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Abstract: The environment of underground coal mines has challenging properties that makes this
zone inadaptable for a stable communication system. Additionally, various deteriorating physical
parameters strongly affect the performance of wireless networks, which leads to limited network
coverage and poor quality of data communication. This study investigates the communication
capability in underground coal mines by optimizing the wireless link to develop a stable network
for an underground hazardous environment. A hybrid channel-modeling scheme is proposed to
characterize the environment of underground mines for wireless communication by classifying the
area of a mine into the main gallery and sub-galleries. The complex segments of mine are evaluated by
categorizing the wireless links for the line-of-sight (LOS) zones and hybrid modeling is employed to
examine the characteristics of electromagnetic signal propagation. For hybrid channel modeling, the
multimode waveguide model and geometrical optic (GO) model are used for developing an optimal
framework that improves the accessibility of the network in the critical time-varying environment of
mines. Moreover, the influence of various deteriorating factors is analyzed using 2.4 GHz to 5 GHz
frequency band to study its relationship with the vital constraints of an underground mine. The
critical factors such as path loss, roughness loss, delay spread, and shadow fading are examined
under detailed analysis with variation in link structure for the mine.

Keywords: underground wireless communication; EM wave propagation; hybrid channel modeling;
mine waveguide model; path loss

1. Introduction

Underground coal mines have a complex and unfavorable environment with inappro-
priate conditions to establish a stable communication system. Traditional communication
techniques are less sophisticated for underground coal mines and conditions including
uneven structure, rough walls, large mining equipment, non-uniform permittivity, and
irregular geometry [1]. The underground roadway is a closed limited space, made up of
rocky walls that affect the transmission of electromagnetic waves (EM) and produces high
attenuation [2].

Ores inside the mines are fixed in the ground, but available in variable chunks over
a long distance; hence, the mining activities are spread over the entire mine. Therefore,
to cover the whole mine is a complex task for a communication system. The existing
underground mine system provides limited monitoring of sites, and cables are the major
source of information exchange [3]. As wires become damaged, it destroys the whole
network and paralyzes the entire system which disturbs the safety of the mines. Similarly,
power transmission is another serious matter to consider, as mines consist of explosive
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materials and high-power signals can cause disaster [4]. Predominantly, damages to
network infrastructure from accidents in underground mines lead to link deterioration
and communication failure. Consequently, the safety of workers is at stake. Therefore, an
efficient and reliable communication system is required to ensure their safety. A system
is required that can bear disasters and provide a robust tracking methodology. A stable
communication framework does not only help to save work process time of machinery,
but it also helps to transfer information quickly between a monitoring point and other
underground units. As a result, it speeds up the rescue work in the case of accidents and
natural disaster [5]. As well as the underground communication assistance and location
estimation, a stable wireless system is useful for the control of mining equipment, remote
monitoring, real-time access for operating information, and data gathering from a variety
of sensors for underground mines. Therefore, a stable communication system is required
to ensure smooth operations in underground mines and better safety.

Concerning the significance of underground communication, although a large body of
research exists for safe communication, several problems require immediate attention. One
of the primary concerns is a safe and efficient wireless communication system to realize
fast-track flexible sensor access, and larger coverage to underground monitoring areas [1,6].
Physical structure and a sensitive medium of underground mines plays an important role
in signifying the characteristics of signal propagation. Therefore, this research evaluates the
influence of multiple deteriorating factors on wireless links by employing the optimized
channel-modeling approach. A hybrid channel model scheme is used by classifying the
different zones of a mine to examine the characteristics of electromagnetic signals. The
main entrance of a mine is considered to be the mine gallery and the multiple branches
are represented as sub-galleries. A sub-gallery comprises of a room-and-pillar structure
and the remaining ore body for the extraction of minerals, as shown in Figure 1. The
channel modeling for both nominated zones is conducted according to their environment
and the signal-received power is analyzed by categorizing the LOS zones to inspect the
performance of wireless links in complex areas. In summary, the proposed system makes
the following contributions:

Figure 1. Room-and-pillar architecture of coal mines.
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• This study investigates the influence of several deteriorating factors on a wireless link
using the 2.4 GHz to 5 GHz frequency band in underground coal mines.

• The characteristics of electromagnetic signal propagation are investigated for complex
segments of a mine using line-of-sight (LOS) links.

• A hybrid channel-modeling approach is proposed for communication in underground
coal mines using a multimode waveguide model and geometrical optic (GO) model.

• Performance evaluation of the proposed approach is done using several critical factors
such as path loss, received power loss, delay spread, and shadow fading.

The rest of the paper is organized in the following manner. Section 2 presents a brief
overview of conventional communication techniques for mines and potential challenges
for underground communication. A review of existing channel models for communication
in underground mines is given in Section 3. A description of the proposed hybrid channel
model is presented in Section 4. Section 5 contains the results and discussion, and the
conclusion is given in Section 6.

2. Overview of Conventional Communication Techniques and Potential
Communication Challenges in Underground Mines

This section briefly describes the conventional communication techniques and po-
tential challenges in underground mines that complicates the development of an efficient
channel model for wireless communication.

2.1. Conventional Communication Channels

The underground communication network (UCN) consists of wireless or wired devices
that are either placed in a bounded open space of tunnels or completely buried under dense
soil [7]. A brief discussion of existing conventional communication techniques that have
been applied in the underground mines is given here.

2.1.1. Through-Wire and Hybrid Scheme

In the harsh environment of underground mines, a fixed infrastructure of wires can al-
ways be the source of problems for mine workers. Lacking a stable wireless communication
framework, signal transmission is carried out with the aid of cables called through-the-
wire (TW) communication [3]. Coaxial cables and the optical fibers are typically used in
mines for data transmission, but that does not provide network accessibility in all areas
of a mine [8]. For the protection of a wired system, various schemes have been intro-
duced including the deployment of pipes and placing cables via borehole connections to
the mainline.

