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Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder, leading to progressive muscle weakness,
atrophy, and sometimes premature death. SMA is caused by mutation or deletion of the survival motor neuron-1 (SMNTI) gene. An
effective treatment does not presently exist. Since the severity of the SMA phenotype is inversely correlated with expression levels of
SMN, the SMN-encoded protein, SMN is the most important therapeutic target for development of an effective treatment for SMA.
In recent years, numerous SMN independent targets and therapeutic strategies have been demonstrated to have potential roles in
SMA treatment. For example, some neurotrophic, antiapoptotic, and myotrophic factors are able to promote survival of motor
neurons or improve muscle strength shown in SMA mouse models or clinical trials. Plastin-3, cpg15, and a Rho-kinase inhibitor
regulate axonal dynamics and might reduce the influences of SMN depletion in disarrangement of neuromuscular junction. Stem
cell transplantation in SMA model mice resulted in improvement of motor behaviors and extension of survival, likely from trophic
support. Although most therapies are still under investigation, these nonclassical treatments might provide an adjunctive method

for future SMA therapy.

1. Introduction

Spinal muscular atrophy (SMA) is characterized by motor
neuron degeneration with muscular atrophy, paralysis, and
an attenuated lifespan [1]. The disease is the leading genetic
cause of infantile mortality [2]. SMA exhibits an autosomal
recessive pattern of inheritance with an incidence of 1 in
6,000-10,000 newborns and a carrier frequency of about
1:35 [2, 3]. Based on age of onset and achievement of
motor milestones, SMA has been subdivided into four
clinical types: severe (type I; Werdnig-Hoffmann disease),
intermediate (type II), mild (type III; Kugelberg-Welander
disease), and adult forms [4]. Most SMA patients harbor
deletions, mutations, or conversions of the telomeric copy
of the survival motor neuron gene (SMNI) [5, 6]. The
centromeric SMN gene (SMN2) is present in all SMA
patients, but is unable to compensate for the SMNI gene
defect as the primary transcript of SMN2 gene is defectively
spliced [5, 6]. Currently, there are no curative therapies for

SMA. Since there is an inverted correlation between the
amount of SMN protein and disease severity [7, 8], SMN has
been the most important therapeutic target for development
of SMA treatment [9, 10]. However, some SMN independent
targets and therapeutic strategies have been demonstrated
to have the potential to benefit SMA [11-20]. Although
most are still under investigation, these nonclassical therapies
might provide an adjunctive method for future SMA therapy.

2. Disease Mechanisms

Although pathogenesis of SMA has been investigated exten-
sively, some of the detailed disease mechanisms are still not
fully understood. Figure 1 showed the genetics in SMA. The
SMN is a 38-kDa protein expressed in both the cytoplasm
and nucleus of all cells [21]. SMN serves as a chaperone
in the assembly of spliceosome precursors by combining
small nuclear RNA (snRNA) molecules with Sm proteins
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FIGURE 1: Schematic diagram of the SMNI and SMN2 genes. Humans are the only species that carry both SMNI and SMN2 genes, located in
the human 5q11.2-13.3 region [5, 168]. The SMNI and SMN2 genes differ by five nucleotide exchanges [6]. Among them, a translationally
silent cytosine to thymidine exchange at position 6 of exon 7 is responsible for the skipping of exon 7 during splicing of the SMN2 gene
[6]. The C-to-T transition abolishes an exonic splice enhancer site and generates a new exonic splicing silencer domain for the last coding
exon [169, 170]. Subsequently, through alternative splicing, most of the translating SMN protein from the SMN2 gene lacks the C-terminal
residue and becomes less stable and relatively inactive [171]. In normal situation, abundant SMN protein is produced mainly from SMN1
gene with a little amount from SMN2 gene. The spinal motor neuron from a wild-type mouse thus expresses a high level of SMN in both
cytoplasm and nucleus with several gems (arrow head) as compared to that in an SMA mouse. With homozygous mutation of the SMN1
genes, all SMA patients still have at least one SMN2 gene copy [6]. While complete loss of SMN expression is embryonically lethal [172], the
small amount of full-length SMN protein produced by the SMNZ gene (about 20%) prevents lethality in SMA patients, but has insufficient
SMN levels to assist in recovery from spinal motor neuron death [28].

