy Press.

Population Structure in Familial Identification

PLoS Genetics | www.plosgenetics.org 13 February 2012 | Volume 8 | Issue 2 | e1002469