In some cases, hybrid systems are used that consist of leaky feeder cables that radiate
signals for data reception [9]. However, such techniques require higher maintenance effort,
and an independent stable wireless network is still required in mines. The fundamental
methodologies used in conventional communication schemes are shown in Figure 2.

2.1.2. Through-Earth (TE) and Through-Air (TA)

The through-earth (TE) scheme is data transmission using the propagation of EM
signals through the surface of the earth. These signals penetrate in depth through the
multiple layers of underground mines; however, such propagation weakens the power of
EM signals [10]. Even so, the range of signal transmission can be improved using particular
frequencies of less than 10 kHz [11]. The attenuation of EM signals in the TE scheme
depends on multiple factors such as antenna size, transmit power, bandwidth, and noise
levels, etc. TE operates normally between 90 Hz to 9 kHz, and it is necessary to launch EM
signals using large loop antennas [12]. On the other hand, through-the-air (TA) represents
the communication framework that uses wireless links through free space inside mines
for data transmission. The major problem in this approach is its adaptability in a mine’s
critical environment. Physical characteristics of a mine, inefficient channel modeling, and
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mining material create a high-level scattering for propagated signals, which reduces the
efficiency of this approach [13].

(a) (b)

(c)
Figure 2. Pictorial presentation of conventional communication methods (a) through-earth, (b) through-wire, and
(c) through-air communication methods.

2.2. Potential Challenges in Underground Mines
2.2.1. Extreme Path Loss and Multipath Fading

Path loss is one of the major concerns for propagated signals in underground mines.
Communication channels share several characteristics in the critical environment of mines,
which leads to difficulty in reliable operation. As the signal propagates away from the
transmitter, extreme path loss is observed in the gallery of a mine due to irregular geometric
effects [6]. The link distance has a direct relationship with the attenuating factors and
inverse relationship with propagated signal power [14]. The dielectric medium of under-
ground mines changes its properties with a change in temperature and moisture, which
leads to signal absorption [15]. Reflecting surfaces of underground mines and mining
equipment used for mineral extraction are the prime sources of disruption for propagated
signals. These obstructions produce a multipath propagation effect due to the reflection
of signals, which leads to fading and fluctuations of the propagated signal [16]. When
the signal travels through multiple routes and ends up at a particular receiver with a
specific time delay, this effect reflects the dispersive properties of the channel, which leads
to induction of the delay spread [17].

2.2.2. Rapid Time-Varying Channels and Propagation Velocity/Delay

Environmental channel characteristics in mines change irregularly, which complicates
the design of an efficient channel model. Frequent movement of convenient communication
equipment along with variations in the prime channel of mines leads to the production
of Doppler frequency shifts and fast signal strength fluctuations [18]. Signal propagation
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characteristics in a terrestrial environment are very much different from a compact reflected
environment of underground mines; the signals face a lot of hindrance from the dielectric
medium of mines. Variation in properties of such mediums and non-homogeneous mate-
rials can generate a propagation delay effect for transmitted signals [19]. Power cabling,
electric machinery, and other mining appliances that are used by underground communi-
cation can create some noise in particular frequency bands, which corrupts data bits and
adds interference during the signal propagation [20].

2.2.3. Gaseous Hazards and Limited-Line-of-Sight Problems

One of the main factors that causes interruption of communication signals is the
eruption of flammable gases. A risk of gas blast increases when the concentration of such
gases exceeds a particular threshold. Therefore, continuous evacuation is required to
decrease the probability of any disaster. Moreover, the explosion or any disaster can affect
the propagation characteristics of EM signals and leads to a complete link failure [21]. LOS
links in such a critical environment improve the quality of wireless communication because
waves can propagate directly towards the receiver, rather than around the corner or through
materials, as both cases produce high attenuation [22]. However, in underground mines, a
congested structure of room-and-pillar and tunnel blockages restrict LOS communication.

3. Review of Existing Channel Models for Underground Mines

This section describes various analytical models for characterizing wireless propaga-
tion in underground mines. Existing models for channel analysis used in underground
mines are briefly discussed, and a summary of their benefits and drawbacks is given in
Table 1.

3.1. Single-Mode Waveguide Model

Tunnel structure in underground mines can guide EM waves throughout their path
and this type of EM wave propagation has been modeled as a waveguide [23]. In the
single-mode model, the distributed field of EM waves is examined by adding propagated
modes on the excitation plane with the help of Maxwell equations. The single-mode
waveguide model becomes the base for modeling in underground tunnels, especially
for evaluating path loss in lower frequencies of the ultra-high frequency (UHF) band [7].
However, this model is considered valid only for the dominant mode and for evaluating
the propagation loss in the far-field region [14]. Several efforts have been made for the
correction of weak areas by modifications, but no model is valid for path loss in the near-
field region. Moreover, this model fails to predict accurate results on higher frequencies
and does not cover the surface roughness of tunnel walls [24].

3.2. Geometrical Optic Model

For smaller-wavelength operations in underground mines, the GO model is useful to
estimate the characteristics of the propagated signal in complex environments. Unlike the
single-mode waveguide model, it can be used to investigate branches of mines for signal
propagation. It can provide accurate results when the dimensions of the environment are
larger than its wavelength. This means that it can satisfy the higher UHF-band frequencies
for propagation loss in underground mines. The use of this model is based on optical
ray theory, where EM waves used for signal transmission are considered to be optical
rays [24]. The distributed fields of propagated signals can be computed with the addition
of replicated images produced by the interior surfaces of a tunnel. The GO model can
also be applied to analyze an occupied mine, but this model is not valid for characterizing
lower frequencies. Moreover, it does not cover diffraction loss in mines. Another drawback
is its computational complexity on high link distance [14,25].
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Table 1. Summary of advantages and disadvantages of existing communication channel models for underground mines.