to generate small nuclear ribonucleoproteins (snRNPs) [22,
23]. The snRNP assembly activity is dramatically reduced in
spinal cord from SMA model mice and the degree of snRNP
assembly impairment correlates with disease severity [24].
Therefore, SMN plays a critical role in pre-mRNA splicing.
Evidence shows that SMN is also involved in the stabilization
and maturation of the neuromuscular junction and the
transportation of axonal mRNAs in motor neurons [25-
27]. SMN-deficient motor neurons exhibit severe defects in
clustering voltage-gated calcium channels in axonal growth
cones [26]. An alteration of calcium channel distribution
might influence neurotransmitter release, causing dysfunc-
tion and immaturation of neuromuscular junction [25, 28].
In addition, the SMN protein can form granules that are
transported and associated with -actin mRNA in neuronal
processes [29]. The close relationship of SMN and f-actin
has further demonstrated that motor neurons derived from
SMA model mice have shortened axons and small growth
cones, which are also deficient in $-actin mRNA and protein
[30]. Therefore, SMN has a function in maintaining proper
neuronal machinery via assistance in splicing process and
establishing adequate communication between the muscles

and nerves at the motor end plate through stabilization of
the neuromuscular junction. The loss of maintenance and
communication might thus trigger the cascade of events that
probably results in motor neuron death.

SMA mouse models have been generated through mouse
Smn knockout and human SMN2 transgenic methods (8,
31]. These mice reveal spinal motor neuron degeneration,
muscle atrophy, and impaired motor performances similar
to SMA patients. The disease severity of these SMA mice
is also inversely correlated to the copy number of the
SMN?2 transgenes [8, 31]. These findings confirm that
SMA is directly caused by SMN deficiency. Denervation of
neuromuscular junction precedes spinal motor neuron loss
in SMA mice [25]. Neuromuscular junction can form and
function normally prior to the postnatal onset of disease
[32]. Afterward, abnormal neurofilament accumulation and
functional disruption at the neuromuscular junction become
evident [25]. Alongside these morphological and functional
changes at the neuromuscular junction, studies on the spinal
cord of SMA mice showed an apparent failure of expression
of genes that cluster in postnatal developmental pathways
[33]. Subsequently, through still unknown mechanisms,



Neural Plasticity

motor neurons degenerate in spinal anterior horn regions
probably through cell apoptosis [16, 34], and muscle atrophy
and motor dysfunction become apparent.

Recently, congenital heart defects have been recognized
as additional important phenotypes especially in type I
SMA patients, including atrial septal defects, dilated right
ventricle, and ventricular septal defects [35]. The histological
studies in SMA model mice also showed that cardiac
remodeling starts at the embryonic stage in the severe SMA
mice while motor neurons are not yet visibly affected at this
stage. After birth, there is progressive cardiac fibrosis, which
may result from oxidative stress [36]. SMA mice also suffer
from severe bradyarrhythmia characterized by progressive
heart block and impaired ventricular depolarization, which
may be related to defective sympathetic innervation [37].
Notably, systemic restoration of SMN expression is able to
diminish the cardiac defects accompanied with prolonged
lifespan, implying that cardiac abnormalities are playing a
critical role on SMA pathogenesis [38, 39].

3. SMN Dependent Therapy

Since SMN levels generally correlate with disease severity
in SMA patients and mouse models [7, 8, 31, 40], SMN
is the best therapeutic target for development of SMA
treatment. Various strategies to increase the SMIN levels have
been tested in SMA mouse models and some of them have
even showed promising beneficial effects [9, 10]. Until now,
none of them have been demonstrated to be consistently
robust or produce continual benefits in SMA patients.
These therapeutic strategies are divided into small molecules,
antisense oligonucleotides (ASO), and viral vector-mediated
gene therapy.

All SMA patients have at least one copy of the
SMN2 gene, providing an opportunity for manipulation
of the SMN2 gene expression [6]. The mode-of-action for
a potential SMA therapy using small molecules mainly
includes restoration of the SMN2 splicing pattern, activating
the SMN2 promoter, and extending the half-life of SMN
mRNA or protein [10]. The potential drugs include histone
deacetylase (HDAC) inhibitors such as sodium butyrate
[41], phenylbutyrate [42], valproic acid (VPA) [43], tricho-
statin A [44], SAHA [45], and LBH589 [46], as well as
hydroxyuria [47], sodium vanadate [48], aclarubicin [49],
indoprofen [50], bortezomib [51], and aminoglycosides,
such as tobramycin, amikacin [52], TC007 [53], and G418
[54]. Since there are still no drugs that have shown
consistent benefits in clinical trials [55, 56], finding an
effective treatment with distinct therapeutic mechanisms,
such as SMN independent targets, is necessary for future
SMA therapy.

