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Abstract The circadian clock interacts with other regulatory pathways to tune physiology to

predictable daily changes and unexpected environmental fluctuations. However, the complexity of

circadian clocks in higher organisms has prevented a clear understanding of how natural

environmental conditions affect circadian clocks and their physiological outputs. Here, we dissect

the interaction between circadian regulation and responses to fluctuating light in the

cyanobacterium Synechococcus elongatus. We demonstrate that natural changes in light intensity

substantially affect the expression of hundreds of circadian-clock-controlled genes, many of which

are involved in key steps of metabolism. These changes in expression arise from circadian and light-

responsive control of RNA polymerase recruitment to promoters by a network of transcription

factors including RpaA and RpaB. Using phenomenological modeling constrained by our data, we

reveal simple principles that underlie the small number of stereotyped responses of dusk circadian

genes to changes in light.

DOI: https://doi.org/10.7554/eLife.32032.001

Introduction
Circadian clocks allow organisms from almost all branches of life to alter physiology in anticipation

of diurnal changes in the environment. Circadian clocks are autonomous core oscillators that keep

time even in the absence of environmental cues (Dunlap et al., 2004). Output pathways interpret

timing information from the core oscillator to generate oscillating outputs, such as oscillations in the

mRNA levels (expression) of genes and higher order behaviors (Dunlap et al., 2004; Wijnen and

Young, 2006). Laboratory studies of the outputs of circadian clocks have been primarily performed

under constant conditions to isolate circadian regulation from environmental responses. In nature,

however, organisms with circadian clocks must also cope with unexpected fluctuations in the envi-

ronment. Thus a major challenge in chronobiology is to understand circadian regulation in dynamic

environments.

Previous studies suggest that circadian clock output pathways interact with responses to the envi-

ronment to tailor physiology to both the time of day and the current state of the environment. For

example, sleep/wake cycles in Drosophila melanogaster and photosynthesis in Arabidopsis thaliana

are controlled by both the circadian clock and environmental variables like day length or light

(Lamaze et al., 2017; Millar and Kay, 1996). Further, circadian clocks can modulate responses to

the environment based on the time-of-day in a process called circadian gating (Hotta et al., 2007;

Greenham and McClung, 2015). However, the complexity of higher organisms has prevented a

detailed understanding of the interaction between circadian timing information and environmental
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responses. In contrast, the circadian clock in the cyanobacterium Synechococcus elongatus

PCC7942, an obligate photoautotroph, has a simple architecture which controls gene expression

oscillations (Figure 1A) to influence metabolism and growth. S. elongatus must carefully monitor its

environment, as the sunlight required for photosynthesis fluctuates on the minute, day, and seasonal

timescales (Figure 1B, [Petty and Weidner, 2017]). While it is well understood how the circadian

clock in S. elongatus behaves under constant conditions, it is unclear how this system changes in nat-

ural, fluctuating light.

In S. elongatus grown under ‘Constant Light’ conditions (Figure 1A, dashed navy blue line),

genes which show oscillatory expression (circadian genes) can be divided into two groups, the dawn

and the dusk genes, which peak at subjective dawn and subjective dusk (Ito et al., 2009;

Vijayan et al., 2009) (Figure 1A). Subjective dawn and subjective dusk refer to the times at which

dark-to-light or light-to-dark transitions would occur in a 12 hr light-12 hr dark environmental cycle.

The dawn genes consist of the core metabolic and growth genes for S. elongatus, including the pho-

tosystems, ATP synthase, carbon fixation/Calvin-Benson-Bassham cycle enzymes, and ribosomal pro-

teins (Vijayan et al., 2009; Ito et al., 2009; Diamond et al., 2015). In the absence of regulation by

the circadian clock under Constant Light, S. elongatus constantly expresses dawn genes

(Markson et al., 2013). The clock primarily regulates the expression of dusk genes (Markson et al.,

2013), which include the genes required to utilize glycogen as an energy source in the absence of

sunlight, such as glycogen phosphorylase and cytochrome c oxidase. As such, the circadian clock

serves a critical function in switching S. elongatus from a daytime state of photosynthesis to a night-

time state of carbon metabolism through glycogen breakdown (Diamond et al., 2015;

eLife digest Living things face daily, predictable challenges due to the regular day and night

cycle imposed by the Earth’s rotation. Many of them have evolved an internal ‘circadian’ clock to

anticipate daily changes in the environment. However, nature can also change in unpredictable

ways, and in order to survive, organisms must account for both the time of day stipulated by their

clocks and changes in their present environment. For example, cyanobacteria depend on the sun for

survival and must cope with light variations throughout the day and the absence of light at

nighttime.

Circadian clocks are made up of specific genes and their proteins. Most of what we know about

how these clocks control the behavior of an organism comes from experiments performed under

constant conditions. Previous research has shown that under such circumstances, the circadian clock

of cyanobacteria periodically turns on a set of genes every 24 hours via a protein called RpaA.

However, to understand how cyanobacteria use this clock, we must know how it works in a

fluctuating environment.

To test this, Piechura, Amarnath and O’Shea measured the activation of genes in cyanobacteria

that had been exposed to changes in light mimicking those in nature. Compared to constant

conditions, fluctuating light drastically changed the timing of activation of circadian genes. When

light decreased – as it would in nature during sunset or if a cloud blocks the sun – the circadian

genes were activated.

Changes in light did not change the ‘ticking’ of the clock, but did affect the ability of RpaA to

turn on circadian genes. Moreover, the activity of a second protein called RpaB increased when light

decreased and the genes were activated. Thus, cyanobacteria switch on circadian genes as the sun

is setting or during unexpected shade, likely through RpaA and RpaB, to help them survive without

light.