Models Advantages Disadvantages

Single mode
Simple computation Invalid for high frequencies

Considers Physical factors Only path-loss evaluation
Frequently used in theoretical models Invalid for near zone

GO model
Simplicity Less accurate on low frequencies

Considers tunnel branches Complex computation on high link distance
Considers physical factors

Multimode
Valid for multiple frequencies Complex

Valid for near & far zone Incapable for wall roughness
Valid for RMS delay Invalid for mine branches

Full-wave High accuracy Complex
Capable for wall roughness and branches FDTD computational extension

3.3. Multimode Waveguide Model

In the environment of underground mines, the multimode model can be used to
estimate the signal propagation characteristics for the near and far regions. This model is
valid for multiple frequencies, and the operating frequency in this model can be higher
than the cut-off frequencies of propagation by increasing communication frequency [26].
The propagation loss analysis concerning the root mean square (RMS) delay spread can
be estimated using the multimode waveguide model. However, this model is not friendly
for complex environments in underground mines, having multiple branches and being
incapable of estimating a mine’s roughness parameter [27].

3.4. Full-Wave Model

The full-wave model is an effective scheme to estimate channel characteristics for
underground mines. This approach is considered valid for analyzing the degrading
effects of reflection, diffraction, and refraction in tunnels with a complete solution for
signal propagation in complex areas [28]. It is considered an alternative approach to
compute Maxwell equations with the aid of a numerical technique that comprises the
Finite-Difference Time Domain (FDTD). The weakness of this model is the computational
complexity of the FDTD beyond the normal capacity for large-size tunnels and higher
UHF-band frequencies [7].

4. Proposed Methodology of Hybrid Channel Modeling

This section describes the development of a hybrid channel-modeling scheme by
distinctly using the multimode waveguide and GO model for underground mines. The
complete flow structure of channel modeling is shown in Figure 3. The multimode waveg-
uide model is used to characterize electromagnetic waves, and the basic modes of this
model are the key explanations to Maxwell expressions, which particularize the existence
of specific EM signals in the critical environment of mines. However, the major problem is
its reliance on mode intensity and estimation from the excitation plane, which cannot be
resolved with the multimode model [24,29]. Therefore, the GO model is used to facilitate
the cross-section area of the transmitter, as it is useful to analyze the EM distributed field.

This research categorizes the areas of the mine into different categories. The tunnel of
the underground mine is considered to be the mine gallery, and its branches are represented
as sub-galleries, as shown in Figure 4. The interior architecture of the sub-gallery com-
prises the room-and-pillar structure, which resembles the free-space-congested terrestrial
environment of high buildings.
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Figure 3. Flow diagram of proposed hybrid channel-modeling scheme for mines.

(a)
(b)

Figure 4. Layout of an underground coal mine, (a) Underground mine galleries, (b) Channel measurement setup.

4.1. Gallery Model for Underground Mine

It is very important to consider the structure of the mine before developing its math-
ematical model. Although mines consist of different portions, in this case the general
cross-section area for signal propagation is in rectangular form [30]. In this study, the width
of the assumed mine gallery is 2a, and the height is considered to be 2b, and the origin is in
the center using the Cartesian coordinate framework. The complex electrical parameters
for the mine gallery are given below in (1)–(3):

kv = εoεv +
σv

j2π fo
(1)

kh = εoεh +
σh

j2π fo
(2)

ka = εoεa +
σa

j2π fo
(3)
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where εv, εh, εa and εo denote relative permittivity parameters for the vertical structure of
sidewalls, horizontal floor, air, and vacuum space in the tunnel, respectively. Similarly, σv,
σh and σa represents the conductivity parameters for vertical side boundaries, horizontal
top/bottom, and free space of air, respectively. The fo denotes the central frequency and the
permeability parameter µo is considered to be the same for all areas. The relative electrical
parameters kv and kh are considered to generate a brief expression where kv = kv/ka and
kh = kh/ka.

4.2. Electromagnetic Propagation in a Mine Gallery

The transmission of EM signals in the mine can be observed in the form of a superpo-
sition of various modes with varied distributed field patterns and attenuation coefficients.
The complete distributed EM field patterns of every mode can be derived by sorting
Maxwell’s expression in the form of Eigen-function [31], as given in (4):

Eeign
m,n (x, y) ∼= sin(

mπ

2a
x + ϕx)cos(

nπ

2b
y + ϕy) (4)

where the values for ϕx and ϕy are calculated using
ϕx = 0 if m is even
ϕx = π/2 if m is odd
ϕy = 0 if n is odd
ϕy = π/2 if n is even

(5)

The distribution field is calculated against any position (x, y, z) in the mine by the
addition of particular EM fields of each substantial mode, and the expression is given
below in (6):

ERx(x, y, z) =
∞

∑
m=1

∞

∑
n=1

CmnEeign
m,n (x, y)e−(αmn+jβmn)z (6)

where Cmn, αmn and βmn represent intensity of modes, attenuation and coefficient of phase
shift, respectively [32,33]. The expressions for the coefficient of attenuation and phase shift
are given below

αmn =
1
a
(

mπ

2ak
)2Re

kv√
kv − 1

+
1
b
(

nπ

2bk
)2Re

1√
kh − 1

(7)

βmn =

√
k2 − (

mπ

2a
)2 − (

nπ

2b
)2 (8)

The waveguide model declares the lower-order mode in the environment of under-
ground mine as C11 = 1 and Cmn = 0 if (m, n) 6= (1, 1) but multiple modes exist in the near
zone of the transmitting antenna with particular intensities. To find the field distribution
and mode intensity Cmn on the excitation plane, the GO model is used in the current study.