Among these small molecules, VPA is the drug being
studied most extensively and has been used in patients
with epilepsy and bipolar disorders for decades [57]. VPA
treatment increased levels of SMN transcripts and protein
in fibroblasts derived from SMA patients through upreg-
ulation of serine/arginine-rich (SR) proteins, which are
involved in regulating SMN2 exon 7 recruitment [58, 59].

Autophagy, the degradation of cytosolic components in
lysosomes, maintains neuronal homeostasis; its dysfunction
has been linked to various neurodegenerative diseases,
possibly including SMA [60]. VPA is also an autophagy
enhancer, which activated autophagic pathways and atten-
uated rotenone-induced toxicity in SH-SY5Y cells [61]. In
addition, VPA upregulates some antiapoptotic factors such
as Bcl-2 and Bcl-xl, perhaps via activation of ERK44/42
[43, 62, 63]. Probably through multiple therapeutic effects,
VPA reduced motor neuron degeneration, muscle atrophy;,
and motor dysfunction in SMA mice [43, 64], and a small
group of SMA patients showed obvious improvement in
muscle strength after daily VPA treatment [65, 66]. Despite
these encouraging results, large clinical trials did not confirm
the beneficial effects of VPA in SMA patients [67-69].
These disappointing outcomes may contribute to different
pharmacokinetics and bioavailability between rodents and
humans as well as dose-limiting intolerance and drug adverse
effects [9]. In addition, the responses of VPA treatment
showed intrapatient and interpatient variability in the study
using fibroblasts and lymphoblasts from SMA patients [70],
probably indicating that tissue and individual factors may
affect the VPA effects with unknown reasons.

Using ASO to inhibit the splicing silencer for SMN2
exon 7 leads to restoration of the normal SMN2 splicing
pattern [71]. The effects of ASO were further improved
through the incorporation of a binding platform with ASO
for recruitment of SR protein to the SMN2 exon 7 region
[71]. These bifunctional ASOs were able to achieve nearly
100% exon 7 inclusion and enhance SMN expression up to
2- to 3-fold in cell-based assays [72]. Injection of ASO into
cerebroventricles elicited a robust induction of SMN protein
in the brain and throughout the spinal cord and extended the
lifespan of SMA mice [73]. A recent study demonstrated that
systemic delivery of ASO resulted in dramatic prolongation
of lifespan in SMA mice and the effects were much better
than those with intracerebroventricular delivery of ASO
(median survival, 108 versus 16 days) [39]. These findings
suggest that ASO therapy has great potential in this field
and extra-CNS targeting is required to rescue the SMA
phenotype. However, another similar study showed different
results that early intracerebroventricular delivery of ASO had
a better outcome than intravenous ASO delivery [74], which
suggests that therapeutic methods for ASO treatment still
need further investigation and optimization.

Direct injection of adeno-associated viral vector serotype
8 (AAVS) carrying SMN into both cerebroventricles and
upper lumbar spinal cord of SMA mice showed a robust
increase in lifespan by 880% with less motor neuron
degeneration and abnormal architectures of neuromuscular
junction [75]. However, augmented SMN is expressed in
thoracolumbar regions, but sparse in the cervical cord, which
may suggest poor diffusion of AAV in subarachnoid space.
In contrast, intravenous AAV serotype 9 (AAV9) injection
has shown success in affecting widespread gene delivery
in entire spinal cord [76]. Intravenous injection of AAV9
carrying human codon-optimized SMNI at postnatal day 1
recovered most motor function, neuromuscular physiology,
and lifespan in SMA mice [77]. Notably, postnatal day



1 treatment resulted in the maximal transduction of the
motor neurons, while postnatal day 10 treatment led to
glia-predominant transduction [77]. This shift in cell type
specificity was probably because of the closure of the blood
brain barrier that occurs within the first week of life in
neonatal mice [78]. When the blood brain barrier is mature
and patent, virions are probably not able to penetrate out
of vessels smoothly to access motor neurons, but only
encounter the endothelial wrappings of astrocyte end feet.
Since blood brain barrier likely matures in as early as human
neonatal period [79], the AAV9 transduction efficacy should
further be tested in nonhuman primates of different ages to
identify the optimal temporal window for future therapy.