This study shows that circadian clocks activate genes differently in the real world compared to

unnatural, constant conditions. This may prompt scientists to think carefully about how an

organism’s natural environment can affect its inner workings. A next step will be to see how else

light affects circadian gene levels. A deeper understanding of how cyanobacteria control their genes

in a natural environment will be useful for scientists who engineer these organisms to produce

biofuels from sunlight.

DOI: https://doi.org/10.7554/eLife.32032.002
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Diamond et al., 2017; Pattanayak et al., 2014; Puszynska and O’Shea, 2017). In Constant Light

conditions, the dusk and dawn genes show oscillatory expression with a 24 hr period, resulting in

broad peaks of maximal expression (Figure 1A, solid green line and dashed maroon line)

(Vijayan et al., 2009; Ito et al., 2009). Recent whole-cell modeling of metabolism, protein levels,

and growth predict that this picture of circadian gene expression should change under the dynamic

light conditions of a natural, clear day (Figure 1B, navy blue line) (Reimers et al., 2017). The model-

ing suggests that making and using glycogen is a major cost to cell growth and thus the expression

of genes required to switch metabolism from photosynthesis to glycogen breakdown should be

delayed until absolutely necessary (Reimers et al., 2017). However, gene expression in natural light

conditions has not been measured in S. elongatus.

Consistent with predictions of light-dependent changes in circadian gene expression, current evi-

dence suggests interaction between the circadian and light regulatory pathways. The cyanobacterial

Figure 1. The circadian and light response pathways in cyanobacteria. (A) Schematic of gene expression output of the circadian clock under Constant

Light conditions. Under Constant Light intensity (dashed navy blue line), dawn gene expression (dashed maroon line) and dusk gene expression (solid

green line) display oscillatory patterns, peaking at subjective dawn and subjective dusk, respectively. The Kai post-translational oscillator generates

oscillations in the levels of phosphorylated RpaA (RpaA~P) and the binding of RpaA to DNA (black dotted line), with the peak amplitude at subjective

dusk. (B) Solar irradiance measurements in units of watts m�2 at 342.5 meters above sea level in Madison, WI, on a clear day (3/23/13, dark blue), and a

day on which fluctuations in cloud cover generated rapid changes in light intensity (4/12/14, light blue) (Petty and Weidner, 2017). Examples of a

‘High Light pulse,’ ‘Shade pulse,’ and ‘Sunset’ are indicated. (C) Schematic of the regulation of circadian gene expression. RpaA phosphorylation state

converts timing information from the Kai oscillator to changes in gene expression by directly binding and activating a subset of dusk genes, indirectly

activating the remainder of the dusk genes, and indirectly repressing the dawn genes. High Light Pulse conditions cause dephosphorylation of RpaB

(Moronta-Barrios et al., 2012), but the effects of conditions like Sunset or Shade on RpaB are unknown. It is unclear whether natural fluctuations in

light directly affect the clock and its output pathways and how light-induced changes in RpaB activity might be involved.

DOI: https://doi.org/10.7554/eLife.32032.003
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clock keeps track of the time of day using a core post-translational oscillator (PTO) that consists of

three proteins, KaiA, KaiB, and KaiC, whose enzymatic activities result in 24 hr oscillations in the

phosphorylation state of KaiC (Nakajima et al., 2005; Rust et al., 2007; Johnson et al., 2011). In

vivo under Constant Light conditions the Kai PTO modulates circadian gene expression by control-

ling oscillations in phosphorylation state of the master OmpR-type transcription factor RpaA

(Markson et al., 2013; Takai et al., 2006) to peak at subjective dusk (Figure 1A, dotted black line;

Figure 1C) (Gutu and O’Shea, 2013; Takai et al., 2006). Phosphorylated RpaA (RpaA~P) binds to

the promoters of some dusk genes to activate their expression, leading to indirect activation of

other dusk genes and repression of dawn genes (Figure 1C) (Markson et al., 2013). As kaiBC is a

dusk gene target of RpaA, the Kai PTO directs its own expression, resulting in a transcription-transla-

tion feedback loop that stabilizes the phase of the clock (Qin et al., 2010; Teng et al., 2013;

Zwicker et al., 2010). Exposure to complete darkness at specific times of day causes phase shifts in

the PTO to align clock output with the external day/night cycle (Rust et al., 2011), in a process

called entrainment. However, it is not understood whether any aspect of this model, such as the

dynamics of RpaA activity or the transcription-translation feedback loop, changes in the presence of

more subtle natural light changes during the day (Figure 1C).

Meanwhile the OmpR-type transcription factor RpaB binds to some circadian gene promoters

(Hanaoka et al., 2012), and the phosphorylation state and DNA binding activity of this protein

decreases in response to high light exposure (Figure 1C) (López-Redondo et al., 2010; Moronta-

Barrios et al., 2012). However, it is not clear how natural light changes like sunset or shade pulses

affect RpaB activity (Figure 1C). RpaB clearly plays some role in altering circadian gene expression

in response to light (Espinosa et al., 2015), but it is unclear how (Figure 1C). While light likely exerts

global, growth-rate-dependent regulation of protein levels (Scott et al., 2010; Du et al., 2016; Bur-

nap, 2015), the interaction between circadian and light regulation to control the activities of RpaA

and RpaB represents a particularly tractable scenario for dissecting the mechanisms underlying inter-

action between clock and environment to control circadian gene expression.

Here we measure and model circadian gene expression and several layers of regulation in cyano-

bacteria grown under the fluctuating light intensities typically experienced in nature. We find that

fluctuations in light alter the expression patterns of almost all circadian genes. We identify key regu-

latory steps at which information about changes in light interact with clock output pathways to con-

trol gene expression, and reveal a complex regulatory network underlying circadian gene expression

in natural conditions. Finally, we show that phenomenological models effectively describe the inte-

gration of the circadian clock with responses to environmental fluctuations.