4.3. Electromagnetic Field Analysis in the Mine Gallery

The entire distribution field on the excitation plane is obtained by summing up the
contribution of the source and total reflected images. In a rectangular-shaped mine gallery,
this geometry exhibits the protocol that vertical walls reflect the image Ipq|p| times and
horizontal ceilings or floors reflect |q| times.

Assume that the incident angle for the horizontal floor or ceiling is α and the incident
angle for vertical walls is β, as shown in Figure 4 with the basic design of the mine. If the
transmitter is set at coordinates (xo, yo, 0), and the observant node is located at (x, y, z),
then the net field on an observant node can be considered to be the summation of all rays,
and the field at the transmitter node Eo can be calculated as
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ERx(x, y, z) = Eo

∞

∑
p=−∞

∞

∑
q=−∞

[
exp(−jkrp,q)

rp,q

]
S(kv)

|p|R(kh)
|q| (9)

where R(kh) and S(kv) are reflection coefficients for horizontal and vertical parameters,
respectively, rp,q denotes the distance between the receiver and image Ip,q, as described in
Equations (10) and (11). The rp,q is given in Equation (14), where a +ve sign represents the
scenario when p or q is even and a −ve sign for p or q represents the odd.

R(kh) = −exp

−2sinα)√
kh − 1

 (10)

S(kv) = −exp

(
−2sinβ)√

kv − 1

)
(11)

The parameters R(kh) and S(kv) can be transformed into simplified equations, using
the following

R(kh) = −exp

 −2√
kh − 1

|2qb± yo − y|
rp,q

 (12)

S(kv) = −exp

(
−2kv√
kv − 1

|2pa± xo − x|
rp,q

)
(13)

r(p, q) =
√
((2pa± xo − x)2 + (2qb± yo − y)2 + z2) (14)

The ray sum is reorganized from Equation (9) and split into four parts, as given below

ERx(x, y, z) =
∞

∑
p,q=−∞

f (4qa + xo − x, 4pb + yo − y)

+
∞

∑
p,q=−∞

f (4qa + xo − x, 4pb + 2b− yo − y)

+
∞

∑
p,q=−∞

f (4qa + 2a− xo − x, 4pb + yo − y)

+
∞

∑
p,q=−∞

f (4qa + 2a− xo − x, 4pb + 2b− yo − y)

(15)

And the function f (u, v) is calculated using

f (u, v) = Eo.
exp(−jk

√
u2 + v2 + z2)√

u2 + v2 + z2
(−1)p(v)+q(u)

.exp

 −2√
u2 + v2 + z2

 |v|p(v)√
kh − 1

+
|u|kvq(u)√

kv − 1

 (16)

The parameters p(v) and q(u) need to be transformed from discontinuous to continu-
ous functions for mode-matching purpose, as given below

p(v) =
|v|
2b

; q(u) =
|u|
2a

(17)

It is noteworthy to point out that every segment of Equation (15) reflects the periodic
function of 4a and 4b. The first part is entertained first, and the sum is transformed into the
following expression (18) under a two-dimensional Poisson summation expression [34]
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∞

∑
p,q=−∞

f (4qa + xo − x, 4pb + yo − y) =

1
4a

1
4b

∞

∑
m=−∞

∞

∑
n=−∞

F1(m, n)ej mπ
2a xej nπ

2b y
(18)

The coefficient F1(m, n) denotes Fourier transform of the function f (xo − x, yo − y) for
the first part given in (15):

F1(m, n) =
∫ ∫ ∞

−∞
f (xo − x, yo − y)e−j mπ

2a xe−j nπ
2b ydxdy (19)

The Saddle-point methodology is used to obtain the result of integration, as the study
is focused on the field ERx(x, y, z) on the excitation plane with z = 0. Hence, the parameter
F1(m, n) can be stated as

F1(m, n) ∼= Eo
π√

1− (mπ
2ak )

2 − ( nπ
2bk )

2
e−j(mπ

2a xo+
nπ
2b yo) (20)

Similarly, the sum of complex modes in Equation (18) can be obtained by converting
the first part of the ray sum in Equation (15). Consequently, the Poisson summation
expression can be applied on Equation (15) and F2(m, n), F3(m, n), F4(m, n) coefficients can
be simplified using a Saddle-point approach. Then, the field on the excitation plane can be
achieved using

ERx(x, y, 0) =
1
4a

1
4b

∞

∑
m=−∞

∞

∑
n=−∞

[F1(m, n) + F2(m, n) + F3(m, n)+

F4(m, n)]ej mπ
2a xej nπ

2b y

ERx(x, y, 0) =
∞

∑
m=−∞

∞

∑
n=−∞

Eoπ

16ab
√

1− (mπ
2ak )

2 − ( nπ
2bk )

2
ej mπ

2a xej nπ
2b y

(e−j mπ
2a xo e−j nπ

2b yo + ej mπ
2a xo−mπej nπ

2b yo−nπ − ej mπ
2a xo ej nπ

2b yo−nπ−

ej mπ
2a xo−mπej nπ

2b yo )

ERx(x, y, 0) =
∞

∑
m=1

∞

∑
n=1

Eoπ

ab
√

1− (mπ
2ak )

2 − ( nπ
2bk )

2

sin
(mπ

2a
xo + ϕx

)
cos
(nπ

2b
yo + ϕy

)
sin
(mπ

2a
x + ϕx

)
cos
(nπ

2b
y + ϕy

)

(21)