4. SMN Independent Targets and Treatment

4.1. Neuroprotection, Antiapoptosis, and Myotrophic Effects

4.1.1. Insulin-Like Growth Factor-1. Insulin-like growth
factor-1 (IGF-1) is a trophic factor mainly secreted by the
liver and circulates at high levels in the bloodstream. IGF-1 is
a key molecule involved in normal brain growth and function
[80] and may have a neuroprotective effect by inhibiting
neuronal death in Huntington’s disease and spinocerebellar
ataxia [81, 82]. IGF-1 also enhances axonal outgrowth of
corticospinal motor neurons [83]. IgfI-null mice show some
phenotypic similarity to SMA mice, such as small size and
generalized muscle dystrophy, with most of them dying at
birth [84]. Notably, serum IGF-1 level was decreased in SMA
mice, and systemic increase of SMN expression using the
ASO strategy in SMA mice was accompanied with restoration
of serum IGF-1 to normal levels [39]. Interestingly, mRNA
levels of IGF-binding protein, acid labile subunit (IGFALS),
but not IGF-1, was reduced in SMA mice. IGFALS binds to
IGF-1 and IGF-binding protein 3 to form a stable ternary
complex, extending the half-life of IGF-1 from 10 minutes
to 12 hours [85]. Therefore, the low serum IGF-1 level in
SMA mice is likely related to downregulation of IGFALS,
and IGF-1 may be one of the factors that contribute to the
pathogenesis of SMA [39].

IGF-1 treatment has been shown to improve disease
phenotypes in rodent models of motor neuron diseases such
as amyotrophic lateral sclerosis (ALS) [86] and spinal and
bulbar muscular atrophy (SBMA) [87]. For SMA, transgenic
expression of IGF-1 in skeletal muscle of SMA mice resulted
in an increase in myofiber size and a modest improvement
in median survival [11]. Delivery of a plasmid DNA vector
encoding IGF-1 by intracerebroventricular injection into
newborn SMA mice also increased body mass and provided
a modest improvement in median survival [12]. However,
intracerebellar viral delivery of IGF-1 reduced motor neuron
degeneration, but did not improve motor function in the
mildly affected SMA mice [88]. Therefore, the effects of
IGF-1 and IGFALS-related therapy using different treatment
strategies in SMA still require further investigation.

4.1.2. Ciliary Neurotrophic Factor. Schwann cells close to
neuromuscular endplates play a major role in triggering
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terminal sprouting [89]. These cells express ciliary neu-
rotrophic factor (CNTF), and lack of CNTF expression
strongly reduces terminal sprouting and motor unit size
[13]. In a mouse model of ALS, the depletion of synaptic
vesicles precedes the loss of synapses; CNTF could prevent
the depletion of synaptic vesicles and thus maintain function
of neuromuscular junctions [90]. CNTF treatment using
CNTF-secreting stem cells or by local CNTF injection into
skeletal muscle led to better maintenance of peripheral motor
axons in a mouse mutant, progressive motor neuronopathy
(pmn) [91, 92].

In a severe type of SMA mice, the sprouting and
enlargement of motor units do not normally occur. In
contrast, the architecture and function of neuromuscular
junctions in heterozygous Smn (+/—) mice are relatively
preserved, despite some loss of spinal motor neurons [13].
However, completed knockout of CNTF in heterozygous
Smn (+/—) mice reduces the sprouting responses of the nerve
terminals accompanied with reduced muscle strength [13].
These results imply that CNTF may be able to compensate
loss of motor neurons by sprouting from remaining motor
axon terminals so that neuromuscular endplates remain
innervated; CNTF may thus guide the way for new therapies
for SMA. Although systemic CNTF treatment elicited severe
adverse effects including fever and cachexia in ALS patients
[93], muscle or CNS targeting CNTF therapy might offer a
chance to reduce these side effects and show benefits in SMA.

4.1.3. Cardiotrophin-1. CNTF and Cardiotrophin-1 (CT-
1) are both members of the IL-6 family, which bind a
common receptor complex requiring leukemia inhibitory
factor receptor (LIFR) and gp130 [94]. CT-1, an important
cardioprotective cytokine, also has beneficial effects in
neuromuscular systems [95]. CT-1 is essential in normal
motor neuron development and is also able to support long-
term survival of motor neurons as demonstrated in culture
cells and rats with axotomy [96]. In addition, overexpression
of CT-1 in pmn and ALS mice both significantly delayed
disease onset, reduced degeneration of motor neurons and
axons, and preserved the terminal innervation of skeletal
muscles [97, 98]. For SMA mice, intramuscular injection of
adenoviral vector expressing CT-1, even at very low doses,
prolonged survival, delayed motor defects, and diminished
motor axonal degeneration and aberrant synaptic terminals
[14]. Although most of studies regarding CT-1 are focused
on diseases in the cardiovascular system, CT-1 might still
be a valuable therapeutic agent for motor neuron diseases
through neurotrophic effects.