Results

Sunlight on a clear day delays the timing of circadian gene expression
relative to constant light conditions
To grow and assay cyanobacteria in natural light conditions, we custom-built a culturing setup with a

light source that can be programmed to mimic natural fluctuations in sunlight. On a cloudless ‘Clear

Day,’ light intensity varies in a parabolic manner due to the rotation of the Earth, ending with a grad-

ual ramp down of light intensity prior to dusk (‘Sunset’, Figure 1B). Rapid changes in cloud cover

cause abrupt increases (‘High Light pulse’) and decreases (‘Shade pulse’) in sunlight (Petty and

Weidner, 2017) (Figure 1B). Using a set of programmable warm white LED arrays (Materials and

methods, Construction of light apparatus and Calibrating light conditions) for illumination, in all

experiments we grew cells for 12 hr in either a Clear Day condition that peaked at 600 �mol photons

m�2 s�1 or a continuous Low Light condition of 50 �mol photons m�2 s�1 (Figure 2A, top panel) fol-

lowed by 12 hr of darkness for at least two days to acclimate and synchronize the cells before mea-

surement. Note that the Low Light condition used here differs from the Constant Light condition

(often denoted as LL in the literature; Figure 1A, dashed navy blue line) in that the cells are exposed

to more naturally-relevant 12 hr light-12 h dark days (LD). Cultures grown under the Clear Day condi-

tion adjusted their pigment content after two days of exposure to the Clear Day condition (Fig-

ure 2—figure supplement 1). Further, cells acclimated to the Clear Day conditions grew

approximately twice as fast as Low Light acclimated cultures at midday, 6 hr after dawn (Figure 2—

figure supplement 1). These data indicate that S. elongatus PCC7942 is capable of acclimating to
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Figure 2. Natural clear day conditions sharpen the expression of dusk genes to peak just before expected darkness. (A) Experimental setup for testing

the effects of Clear Day conditions on circadian gene expression. The upper plot shows the light intensity profiles of Low Light (black) and Clear Day

(magenta) conditions, in units of �mol photons m�2 s�1 (see Materials and methods - Calibrating light conditions for more details; light intensity values

available in Figure 2—source data 1). The lower plot displays the experimental setup. Cells were grown under Clear Day (magenta dashed lines) or

Low Light conditions (black dashed lines) for 12 hr, followed by 12 hr of darkness (dark gray boxes) for three days, with sampling over the third light

period (indicated by arrows above plot). (B) Gene expression dynamics of all dusk genes (n=281) under Low Light (top) and Clear Day (bottom)

conditions. Gene expression is quantified as the log2 fold change from the average expression of the gene over all time points in the Low Light

condition (see Materials and methods - RNA sequencing for more details; data available in Figure 2—source data 1). Genes were sorted by phase

under Constant Light conditions (Vijayan et al., 2009). Light intensity at each time point is indicated in a grayscale heat map next to the corresponding

condition. The data for a representative dusk gene, Synpcc7942_1567, is indicated with arrows. (C) Gene expression dynamics of the representative

dusk gene Synpcc7942_1567 under Low Light (black) and Clear Day (magenta) conditions (left y-axis). The light profile for each condition is plotted as

dashed lines of the same color with values corresponding to the right y-axis.

DOI: https://doi.org/10.7554/eLife.32032.004

The following source data and figure supplements are available for figure 2:

Source data 1. Normalized gene expression in Low Light and Clear Day conditions.

DOI: https://doi.org/10.7554/eLife.32032.009

Figure supplement 1. Pigment levels of cyanobacteria grown under Low Light or Clear Day conditions reveal adjustments in the photosynthetic

apparatus to optimize growth in different light conditions.

DOI: https://doi.org/10.7554/eLife.32032.005

Figure 2 continued on next page
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the higher light intensities of the Clear Day condition and thus that the intensities used in our meas-

urements are relevant for this strain.

To determine whether a natural light profile affects circadian output, we compared genome-wide

gene expression in Clear Day conditions versus Low Light conditions using RNA sequencing

(Figure 2A, Setup, arrows indicate sampling). We acclimated cultures in their respective condition

for 2 light/dark cycles, and sampled them (arrows) over the next (third) light period (Figure 2A,

Setup). We focused our analysis on a set of high amplitude circadian genes that show oscillatory

expression under Constant Light conditions (Figure 2—figure supplement 2; see Materials and

methods, Definition of circadian genes). The Low Light condition (Figure 2B, upper panel) reprodu-

ces the expression profile previously observed under Constant Light conditions (Figure 2—figure

supplement 2). However, in the Clear Day condition 159 of the 281 dusk genes were expressed

at least two fold higher after midday compared to Low Light, demonstrating light-dependent

expression. Dawn genes show the opposite behavior — they have higher expression at midday

under Clear Day conditions, although this trend is less pronounced (Figure 2—figure supplement

3). Taken together, Clear Day conditions significantly influence the expression dynamics of almost all

circadian genes, with the strongest effects on dusk genes.

To look more closely at how the Clear Day condition affects the dusk genes, which are the pri-

mary regulatory targets of the clock, we analyze the gene expression dynamics of the representative

dusk gene Synpcc7942_1567. Under Low Light conditions, Synpcc7942_1567 exhibits an increase in

expression from dawn to dusk, reaching a plateau by 8 hr after dawn (Figure 2C, solid black line).

Under Clear Day conditions, however, the expression of this gene remains low through the midday

peak of light intensity (Figure 2C, solid magenta line; 4–8 hr after dawn), and its expression sharply

increases just prior to dusk as light intensity decreases, reaching maximal expression just as the dark

period begins. This delayed pattern of gene expression can be seen in almost all dusk genes

(Figure 2B; Synpcc7942_1567 indicated with arrows). Thus Clear Day conditions significantly alter

the dynamics and amplitude of dusk gene expression to peak just before dusk.