Equation (21) is the actual summation form of Eigen-functions of all propagation
modes given in Equation (4) and the Eigen-function of each mode represents the mode
intensity Cmn as given in Equation (22)

Cmn =
Eoπ

ab
√

1− (mπ
2ak )

2 − ( nπ
2bk )

2
sin
(mπ

2a
xo + ϕx

)
cos
(nπ

2b
yo + ϕy

)
(22)

The field can be computed at a point within the mine gallery by substituting Equations
(4), (7), (8) and (22) into Equation (6). Let Pt be the power of the transmitted signal, Gt be
the gain of transmitter and Gr be the antenna gain of the receiver; the computed received
power at the coordinate (x, y, z) can be calculated using

Pr(x, y, z) = PtGtGr

(
1
Eo

∑
m,n

CmnEeign
m,n (x, y)e−(αmn+jβmn)z)

)2

(23)
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4.4. Power Delay Profile of Mine’s Gallery

For wideband transmitted signals, distortion is caused by dispersion in the environ-
ment of underground mines which can be a source of inter-symbol interference (ISI). This
work investigates the power delay profile (PDP) by characterizing the propagation channel.
Let a signal s(t) have the bandwidth B and central frequency fo, generating an expression
f ∈ ( fo − B/2, fo + B/2), so the actual signal can be obtained by the addition of each sine
wave that belongs to this band.

The strength of each signal can be obtained by taking a Fourier transform of signal
s(t) and the resultant S( f ) which is an even function of frequency f as described below

s(t) =
∫ fo+B/2

fo−B/2
S( f )2 cos(2π f t)d f (24)

The mode intensity parameter Cmn( f ), EM field distribution Eeign
m,n (x, y, f ), attenuation

coefficients αmn( f ) and phase-shift coefficients βmn( f ) is transformed into frequency-
dependent functions and the variation can be obtained with the frequency in the trans-
mission delay of any specific mode. The transmission delay function EHmn( f ) can be
computed by τmn( f ) = z/vmn( f ), where vmn( f ) denotes the group velocity as given below

vmn( f ) = c

√√√√√1−

 c
√(mπ

2a
)2

+
( nπ

2b
)2

2π f

2

(25)

As shown in Equation (25), the group velocity depends on frequency and mode order.
Different frequency signals from the same mode can have different propagation delays.
Conversely, multiple modes of identical frequency exhibit different propagation delays.
Dispersal among the frequencies and modes are considered for computing power delay
profile. The relative received power PWB for a wideband signal can be obtained by the
summation of the entire contribution from all particular modes and frequency elements for
a certain time t at any position (x, y, z) using

PWB(x, z, t) = PtGtGr{ 1
Eo

∑
m,n

∫ fo+B/2

fo−B/2
[Cmn( f )Eeign

m,n (x, y, f )

e−αmnzS( f )δ(t− z
vmn

( f )) cos(2π f t− βmnz)]d f}
(26)

where

δ(x) =

{
1, i f x ≥ 0
0, otherwise

(27)

4.5. Sub-Gallery Room-and-Pillar Model

The interior area of a mine is usually large and irregular, which causes reflection
for the transmitted signals. The impact of reflected signals from the vertical sidewalls
is nominal but the reflection due to the ceiling/floor is significant. A specific approach
is adopted in this study to model this structure as a planar air waveguide and the same
procedure is used to compile a multimode model as used in the mine gallery [30].

It is observed that the scenario of images and reflected rays are still considerable
here, as only the y-coordinate is affected, and in this case, the incident angle is observed
to be 0◦. The reflection coefficient is (1−

√
kh)/(1 +

√
kh) for the distributed field of X-

polarized and (
√

kh − 1)/(
√

kh + 1) for the field of Y-polarized. If the transmitting node
and reception node is placed at the height of yo and y, respectively, then the EM field at the
reception node can be computed as

ERx = Eo ∑
q

[
exp(−jkyq(y))

yq(y)

](
1−
√

kh

1 +
√

kh

)|q|
(28)
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where yq(y) denotes the distance between the reception node and Iq. The following
expression can be used to calculate the value of yq(y)

yq(y) =

{
|2qb− y0 − y|, if q is odd
|2qb + y0 − y|, if q is even

(29)

Please note that the Eigen-function for X-polarized modes is obtained from [34]. The
mode intensity Cn is simplified from Equation (28) using the Poisson sum method and the
expressions are given below

Ex
n(y) = Eo. cos

[(
nπ

2b
− j

nπ

2b2k
kh√

kh − 1

)
y + ϕy

]
∼= Eo cos

nπ

2b
y + ϕy (30)

where ϕy = π/2 if n is even; ϕy = 0 if n is odd.

Cn(z) =
Eoπ

bz
√

1− ( nπ
2bk )

2
cos
(nπ

2b
yo + ϕy

)
(31)

Now the field at any point can be calculated by computing the Eigen-function and
intensity of each mode.

5. Results and Analysis

This section discusses the evaluation parameters that are considered to analyze the
effectiveness of the suggested hybrid model and the influence of wireless link factors for
an underground coal mine. Multiple evaluating parameters are analyzed and described
briefly before presenting the simulated results. A detailed discussion is given for the
graphical results of these parameters. Table 2 shows the values of system parameters used
for the analysis.