4.1.4. Bcl-xL and Bax. Degeneration of spinal motor neurons
in SMA is mediated in part through apoptosis [16, 34]. In the
Bcl-2 family, Bcl-xL and Bax are important regulators of cell
death in the nervous system when cells have matured. Bcl-xL
is an antiapoptotic member of the Bcl-2 family and acts by
inhibiting proapoptotic members of the Bcl-2 family through
heterodimerization [99]. Bcl-xL was downregulated in SMA
patients and model mice [17, 100]. Bcl-xL overexpression
can protect against motor neuron death in cultured primary
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motor neurons [101] and embryonic motor neurons with
SMN knockdown [102]. Interestingly, Bcl-xL overexpression
in SMA mice reduced motor neuron degeneration, preserved
motor function, and prolonged lifespan without changes
in SMN expression levels [17]. In addition, Bax protein
is a major proapoptotic member of the Bcl-2 family. Bax
knockout SMA mice had milder disease severity and longer
lifespan with less spinal neuronal degeneration than SMA
littermates with wild-type Bax genes [16]. Therefore, effects
of Bcl-xL and Bax may not be simply through apoptotic
pathways, but through unknown mechanisms to salvage
neural function in SMA. The ratio of Bcl-xL/Bax is thus
another attractive target, where the potential to increase Bcl-
xL and decrease Bax expression may be of benefit to SMA
patients.

4.1.5. Riluzole. Riluzole, a 2-aminobenzothiazole, is the only
disease-modifying therapy available for ALS [103]. Although
riluzole is known to modulate excitatory neurotransmission
mainly through inhibition of glutamate release, the pre-
cise neuroprotective mechanisms remain largely speculative
[104]. In SMA mice, riluzole improved median survival and
reduced aberrant cytoskeletal organization of motor synaptic
terminals [105]. However, a small phase I clinical trial,
enrolling 7 riluzole-treated and 3 placebo-treated type I SMA
infants, demonstrated no significant differences in survival
and the change in motor abilities after riluzole treatment
[106]. Nevertheless, further analysis showed that 3 patients
in the riluzole group presented an unusual disease course
and were still alive at the age of 30 to 64 months. The
pharmacokinetics of riluzole in SMA patients has recently
been investigated [107], and the long-term benefits of
riluzole still warrant large clinical trials for SMA patients.

4.1.6. Gabapentin. Gabapentin is a GABA analogue and has
been used clinically for patients with seizures and neuro-
pathic pain for more than 10 years [108]. Gabapentin could
also have a neuroprotective action in part by reducing the
pool of releasable glutamate in neurons, thereby diminishing
the excitotoxicity potential [109, 110]. Although gabapentin
treatment showed marginal reduction in disease progression
in a phase II clinical trial for ALS patients [111], the following
phase III clinical trial did not reveal significant benefits after
gabapentin treatment for 9 months [112]. For SMA, the first
clinical trial of gabapentin enrolled 84 type II and III SMA
patients. There was no difference between the gabapentin
and placebo groups in any outcome measure including
changes in muscle strength, pulmonary function, or motor
functional rating scale after 12 months of treatment [113].
However, another clinical trial which enrolled 120 type 1I
and III SMA patients showed a significant improvement
in muscle strength of legs at both 6 and 12 months after
gabapentin treatment [114]. Meta-analysis of these two trials
did not successfully demonstrate the beneficial effects of
gabapentin in SMA [56].