The delay of dusk gene expression likely enables cyanobacteria to switch to glycogen breakdown

only when absolutely necessary so that they can survive the extended darkness of night. The two gly-

cogen breakdown genes, glgP and glgX, are both light-dependent dusk genes that strongly peak in

Clear Day at dusk, while glgC, which codes for the rate limiting enzyme of glycogen synthesis, is a

dawn gene whose expression is higher in Clear Day conditions compared to Low Light (Figure 2—

figure supplement 4). These gene expression dynamics would favor both the maintenance of glyco-

gen synthesis until the end of the day and a delay in the activation of glycogen breakdown until just

before it is required at nighttime, in agreement with predictions from metabolic modeling during

the same Clear Day conditions used here (Reimers et al., 2017). Thus, environmental conditions are

integrated into the output of the circadian clock to potentially optimize resource allocation in natu-

rally-relevant diurnal cycles, as recently suggested (Reimers et al., 2017).

Remarkably, though in both light conditions the cells experience 50 �mol photons m�2 s�1 at the

end of the day just before night, light-dependent dusk genes have substantially higher expression in

the Clear Day conditions relative to the Low Light conditions (Figure 2B–C). Indeed, 95/281 dusk

genes were expressed at least three fold higher in Clear Day relative to Low Light at 12 hr after

dawn. This strong activation of dusk genes occurs concomitant with the decrease in light intensity

during Clear Day that mimics Sunset, which hinted that changes in light intensity affect activation of

dusk genes as opposed to absolute light intensity levels. Dusk gene expression could thus happen

‘just-in-time’ before the sustained darkness of nighttime regardless of the seasonal timing of Sunset.

Figure 2 continued

Figure supplement 2. Gene expression dynamics of dusk and dawn circadian genes under Constant Light conditions (data from Markson et al.,

2013).

DOI: https://doi.org/10.7554/eLife.32032.006

Figure supplement 3. Dawn gene expression increases during the early part of Clear Day relative to Low Light conditions.

DOI: https://doi.org/10.7554/eLife.32032.007

Figure supplement 4. The gene expression dynamics of glycogen production and breakdown enzymes change in Clear Day conditions relative to Low

Light conditions.

DOI: https://doi.org/10.7554/eLife.32032.008
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Changes in light intensity control the transcription of circadian genes
To test whether changes in light intensity are a key factor controlling the expression of circadian

genes, we exposed cells to a High Light pulse or a Shade pulse and measured genome-wide gene

expression using RNA sequencing. We grew cultures in either Low Light or Clear Day conditions for

three days (Figure 3A–B, Setup). On the fourth day at 8 hr after dawn, when RpaA is most active,

we exposed the cells to a High Light pulse (Figure 3A) or a Shade pulse (Figure 3B) for 1 hr before

returning to the original condition. We sampled the cells before, during, and after the perturbation

(Figure 3A–B, Setup, arrows). The expression of dusk genes rapidly changed in a direction opposite

to the change in light intensity (Figure 3C, all dusk genes; Figure 3E, example dusk gene;

Figure 3D, all dusk genes; Figure 3F, example dusk gene), as expected from the effects of the

decrease in light intensity at Sunset of the Clear Day condition on circadian gene expression

(Figure 2B–C). A large subset of dusk genes were affected by the light pulses, with 105/281

repressed by at least three fold by the High Light condition, and 136/281 induced by at least three

fold by the Shade condition. Further, many genes responded rapidly and changed in expression at

least three fold after just 15 min into the pulse (75/281 repressed by High Light, 79/281 induced by

Shade). When cultures were restored to their original condition (High Light to Low Light, Figure 3C,

E; Shade to Clear Day, Figure 3D,F), dusk gene expression quickly reverted to a level comparable

to that before the pulse. Thus, light-induced changes in dusk gene expression are reversible and

responsive to successive shifts in light availability. Dawn gene expression showed the opposite

behavior of dusk genes, albeit with less dramatic changes (Figure 3—figure supplement 1). Hence,

decreases in light intensity favor the expression of dusk genes (Sunset in Clear Day, Figure 2; Clear

Day to Shade and High Light to Low Light, Figure 3), while increases in light favor the expression of

dawn genes (midday peak in Clear Day, Figure 2—figure supplement 3; Shade to Clear Day and

Low Light to High Light, Figure 3—figure supplement 1). Given the more substantial effects of light

on dusk gene expression, we focus on these genes for the remainder of the manuscript.

To cause these reversible changes in the mRNA levels of dusk genes, changes in light intensity

must affect either the transcription and/or the degradation of dusk gene mRNAs. We reasoned that

changes in transcription would manifest as differences in the amount of RNA polymerase (RNAP)

localized to dusk genes. To determine whether changes in light intensity regulate the recruitment of

RNAP to dusk gene promoters, we performed chromatin immunoprecipitation followed by high-

throughput sequencing (ChIP-seq) of RNAP in cells immediately before the High Light or Shade

pulse (8 hr after dawn in Low Light or Clear Day), and then again 15 or 60 min following the start of

the pulse. Changes in RNAP enrichment upstream of dusk genes correlated with changes in down-

stream dusk gene expression (Figure 3G,H; Figure 3—figure supplement 2). Thus, changes in light

affect RNAP recruitment to dusk gene promoters, suggesting that light conditions substantially

affect the rates of transcription of dusk gene mRNAs. Because mRNAs in bacteria have very short

steady state half lives (Chen et al., 2015; Hambraeus et al., 2003; Salem and van Waasbergen,

2004), we argue that changes in transcription rates of dusk gene mRNAs are sufficient to lead to the

rapid changes in dusk gene mRNA levels given a fast basal degradation rate, though we cannot rule

out that changes in light may affect the rates of degradation of some mRNAs. These results point to

a potential interaction between sunlight and signaling pathways upstream of RNAP. We next

explored how the observed changes in dusk gene expression in the presence of natural light fluctua-

tions (Figures 2 and 3) could be achieved via gene regulatory mechanisms.