5.1. Path Loss

The non-uniform structure, rough boundary surfaces and volatile environment of a
mine intrudes the propagated signal and causes severe propagation loss. The reception
power of the signal relies on the frequency and link distance covered by the propagated
signal. Therefore, frequency and distance-dependent path loss is simulated. Mathematical
expression to compute path loss and its analysis is discussed below. The path loss can
be computed by taking the impulse response of a complex channel and the simplified
expressions are given below [34]

PL(z)dB = −10log10

(
1
N

N

∑
j=1
|H( f , z)|

)2

(32)

P( f , z) = PL( f )PL(z) (33)

where PL( f ) is frequency-based path loss and PL(z) represents the distance-dependent
path-loss parameter and the generic function of integrated path loss is given in
Equation (32). Equation (33) is extended for specific expressions of frequency-dependent
and distance-dependent path loss, as [35]

PL( f ) ∝ ke(−δ1 f ) (34)

PLdB = PLdB(do) + 10nlog
(

z
do

)
+ Xσ (35)

where PLdB(do), n, and Xσ represents loss at reference distance, exponent for propagation
loss, and fading parameter with standard deviation σ, respectively.
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Table 2. Particular and associate values used for simulations.

Parameter Symbol Values

Transmitted Power PT 13.97, 16.98, 18.75 dBm
Transmitter Gain GT 2 dB

Receiver Gain GR 2 dB
Operating frequency f 2.4 GHz–5 GHz

Link Distance z 0–500 m
Width of Mine gallery w 5 m
Height of Mine gallery h 4 m
Attenuation Coefficient αn 10–20 dB/m

Vertical walls permittivity εv 5 ε0
Horizontal permittivity εh 4 ε0

Wavelength λ 0.1249, 0.0599 m

Graphical results for path loss are given in Figure 5 which shows the relationship
between the path loss and link distance for the LOS path and non-line-of-sight (NLOS)
channel link. It can be observed from Equation (35) that the value of path-loss exponent
n is slightly higher for the NLOS case where signal power is received through specular
reflection which enhances the overall propagation loss. Figure 5a shows that the path-loss
difference between LOS and NLOS link is comparatively low in the near region due to the
low attenuating effect, but as the distance increases, the response of path loss increases
exponentially. The path loss at all frequencies attenuates fast in the beginning because in
the near region, higher modes with high attenuation rates exist, while in the far region
lower modes dominate. Distance dependency in both the cases attenuates the signal, and
this behavior clarifies the direct relationship of propagated signal performance with the
link distance.

Neglecting the negative sign of frequency-dependent path loss in Figure 5b, the
behavior of path loss is very clear regarding the frequency response of signals. The range
of frequency is considered from 2 GHz to 6 GHz, but the optimal use of frequency for this
slot is 2.4 GHz and 5 GHz, hence path-loss response at these two particular frequencies
is investigated by classifying LOS links for different segments of the mine. It can be seen
that at the initial values of slot 2.4 GHz, the obtained path loss is low as compared to the
higher frequency of this band. The comparative difference between both links is low at
2.4 GHz, but as the operating frequency is increased to 5 GHz, the path-loss difference is
highly increased.

5.2. Received Power

Signal power plays an important role in signal propagation and medium characteris-
tics in which the signal is traveling between transceiver nodes. The critical characteristics
of mines induce a negative impact on signal transmission resulting in low power reception.
Evaluating signal power at the reception point is a basic approach to estimate the condition
of data extraction from the received signal. The multimode model is implemented in
this study to derive Equation (23) for received power in the particular room-and-pillar
environment of the mine. The comparative analysis of the transmitted signal at 2.4 GHz
and 5 GHz frequency is performed for the link distance of 500 m. Moreover, the received
power response is examined by classifying LOS zones.

Figure 6a shows the comparative analysis of received power between 2.4 GHz and
5 GHz. The received power is calculated at multiple frequencies and particularly the
response is much better at 2.4 GHz as compared to 5 GHz. It depicts that the attenuating
factor has a mild effect at lower frequencies of the UHF band in mines, which leads to
better received power at the reception point. It can be seen that the power of the signal is
declining exponentially at the beginning, but the received power response becomes linear
with the rise of link distance. The major effect of attenuation on the propagated signal can
be mitigated to some extent by the hike of transmission power.
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(a) (b)

Figure 5. Path-loss analysis, (a) Distance-based path loss, (b) Frequency-based path loss.

(a) (b)
Figure 6. (a) Received power comparison at 2.4 GHz and 5 GHz, (b) Received power analysis at 2 GHz–5 GHz band for
LOS, NLOS and PLOS links.

Similarly, signal propagation analysis is taken in a mine’s sub-gallery where the LOS
path is broken and classified into LOS, NLOS, and partial line-of-sight (PLOS) segments.
The received signal power is calculated for given LOS categories and the results are
given in Figure 6. It can be observed from Figure 6b that there is a clear difference in
the signal-received power. The received power for LOS is much higher than NLOS and
PLOS links, and the response of the analysis concerning frequencies comparison is nearly
constant throughout the link distance. The difference in signal power of PLOS and NLOS
is not considerably high but for a clear LOS link, the performance of communication is
much better.

Performance analysis of received power is carried out using the experimental data to
validate the theoretical received power, as shown in Figure 7. Long-range measurement is
required to examine the characteristic behavior of EM-propagated signals in the environ-
ment of an underground mine. The experiments are taken at 2.4 GHz and 5 GHz frequency
band in the mine gallery (coal mine, Xian, China) which has 600 m length, 5 m width and
4 m height. The mine contains mining equipment and infrastructure. The transmitters are
mounted at multiple locations such as ceilings, walls, and in the center of the gallery at a
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height of 3 m, 2.5 m, and 2 m, respectively. The receivers are oriented at the same height,
and both transmitters and receivers are equipped with Omni-directional antennas (EM
6116). The antennas are vertically polarized and support the frequency band of 2 GHz to
5 GHz. The gain of the antennas and the permittivity values of the environmental material
are described in Table 2.