4.1.7. -Adrenergic Agonist. f32-Adrenergic agonist, such as
salbutamol (albuterol in the United States), enhanced muscle

strength in aged rats [115], human healthy volunteers [116],
and some pathological conditions [117, 118]. In a pilot clini-
cal trial, thirteen type II or III SMA patients receiving salbu-
tamol for 6 months showed significant increase in myometry,
forced vital capacity, and lean body mass [119]. A further
larger trial enrolling 23 type II SMA patients consistently got
similar results that functional scores were better after daily
salbutamol treatment for 6 or 12 months [120]. Notably, the
drug did not produce any major side effects [119, 120]. The
mechanism of action of 52-adrenergic agonists on human
skeletal muscles to enhance muscle strength is not completely
understood. Interestingly, salbutamol also promoted exon 7
inclusion in SMN2 transcripts and thus increased levels of
full-length transcripts of SMN2 in SMA fibroblasts [121]. In
SMA patients, daily salbutamol significantly and consistently
increased SMN2 full-length transcript levels in peripheral
leukocytes, and the response was directly proportional to
SMN2 gene copy number [122]. Considering bifunctional
therapeutic effects and safety of salbutamol, large random-
ized double-blinded placebo-controlled clinical trials are
mandatory.

4.1.8. Follistatin. Myostatin is a member of the TGF-f
family and functions as a potent negative regulator of
muscle growth [123]. Inhibition of myostatin increases
muscle mass and strength in wild-type rodents and improves
the pathophysiology of a mouse model for muscular dys-
trophy [124, 125]. Follistatin is a cystine-rich glycopro-
tein, which binds to and inhibits several TGF-f family
members, including myostatin [126]. Follistatin delivered
by intramuscular injection of recombinant viral vectors
increased muscle mass in mouse models of both ALS and
Duchenne muscular dystrophy [127, 128]. Since SMA also
features diffuse muscle atrophy, inhibition of myostatin may
also be a therapeutic strategy. Intraperitoneal injection of
recombinant follistatin in SMA model mice increased muscle
mass, improved motor function, and prolonged lifespan
by 30% without changes in SMN protein levels in spinal
cord and muscles [15]. However, other studies detected
no phenotypic alteration in transgenic overexpression of
follistatin or ablation of myostatin in SMA mice [129,
130]. The reason for this discrepancy is unclear and the
effects of follistatin for SMA treatment still need further
validation.

4.2. Axonal Dynamics

4.2.1. Plastin-3. Although SMA-affected siblings usually
develop similar disease severity in terms of their age at
onset and the progression of disease [131], a small propor-
tion of individuals with homozygous SMNI mutation are
fully asymptomatic despite carrying an identical number
of SMN2 copies as their affected siblings, suggesting the
influence of modifier genes [132, 133]. The first potential
SMN-independent disease modifier, plastin-3, was recently
identified from six SMA-discordant families with eight fully
asymptomatic females who had inherited the same SMNI
and SMN?2 alleles as their affected siblings [18]. Increased



levels of plastin-3 were also found to correlate with a mild
SMA phenotype in female patients, independently of SMN
protein levels [18, 134].

Plastin-3, an actin binding protein, is a regulator of
actin filament organization and is expressed in almost all
solid tissues, including the human brain, spinal cord, and
muscles [18]. Plastin-3 colocalizes with SMN in granules
throughout motor neuron axons, and plastin-3 protein levels
are reduced in brain and spinal cord of an SMA mouse
model [18, 135]. In SMN-depleted neuronal PC12 cells and
primary mouse motor neuron cultures derived from SMA
mice, plastin-3 overexpression was able to recover from axon
outgrowth defects [18]. Notably, overexpression of plastin-3
or its orthologues also led to diminishment of axon defects
and disease severity in SMN depleted zebrafish embryos,
Drosophila, and C. elegans [18, 136]. SMN has been shown
to moderate and restrict the negative function of profilin Ila
on actin polymerization [137]. Profilin Ila is another actin
binding protein, and knockdown of profilin Ila results in
stimulation of neurite outgrowth, while overexpression of
profilin ITa reduces neurite number and size [138]. Knockout
of profilin Ila in SMA model mice was able to restore
abnormal low plastin-3 levels. However, the phenotype of
these SMA mice was not ameliorated despite the depletion
of profilin Ila and restoration of plastin-3 levels, which
suggests that other components of actin dynamics are also
critically affected in SMA [135]. Although some questions
need to be answered, such as the mechanisms behind plastin-
3 in SMA and effects of plastin-3 upregulation in SMA
mouse models, plastin-3 may become an important SMN-
independent therapeutic target for SMA in the future.