Regulation of dusk gene expression by RpaA and RpaB under dynamic
light regimes
Given the strong dependence of dusk gene expression on RpaA ~P levels under Constant Light con-

ditions (Figure 1A, [Markson et al., 2013]) and the drastic change in dusk gene expression dynam-

ics under our dynamic light conditions (Figure 2B,C; Figure 3C–F), we hypothesized that light

conditions alter RpaA ~P dynamics to alter dusk gene expression. However, levels of RpaA ~P

increased from dawn to dusk similarly in cells grown in either Low Light or Clear Day conditions, and

abrupt changes in light intensity did not affect these dynamics. (Figure 4A,B; Figure 4—figure sup-

plement 1). Thus, these natural light fluctuations do not affect the phase of the Kai PTO nor the con-

trol of RpaA ~P levels by the Kai PTO (Figure 4E). These data demonstrate that the regulation of

dusk genes is de-coupled from RpaA ~P levels under dynamic light conditions, and light must affect

Piechura et al. eLife 2017;6:e32032. DOI: https://doi.org/10.7554/eLife.32032 7 of 33

Research article Computational and Systems Biology Genes and Chromosomes

https://doi.org/10.7554/eLife.32032


Figure 3. Rapid changes in light intensity modulate the recruitment of RNA polymerase to dusk genes to control dusk gene expression. (A) Light

intensity profiles of Low Light (black) and High Light pulse (orange) conditions, in units of �mol photons m�2 s�1 (see Materials and methods -

Calibrating light conditions for more details; light intensity values for pulse conditions available in Figure 3—source data 1). Experimental setup is

displayed in the lower plot. Cells were grown for 12 hr under Low Light conditions (black dashed lines), followed by 12 hr of darkness (dark gray boxes)

Figure 3 continued on next page
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dusk gene expression downstream of RpaA ~P. Interestingly, ChIP-seq showed that light intensity

fluctuations alter RpaA ~P binding upstream of dusk genes (Figure 4C; Figure 4—figure supple-

ment 2) in conjunction with RNAP binding upstream of the same gene (Figure 4D; Figure 4—figure

supplement 3). The binding of RpaA ~P and RNAP correlated with changes in downstream dusk

gene expression (Figure 4C; Figure 4—figure supplement 2). Thus, light fluctuations control the

binding of RpaA ~P and RNAP to promoters, suggesting that light-induced changes in the binding

of these factors may modulate the activation of dusk gene expression (Figure 4E).

Interestingly, RpaA regulation at a small number ( ~ 10) of promoters including that of kaiBC is

not substantially affected by light intensity (Figure 4C,D - points around origin; Figure 4—figure

supplement 4), demonstrating that the light-dependent regulation of RpaA binding is locus-specific.

The KaiABC clock regulates RpaA ~P levels independent of changes in light intensity (Figure 4A,B),

and kaiBC gene expression dynamics do not substantially change in the Clear Day conditions com-

pared to the Low Light condition (Figure 4—figure supplement 4H–K). Hence, the stabilizing PTO/

transcription-translation feedback loop circadian circuit is robust to natural fluctuations in sunlight.

The circadian clock can thus control gene expression independent of environmental changes at

select promoters. It is possible that RpaA ~P binding to some promoters is dependent on the associ-

ation of RNAP with that promoter. As such, regulation that affects RNAP binding to a specific pro-

moter, such as that by sigma factor activity (Gruber and Gross, 2003), could affect RpaA ~P binding

to select promoters.

Our analysis so far has established that the previous model for the regulation and expression of

circadian genes in Constant Light conditions (Figure 1A) becomes more complex in natural

Figure 3 continued

for three days, and then exposed to a High Light pulse (dashed orange lines) at 8 hr after dawn during the fourth light period for one hour before

being returned to Low Light conditions. Cells were sampled immediately before, during, and after the High Light pulse (indicated by arrows above

plot). (Caption continued on next page.). (B) Light intensity profiles of Clear Day (magenta) and Shade pulse (gray) conditions, in units of �mol photons

m�2 s�1. Experimental setup is displayed in the lower plot. Cells were grown for 12 hr under Clear Day conditions (dashed magenta lines), followed by

12 hr of darkness (dark gray boxes) for three days, and then exposed to a Shade pulse (dashed gray lines) at 8 hr after dawn during the fourth light

period for one hour before being returned to Low Light conditions. Cells were sampled immediately before, during, and after the High Light pulse

(indicated by arrows above plot). (C) Gene expression dynamics of dusk genes (n=281) under High Light pulse conditions. Gene expression is quantified

as the log2 fold change from the average expression of the gene over all time points in the Low Light condition (see Materials and methods, RNA

sequencing for more details; data available in Figure 3—source data 1). Light intensity at each time point in the High Light pulse condition is

indicated in a grayscale heat map next to the corresponding time point. (D) Gene expression dynamics of dusk genes (n=281) under Shade pulse

conditions, plotted as in (C). Genes are ordered the same in (C) and (D), sorted by phase under Constant Light conditions (Vijayan et al., 2009). Data

for the representative dusk gene Synpcc7942_1567 is indicated by arrows in (C) and (D). (E) Gene expression dynamics of the representative dusk gene