The spatial variations of the channel are determined by moving the transmitting
antenna on a rectangular grid of 7 × 5 by considering a static channel environment and
fixed receiver. The grid spacing is considered to be 7 cm for the operating frequency of
2.5 GHz and 5 GHz to obtain the independent samples. The effect of the mobile receiver is
captured as well, between link distances of 10 to 500 m for fixed transmitters. The transfer
function of the channel and received signal power is measured using a Vector Network
Analyzer (VNA HP8753ES) and Matlab, as shown in Figure 4a. Each transfer function
is obtained for the frequency bands of 2.4 GHz to 5 GHz by taking 1601 frequency gap
points with the spectral resolution of 1.87 MHz. The measurements taken in frequency
response are easier for calibration under the conditions of a static environment. The low-
loss coaxial cables are used with the transmitting and receiving antenna. The calibration for
the attenuation of connectors and loss due to coaxial cable is considered while computing
the received signal power.

The transmitting antennas are located at positions (2, 3, 3), (0.5, 2.5, 5) and (2.5, 2, 7)
and the receiving antennas are placed at (2, 3, 10), (0.5, 2.5, 50), and (2.5, 2, 100). The
measurements are carried out for the range of link distance from 10 to 500 m for LOS
and NLOS cases by splitting the area of the gallery due to the non-uniform structure of
the mine. A set of three measurements are taken for each link distance by varying the
transmitter positions, and after taking these values, the receiving antenna is switched to
another location for the consideration of the next three values. The antenna polarizations
at corresponding locations are taken carefully against the propagation loss and the link
distance is varied up to 500 m for the collection of the measured data. The channel of the
propagated signals is considered stationary during the measurement, and the received
signal power is collected from multiple locations including the propagation loss and SNR.
Figure 7 shows the comparison analysis of theoretical and experimental received power
at 2.4 GHz and 5 GHz. It can be seen that the behavior of the theoretical received power
is nearly accurate even for the different operating frequencies. A minor deviation of
approximately 12 to 16% can be noticed which validates the predicted received power
values by the suggested approach.

5.3. Root Mean Square Delay Spread

The time delay between multiple reflected waves is another important parameter to
consider while characterizing the multipath channel in underground mines. It is used to
determine the frequency-based degradation in the erratic environment of mines, where the
signal is facing a lot of deteriorating factors to disperse it into multiple paths. It restricts the
data rate of the wireless link during the transmission of signals in mines. It is computed
from the PDP expression derived in Equation (26) and the generic model is expressed in
Equations (36)–(38) [29,36]:

τrms =

√
τ2 − τ2 (36)

τ =
∑k a2

kτk

∑k a2
k

=
∑k p(τk)τk

∑k p(τk)
(37)

τ2 =
∑k a2

kτk
2

∑k a2
k

=
∑k p(τk)τk

2

∑k p(τk)
(38)

where ak is the gain coefficient, p(τk) is the PDP of the kth multipath component and Tk is
the delay coefficient.
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(a) (b)
Figure 7. Received power comparison between theoretical and experimental results (a) 2.4 GHz, (b) 5 GHz.

The RMS value is computed for mine sub-gallery where the link is classified into
LOS and NLOS cases. The RMS delay spread is computed at multiple locations in the
sub-gallery using the threshold level 10 dB. Figure 8 shows the graphical result and it
can be observed that the value of RMS delay spread rises to a certain limit in the case of
distant reception nodes and then it gradually starts decreasing. The maximum-to-minimum
variation captured in RMS delay spread is 2.40 ns to 10 ns for the LOS link and 4.20 ns
to 15.95 ns for the NLOS, respectively. The values of RMS delay spread are found to be
higher for occupied mine galleries due to the existence of mining equipment and pillar
structure. It indicates that the signal propagation over the NLOS link must face more
spatial variation than the LOS link due to the presence of more scattering objects. The
propagated waves take an elongated path due to the severe number of reflections caused by
the mine environment, which will further enhance the delay at reception. The irregularity
in the simulated graph depicts the unevenness of mine walls, which generates non-uniform
reflected propagation.

Figure 8. Root mean square delay spread response.
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5.4. Refraction Loss

The internal shape of underground mines and dimensions are rough enough to disrupt
the originality of signal and the dielectric medium of mines badly affects the characteristics
of signal transmission. Non-uniformity in the medium of mines and refraction by the
floor and walls are regarded as refraction loss. Due to the penetration of transmitted
signals through any medium, a portion of the signal may be absorbed, resulting in severe
refraction loss.

Refraction loss is calculated by considering both horizontal and vertical medium charac-
teristics, depending on the width and height of a mine. Only the dominant polarization is
considered. The defined expression of refraction loss is given in Equations (39) and (40) [7,37]:

LH = 4.343λ2

(
εv

w3
√
(εv − 1)

+
1

h3
√
(εh − 1)

)
z (39)

Lv = 4.343λ2

(
1

w3
√
(εv − 1)

+
εh

h3
√
(εh − 1)

)
z (40)

where λ, w, h, z, εv, and εh represents the frequency, width of mine, height, distance, the
permittivity of sidewalls, and top ceiling, respectively.

The refraction loss is computed against horizontal and vertical polarization. The
resultant sum is displayed in Figure 9 at the operating frequencies of 2.4 GHz and 5 GHz.
Figure 9a shows the refraction loss for various link distances using different operating
frequencies. There is an exponential rise in the refraction loss as the link distance increases
due to the interior surface and room-pillar structure of mines. A higher loss is observed
at a higher link range due to a directly proportional relationship with link distance. The
relative permittivity of the medium has a minor effect on refraction, but the width and
height of mine galleries is an important parameter to consider when measuring refraction
loss. If the width and height of the gallery are low, there is a high probability of refraction.
The operating frequency signal of 5 GHz is refracting less in the mine environment than
that of 2.4 GHz.