4.2.2. Cpgl5. The candidate plasticity-related gene 15
(cpgl5) is highly expressed in the developing ventral spinal
cord and can promote motor axon branching and neuromus-
cular synapse formation [139, 140]. Cpgl5 mRNA colocal-
izes with SMN protein in axons and is locally translated in
growth cones [141]. HuD is a neuron-specific RNA-binding
protein and also an interacting partner of SMN [141-
143]. Cpgl5 may be an mRNA target for the SMN-HuD
complex and SMN deficiency reduced cpgl5 mRNA levels
in neurons [141]. Most importantly, cpgl5 overexpression
partially recovered from motor axonal deficits in zebrafish
with SMN deficiency [141]. Therefore, cpgl5 appears to
be a crucial downstream effecter of SMN in neurons and
may serve as a modifier of SMA disease by regulating axon
extension and axon terminal differentiation.

4.2.3. Rho-Kinase Inhibitor. Rho-kinase signaling is a major
regulatory pathway of actin dynamics, and Rho-kinase
activation is associated with dendritic simplification, and
reduced spine length and density [144]. Rho-kinase activity
is upregulated in SMN-depleted PC12 cells and SMA model
mice [145, 146]. The migratory capacity of the U87MG
astroglioma cells was attenuated by knockdown of SMN
through abnormal activation of Rho-kinase pathway [147].
Normally, SMN binds to profilin Ila to form complexes, and
Rho-kinase may phosphorylate profilin IIa [148]. Through
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competition between SMN and Rho-kinase for binding to
profilin IIa, SMN deficiency results in a decrease in SMN-
profilin ITa complexes and stronger interaction of profilin Ila
with Rho-kinase [148]. Subsequently, hyperphosphorylation
of profilin ITa in SMA leads to inhibition of neurite
outgrowth. Therefore, Rho-kinase inhibition might be able
to correct the effect of SMN reduction in SMA to achieve an
adequate ratio of de-/phosphorylated profilin I1a.

Notably, treatment of SMA model mice with Rho-kinase
inhibitor Y-27632 or Fasudil led to a significant prolongation
in survival, improvement in integrity of neuromuscular
junction, and increase in muscle fiber size without altered
SMN expression or increase in the number of spinal motor
neurons [146, 149]. Since Fasudil has been successfully
applied in many clinical trials for other neurological and vas-
cular diseases based on its neuroprotection, vasodilatation,
and immune modulation effects [150], the results of Fasudil
therapeutic studies for SMA patients are anticipated.

4.3. Stem Cells

4.3.1. Neural Stem Cells. A diagnosis of SMA is usually made
following a patient’s initial presentation of muscle weakness,
at which there would be substantial spinal motor neuron
loss [64]. Both SMN dependent and independent treatments
described above could only prevent disease progression,
but not regain lost motor neurons, while stem cell therapy
might provide a possibility for cell replacement. Fetal-
derived neural stem cells (NSCs) are able to self-renew and
are multipotent with the capacity of producing neurons
(including motor neurons), astrocytes, and oligodendrocytes
[151]. NSCs can be isolated from mouse embryonic spinal
cords and differentiated toward a motor neuron cell fate by
priming with retinoic acid and sonic hedgehog. Intrathecal
injection of these primed NSCs in nmd mice, another
model of motor neuron disease, resulted in improvement
of abnormal phenotypes and extension of survival [152]. In
addition, NSCs derived from human fetal spinal cord delayed
disease onset and prolonged lifespan after being transplanted
directly into spinal cord of ALS mice [153, 154].

In a severe type of SMA mouse model, intrathecal
injection at postnatal day 1 with primed NSCs derived from
mouse embryonic spinal cord also promoted motor neuron
survival, improved motor function, and prolonged lifespan
[19]. Although some grafted cells expressed motor neuron
markers, there was no direct evidence suggesting that the
beneficial effects resulting from the formation of functional
motor units by the transplanted cells. Transplantation of
undifferentiating NSCs also showed a significant increase in
survival of SMA mice, although not as efficient as the effects
of NSCs primed into a motor neuron fate [19]. Therefore,
the observed benefits of NSCs in SMA model mice were likely
related to trophic support.