Synpcc7942_1567 under Low Light (black) and High Light pulse (orange) conditions (left y-axis). The light profile for each condition is plotted as dashed

lines of the same color with values corresponding to the right y-axis. (F) Gene expression dynamics of the representative dusk gene Synpcc7942_1567

under Clear Day (magenta) and Shade pulse (gray) conditions, plotted as in (E). (G) Correlation between change in dusk gene expression and the

change in enrichment of RNAP upstream of that gene after rapid changes in light intensity. The change in gene expression of a dusk gene (x-axis) and

the corresponding change in RNAP enrichment upstream of that gene (y-axis) from the original condition after 60 min in High Light (orange triangles)

or Shade (gray circles), plotted for the 82 dusk genes with detectable RNAP peaks in their promoters. See Materials and methods, ChIP-seq analysis for

more details. Data is available in Figure 3—source data 2. The correlation coefficient between change in RNAP enrichment and change in downstream

gene expression for the High Light and Shade conditions is indicated above the plot. (H) Regulation of RNAP recruitment to dusk genes by changes in

light intensity. Increases in light intensity tend to repress the recruitment of RNAP to dusk genes to repress dusk gene expression (High Light pulse,

Clear Day - midday), while decreases in light intensity (Shade pulse, Sunset of the Clear Day) tend to promote the recruitment of RNAP to dusk genes

to activate their expression.

DOI: https://doi.org/10.7554/eLife.32032.010

The following source data and figure supplements are available for figure 3:

Source data 1. Normalized gene expression in High Light pulse and Shade pulse conditions.

DOI: https://doi.org/10.7554/eLife.32032.013

Source data 2. List of RNAP peaks, gene targets, and quantification of enrichment under High Light pulse and Shade pulse conditions.

DOI: https://doi.org/10.7554/eLife.32032.014

Figure supplement 1. Rapid changes in light intensity affect dawn gene expression in an opposite direction compared to dusk gene expression.

DOI: https://doi.org/10.7554/eLife.32032.011

Figure supplement 2. Changes in RNAP enrichment and downstream dusk gene expression after rapid changes in light intensity.

DOI: https://doi.org/10.7554/eLife.32032.012
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Figure 4. Changes in environmental light intensity regulate RpaA~P DNA binding activity and RNAP recruitment to control dusk gene expression

downstream of clock regulation of RpaA. (A) Phosphorylation dynamics of RpaA under Low Light vs High Light pulse. Relative levels of phosphorylated

RpaA were measured using Phos-tag Western blotting (left y-axis) in cells grown under Low Light conditions (black squares, see Figure 2A for Setup) or

High Light pulse conditions (orange triangles, see Figure 3A for Setup). Each point represents the average of values measured in two independent

Figure 4 continued on next page
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environmental conditions, suggesting the involvement of other pathways. Thus, we next asked

whether RpaB plays a role in controlling light-dependent expression of circadian genes. We

observed that levels of RpaB ~P changed rapidly in a direction opposite to the change in light

(Figure 5A,B; Figure 5—figure supplement 1), suggesting that light affects RpaB activity through

its phosphorylation state (Figure 5E). Levels of RpaB ~P decreased ~ 3.1 fold after 15 min in the

High Light pulse, and increased ~ 1.9 fold after 15 min in the Shade pulse, concomitant with the

rapid repression and induction of many dusk genes (Figure 3). Further, RpaB ~P levels increased

~ 1.7 fold between 10 and 12 hr after dawn in the Clear Day condition concomitant with the

decrease in light during Sunset and the strong induction of many dusk genes (Figure 2). This strong

correlation between RpaB ~P levels and the expression of dusk genes under dynamic light condi-

tions (also compare Figure 3E,F to Figure 5A,B) suggests that RpaB ~P acts as an activator of dusk

gene expression. Indeed, using ChIP-seq we found that RpaB binds upstream of a large subset of

dusk genes (42/281 dusk genes, Figure 5—source data 2). RpaB binding upstream of these genes

shifts after rapid changes in light (Figure 5C; Figure 5—figure supplement 2), correlating with

changes in RpaB ~P levels (Figure 5A,B), RNAP binding upstream of the same gene (Figure 5D; Fig-

ure 5—figure supplement 3), and downstream dusk gene expression (Figure 5C; Figure 5—figure

supplement 2). These results suggest that RpaB ~P directly activates the expression of many dusk

genes by binding to promoters with RNAP (Figure 5E). Thus, changes in sunlight can regulate dusk

genes by adjusting RpaB~P levels (Figure 5E).

Because RpaA and RpaB bind only a subset of light-responsive dusk genes (Figure 6A,B), addi-

tional factors must be involved in controlling light-responsive dusk gene expression. Sigma factors

are sequence-specific RNAP subunits which regulate gene expression in bacteria (Gruber and

Gross, 2003). Interestingly, RpaA, RpaB, and RNAP bind to the promoters of three sigma factor

genes (Figure 6C; Figure 6—figure supplement 1A–C). The binding of RpaA, RpaB, and RNAP to

these promoters shifts in conjunction after abrupt changes in light intensity, correlating with light-

responsive changes in expression of these genes (Figure 6D; Figure 6—figure supplement 1D–F).

Figure 4 continued

Western blots, with error bars displaying the range of the measured values. See Materials and methods, Measurement of RpaA~P and RpaB ~P levels

for more details. Data is available in Figure 4—source data 1. The light profile for each condition is plotted as dashed lines of the same color with

values corresponding to the right y-axis. (B) Phosphorylation dynamics of RpaA under Clear Day (magenta triangles, see Figure 2A for Setup) vs Shade

pulse (gray circles, see Figure 3B for Setup) conditions, measured and plotted as in (A). (C) The change in enrichment of RpaA at a given peak

upstream of a dusk gene (x-axis) and the corresponding change in expression of the downstream dusk gene (y-axis) from the original condition after 60

min in High Light (orange triangles) or Shade (gray circles), plotted for the 56 dusk genes with detectable RpaA peaks in their promoters. The

correlation coefficient for the data taken in High Light and Shade conditions is indicated above the plot. See Materials and methods, ChIP-seq analysis

for more details. Data is available in Figure 4—source data 2. (D) The change in enrichment of RpaA at a given peak upstream of a dusk gene (x-axis)

and the corresponding change in RNAP enrichment upstream of the same gene (y-axis) from the original condition after 60 min in High Light (orange

triangles) or Shade (gray circles), plotted for the 33 dusk genes with detectable RpaA and RNAP peaks in their promoters. The correlation coefficient for

High Light and Shade data is indicated above the plot. See Materials and methods, ChIP-seq analysis for more details. (E) Model of regulation of dusk

genes by RpaA under naturally-relevant conditions. The Kai PTO controls levels of RpaA ~P independent of changes in environmental light intensity.