5.5. Roughness Loss

The irregular variation on the surface of mines causes roughness, and such an uneven
surface has a great influence on the propagated electromagnetic signal. The roughness
of side walls causes signal scattering, which results in a deterioration in link quality. The
expression of roughness loss for the mine gallery is given as [7,37]:

LR = 4.343π2r2λ

(
1

2w4 +
1

2h4

)
z (41)

where r is the Gaussian distributed root mean square roughness parameter. Figure 9b
shows the roughness loss analysis under the operating frequency of 2.4 GHz and 5 GHz.
The result clearly shows that roughness loss has a direct relationship with the link distance,
and the response of roughness loss increases with the increase in link distance. Furthermore,
it can be observed that the 5 GHz frequency is experiencing less roughness loss as compared
to 2.4 GHz.
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(a) (b)
Figure 9. (a) Refraction loss at operating frequency of 2.4 GHz and 5 GHz, (b) Roughness loss at 2.4 GHz and 5 GHz.

5.6. Bit Error Rate and Signal-to-Noise Ratio

A network link can be examined by evaluating its bit error rate (BER) and signal-to-
noise ratio (SNR). For a simple Gaussian noise channel model, a propagated signal attains
the noise from the medium through which signal is penetrating and, at the receiver end,
the ratio of the original to altered bits is the key indicator of the quality of communication.
The SNR for the wireless link in the underground mine is computed as the function of
distance, and the expression is given in Equation (42) [38]

SNR(z) = PT + GT + GR − PLdB − NP (42)

where PLdB is the distance-dependent propagation loss and NP is the noise. After comput-
ing the SNR for the mine’s sub-gallery, the mine LOS segments are evaluated by calculating
the BER. A data rate of 4800 bps is used to compute the BER by employing Binary Phase-
Shift Keying (BPSK) modulation. Please note that the parameters in Equation (42) are
different for each LOS classified link, including path loss and fading. The mathematical
equation to calculate BER from SNR using BPSK is stated below in Equation (43)

BERBPSK = Q

(√
2

Eb
No

)
; Q(z) =

1
2π

∫ ∞

x
e−

y2
2 dy (43)

Figure 10 shows the comparative analysis in terms of LOS segments. The SNR is
computed using Equation (42), and it can be seen that a distance-dependent path-loss factor
exists in SNR expression. The path loss is computed distinctly for each LOS link including
fading. Therefore, it is clear that high link distance gives low SNR value, and for low SNR,
the BER performance will be obtained with a high error value. It can also be observed
that the NLOS link is running with the highest BER, whereas the LOS link is facing a low
probability of error and the BER of PLOS is expected to be in the middle of both the links.
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Figure 10. Signal-to-noise ratio and bit error rate analysis for LOS, and NLOS links.

5.7. Shadow Fading and Signal Attenuation

It can be observed that in the case of a mine sub-gallery, the typical pillars of irregular
dimension and the random distribution of pillars is a source of reflection and diffraction for
propagated signals. Each mode experiences independent and distributed shadow fading,
as a single mode comprises a bunch of rays with an identical angle. Therefore, the net field
at any location can be obtained by adding up the field of all modes [29], as given below in
Equation (44)

Erx(y, z) = Eo ∑
n

Cn(z)Ex
n(y)e

(−αn+jβn)zXn (44)

where Xn is an identically distributed and independent lognormal random variable; the
approximate equations for αn and βn are given as

αn =
1
b

( nπ

2bk

)2
Re

1√
kh − 1

; βn =

√
k2 −

(nπ

2b

)2
(45)

By compiling distance-dependent path loss from Equation (35) and the shadow-fading
parameter from Equation (44), a relationship can be analyzed between shadow fading and
path loss.

The shadow-fading parameters vary in different zones of the mine, and this vari-
ation shows a lognormal distribution. The cumulative distribution function (CDF) is
drawn, and the probability of its deviation is shown in Figure 11. It can be observed that
obstructions in the internal congested mine galleries and rough non-uniform structure
creates a heavy signal-deteriorating effect for propagation. The attenuation coefficients
are measured by considering the attenuation of each mode of every field, as elaborated in
Equations (7) and (45).
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Figure 11. Cumulative distribution function of shadow fading.

6. Conclusions

This study approaches the problem of efficient channel modeling for the adverse
and erratic environment of underground coal mines. It reveals that different areas of an
underground mine need to be characterized separately for electromagnetic signals. It is
very important to efficiently model the entire environment of a mine for the development
of a stable wireless network. The areas of a mine are classified into main gallery and
sub-galleries, and a hybrid model scheme is used for channel modeling of complex mines.
The EM wave propagation characteristics are defined by the multimode model, and field
intensities are estimated with the aid of the GO model. The received power and various
evaluating parameters are computed to examine the effectiveness of the suggested model.
The complex segments and branches of the mine are classified by defining the line-of-
sight, non-line-of-sight, and partial-line-of-sight zones for managing the optimized signal
strength in every zone of an underground mine. The environment of the mine rapidly
changes due to mining activities, and the materials that occupied the mine are a big source
of deterioration for wireless communication. A detailed evaluation of these degrading
elements is conducted in this research, which elaborates that the irregular structure of a
mine, the roughness of its boundary walls, the dielectric medium of a mine, and equipment
used for mining applications cause major disruption for signal propagation and network
decay. Operating frequency is the most important parameter in a wireless network and,
after a detailed examination of 2 GHz to 5 GHz band frequencies in different zones of the
underground mine, it can be concluded that a lower-frequency signal in the UHF band
attains low path loss, but captures high refraction loss and roughness loss. The overall
performance of the 2.4 GHz frequency is much better than the 5 GHz frequency in the
harsh environment of underground coal mines.
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