4.3.2. Embryonic Stem Cells. Although fetal-derived NSC
transplantation in SMA mice showed promising effects,
their derivation from a spinal cord source impedes further
clinical implementation because of ethical and technical
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issues [155]. On the other hand, embryonic stem cells
might be easier to obtain and are also able to differentiate
in vitro and in vivo into NSCs and a motor neuron fate
[156]. Intraspinal grafting of embryonic stem cell-derived
motor neurons resulted in a significant improvement in
motor behaviors in the ALS rat [157]. For SMA, embryonic
stem cell-derived NSCs transplanted intrathecally in SMA
model mice migrated to spinal anterior horn and improved
motor function and lifespan [20]. Although the grafted
stem cells integrated appropriately into the parenchyma,
and expressed both neuron- and motor neuron-specific
markers, there was again no evidence of newly generated
motor neuron outgrowth to the muscles. In one previous
study, a boy with ataxia telangiectasia received intracerebellar
and intrathecal injection of human fetal NSCs. Four years
later, he was diagnosed with a donor-derived multifocal
brain glioneuronal neoplasm [158]. To increase the differ-
entiation rate of embryonic stem cells into NSCs before
transplantation, the above SMA study used drug-selectable
embryonic stem cell lines that ganciclovir and G418 have
been applied for selection against undifferentiated embry-
onic stem cells and for neuroepithelial cells, respectively.
Usage of these drug-selectable stem cells not only promoted
transplantation safety, but also produced superior treatment
results as compared to using wild-type embryonic stem cells
[20].

4.3.3. Induced Pluripotent Stem Cells. Since the first report on
reprogramming of mouse fibroblasts into so-called induced
pluripotent stem (iPS) cells by the expression of oct3/4, Sox2,
c-Myc, and Klf4 in 2006 [159], reprogramming of human
somatic cells to a pluripotent state was achieved using similar
approaches [160, 161]. The iPS cells can be differentiated into
cells of endodermal, mesodermal, or ectodermal origin, and
further lineage restriction can obtain specific neural subtypes
or astrocytes. Recently, iPS cells have been successfully
generated from fibroblasts of SMA patients [162, 163]. The
SMA-specific iPS cells exhibited a reduced capacity to form
motor neurons and an abnormality in neurite outgrowth that
ectopic SMN expression rescued these abnormal phenotypes
[163]. These iPS cells provide a novel opportunity in disease
modeling for investigating SMA pathogenesis and can be
used in screening novel compounds for SMA treatment.

The use of fetal-derived cells or embryonic stem cells
for transplantation is hurdled by problems of availability,
the possibility of immune rejection, and ethics. In contrast,
the source of iPS cells is unlimited, and iPS cells can
be transplanted autologously. Transplantation of normal
neurons derived from iPS cells reduced abnormal phe-
notypes in a murine model of Parkinson’s disease [164].
Notably, when iPS cell-derived neural precursor cells from
a patient with Parkinson’s disease were transplanted into
the striatum of a Parkinson’s disease rat model, the donor
cells differentiated into dopaminergic neurons, survived
in the rodent brain for several months, and reduced the
abnormal motor asymmetry [165]. For autologous iP$S cell
transplantation in SMA, iPS-derived neural precursor cells or
motor neurons should be pretreated to express a high level of

SMN before transplantation. Until now, there is still no cell
transplantation report using iPS cells in SMA.

5. Conclusions

In various neurological disorders, many diseases, such as
Parkinson’s disease, epilepsy, and multiple sclerosis, are
treated clinically with multiple drugs in combination to
enhance the therapeutic effects. Motor neurons may also
require additional support to optimally respond to SMN-
based treatment. In the past two decades, there has been
tremendous progress in SMA regarding genetics, pathophys-
iology, and therapeutics. Some useful strategies to enhance
SMN expression have been developed, and some novel
SMN-independent therapeutic targets have been discovered.
While SMN acts to modulate and correct the neuromuscular
junction for functional improvement, SMN-independent
targets could play a role of extension in the survival of motor
neurons and reduce the influence of SMN depletion in axonal
dynamics.

The two currently available stem cell transplantation
studies for SMA have only demonstrated benefits likely
with trophic support without evidence of functional cell
replacement [19, 20]. To generate functional motor units,
the grafted stem cells should be able to differentiate into
motor neurons, appropriately project the axons a long
distance toward corresponding muscles, and form func-
tional synapses within neuromuscular junctions. In a virus-
induced rat model of motor neuron degeneration, mouse
embryonic stem cell-derived motor neurons transplanted
into spinal cord could survive, extend axons, form functional
motor units, and promote recovery from paralysis [166,
167]. The successful development of motor units in the
above studies may result from a combination approach,
which includes administration of dibutyryl-cAMP, rolipram,
cyclosporine, and glial cell line-derived neurotrophic factors
to promote motor neuron survival, circumvent myelin
repulsion, prevent immune rejection, and enhance axonal
outgrowth, respectively. Therefore, cell replacement ther-
apy using stem cells for SMA is not totally impossible;
however, there is still much to be accomplished in cell
therapy before being applied clinically to treat motor neuron
diseases.
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