Changes in light intensity regulate the recruitment of RpaA~P with RNAP to dusk genes to control their expression in response to environmental

perturbations.

DOI: https://doi.org/10.7554/eLife.32032.015

The following source data and figure supplements are available for figure 4:

Source data 1. Quantification of relative RpaA~P levels.

DOI: https://doi.org/10.7554/eLife.32032.020

Source data 2. List of RpaA peaks, gene targets, and quantification of enrichment under High Light pulse and Shade pulse conditions.

DOI: https://doi.org/10.7554/eLife.32032.021

Figure supplement 1. Representative Western blots used to quantify relative levels of RpaA~P under dynamic light conditions.

DOI: https://doi.org/10.7554/eLife.32032.016

Figure supplement 2. Changes in RpaA enrichment and downstream dusk gene expression after rapid changes in light intensity.

DOI: https://doi.org/10.7554/eLife.32032.017

Figure supplement 3. Changes in RpaA and RNA polymerase enrichment upstream of dusk genes after rapid changes in light intensity.

DOI: https://doi.org/10.7554/eLife.32032.018

Figure supplement 4. Multifactorial behavior of RpaA ~P at select promoters under changes in light intensity.

DOI: https://doi.org/10.7554/eLife.32032.019
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Figure 5. Light-induced changes in RpaB~P levels modulate RpaB and RNAP binding upstream of dusk genes to directly regulate dusk gene

expression in response to light. (A) Phosphorylation dynamics of RpaB under Low Light vs High Light pulse. Relative levels of phosphorylated RpaB

were measured using Phos-tag Western blotting (left y-axis) in cells grown under Low Light conditions (black squares, see Figure 2A for Setup) or High

Light pulse conditions (orange triangles, see Figure 3A for Setup). Each point represents the average of values measured in two independent Western

Figure 5 continued on next page
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These sigma factor genes show light-dependent dusk gene expression patterns (Figure 6—figure

supplement 1G–L) that mirror those of the larger group of dusk genes (Figures 2 and 3), suggesting

that these sigma factors could regulate the expression of other dusk genes. Thus, RpaA and RpaB

may indirectly regulate the expression of non-target dusk genes by controlling the circadian and

light-responsive expression of sigma factor genes (Hanaoka et al., 2012), similar to how RpaA drives

all dusk gene expression in Constant Light conditions by binding to a subset of dusk genes

(Markson et al., 2013). It is also possible that changes in light intensity affect dusk gene expression

in a manner independent of RpaA ~P and RpaB ~P regulation. For instance, global growth-rate-

dependent gene regulatory mechanisms such as the stringent response (Scott et al., 2010; Bur-

nap, 2015; Ryals et al., 1982; Hood et al., 2016) likely cause some of the light-dependent changes

in circadian gene expression due to unavoidable differences in the growth rate in different light con-

ditions (Figure 2—figure supplement 1).

We have defined a regulatory picture in which changes in light intensity affect the activity of

RpaA and RpaB to control the expression of dusk genes. However, light affects RpaA activity in com-

plex and promoter-specific ways. Additionally, light-dependent regulation in addition to that medi-

ated by RpaA and RpaB may control dusk gene expression in response to environmental

perturbations. Still, despite the apparent complexity of regulation of dusk genes in response to light

fluctuations, the expression of almost all dusk genes show strikingly regular dynamics (Figures 2 and

3). Furthermore, the activity of RpaA and RpaB at a subset of promoters (especially those of sigma

factor genes) could lead to pervasive and coordinated changes in the expression of other dusk

genes. Hence, we reasoned that mathematical models (Alon, 2006) of RpaA and RpaB activity might

effectively describe the regulatory circuits underlying the dynamics of large groups of dusk genes.

Such an approach would enable an understanding of the basic principles of interaction between cir-

cadian gene expression regulation with light-dependent regulation without needing to describe all

underlying molecular mechanisms.

Figure 5 continued

blots, with error bars displaying the range of the measured values. See Materials and methods, Measurement of RpaA~P and RpaB~P levels for more

details. Data is available in Figure 5—source data 1. The light profile for each condition is plotted as dashed lines of the same color with values

corresponding to the right y-axis. (B) Phosphorylation dynamics of RpaB under Clear Day (magenta triangles, see Figure 2A for Setup) vs Shade pulse

(gray circles, see Figure 3B for Setup) conditions, measured and plotted as in (A). (C) The change in enrichment of RpaB at a given peak upstream of a

dusk gene (x-axis) and the corresponding change expression of the downstream dusk gene (y-axis) from the original condition after 60 min in High

Light (orange triangles) or Shade (gray circles), plotted for the 42 dusk genes with detectable RpaB peaks in their promoters. The correlation coefficient

for High Light and Shade data is indicated above the plot. See Materials and methods, ChIP-seq analysis for more details. Data is available in

Figure 5—source data 2. (D) The change in enrichment of an RpaB at a given peak upstream of a dusk gene (x-axis) and the corresponding change in

RNAP enrichment upstream of the same gene (y-axis) from the original condition after 60 min in High Light (orange triangles) or Shade (gray circles),

plotted for the 27 dusk genes with detectable RpaB and RNAP peaks in their promoters. he correlation coefficient for High Light and Shade data is

indicated above the plot. See Materials and methods, ChIP-seq analysis for more details. (E) Model of regulation of dusk genes by RpaB under

naturally-relevant conditions. Changes in light regulate RpaB ~P levels. RpaB~P binds with RNAP to dusk genes to control their expression in response

to environmental perturbations.

DOI: https://doi.org/10.7554/eLife.32032.022

The following source data and figure supplements are available for figure 5:

Source data 1. Quantification of relative RpaB~P levels.

DOI: https://doi.org/10.7554/eLife.32032.026

Source data 2. List of RpaB peaks, gene targets, and quantification of enrichment under High Light pulse and Shade pulse conditions.

DOI: https://doi.org/10.7554/eLife.32032.027

Figure supplement 1. Representative Western blots used to quantify relative levels of RpaB~P under dynamic light conditions.

DOI: https://doi.org/10.7554/eLife.32032.023

Figure supplement 2. Changes in RpaB enrichment and downstream dusk gene expression after rapid changes in light intensity.

DOI: https://doi.org/10.7554/eLife.32032.024

Figure supplement 3. Changes in RpaB and RNA polymerase enrichment upstream of dusk genes after rapid changes in light intensity.

DOI: https://doi.org/10.7554/eLife.32032.025
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Phenomenological models suggest simple principles underlying the
activation of clusters of light-responsive dusk genes
We find that dusk genes collectively display a small number of responses to changes in environmen-

tal light intensity. Using k-means clustering of the gene expression dynamics from our different light

profiles (Figures 2 and 3), as well as from perturbations of RpaA (Figure 2—figure supplement 2

[Markson et al., 2013]), we identify three major groups of dusk genes (35–80 genes, see Figure 7—

source data 1 for full lists) which show distinct and coordinated changes in gene expression over

Figure 6. Global regulation of dusk gene expression in response to light changes. (A) Number of dusk gene targets of RpaA only (red), RpaB only

(blue), RpaA and RpaB (yellow), or neither (black). Target genes of binding sites of RpaA and RpaB were determined using chromatin

immunoprecipitation followed by sequencing under several different light conditions (see Materials and methods, ChIP-seq analysis, for more details.

See Figure 4—source data 2 or Figure 5—source data 2 for full lists of RpaA and RpaB peaks associated with dusk genes). (B) Light-responsive

changes in gene expression of dusk genes. For each dusk gene, we calculated the maximal log2 change in expression during the High Light pulse (x-

axis) or Shade pulse (y-axis) from 8 hr since dawn in the Low light or Clear day conditions, respectively, using the data from Figure 3. (C) Normalized

ChIP-seq signal of RpaA (red), RpaB (blue), RNAP (green) and mock IP (black) upstream of the dusk sigma factor gene rpoD6 at 8 hr since dawn in Low

Light. The chromosomal location of the gene is located on the plot with a gray bar with an arrow indicating directionality of the gene. The location of

RpaA, RpaB, and RNAP peaks are indicated on top of the plot with red (RpaA), blue (RpaB), and green (RNAP) bars. See Materials and methods, ChIP-

seq analysis for more details. (D) Changes in enrichment upstream of rpoD6 of RpaA (red), RpaB (blue), and RNAP (green) and changes in rpoD6 gene

expression (black) after exposure to the High Light pulse (triangles) or the Shade pulse (circles). See Materials and methods, ChIP-seq analysis for more

details.

DOI: https://doi.org/10.7554/eLife.32032.028

The following figure supplement is available for figure 6:

Figure supplement 1. Regulation of dusk sigma factor gene expression by RpaA and RpaB.

DOI: https://doi.org/10.7554/eLife.32032.029
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circadian time and in response to changes in light intensity (Figure 7; Figure 7—figure supplement

1). Under Constant Light conditions, all three clusters are activated by RpaA ~P but display distinct

activation dynamics from dawn to dusk (Figure 7—figure supplement 1B) that are mirrored under

our Low Light conditions (Figure 7—figure supplement 1A). We named the clusters the Early, Mid-

dle, and Late dusk genes based on the order of activation.

The Shade pulse and Sunset in the Clear Day condition have differing effects on the expression of

each of the major dusk gene clusters. Early dusk gene expression rapidly increases in response to

Shade, but during Sunset plateaus at ~ 1/2 of the maximal gene expression reached in Shade

(Figure 7A). Conversely, the Late gene cluster responds most strongly to Sunset in Clear Day condi-

tions but has a mild increase in expression in Shade relative to the Early and Middle dusk genes

(Figure 7C). In contrast, the Middle gene cluster is induced to a similar magnitude by both Shade

and Sunset (Figure 7B). Shade and Sunset represent similar light changes that occur at different

times of day (afternoon and dusk, respectively). As such, the Early and Late dusk gene clusters are

differentially induced by a decrease in light intensity depending on the time of day in which it occurs.

This circadian effect on the intensity and dynamics of a response to environmental change is a signa-

ture of circadian gating (Hotta et al., 2007; Greenham and McClung, 2015). Though circadian gat-

ing has been observed (e.g., [Belbin et al., 2017]) and modeled without any knowledge of the

Figure 7. Dusk genes group into three major clusters that show distinct and coordinated responses to changes in light intensity. (A) Average

expression profiles of genes belonging to the Early dusk gene cluster under Clear Day (magenta) and Shade pulse (gray) conditions (left y-axis). Dusk

genes were grouped using k-means clustering of their normalized expression dynamics in response to the four light conditions of this study and

perturbations of RpaA activity in Constant Light conditions (Figure 7—figure supplement 1, [Markson et al., 2013]), and clusters were named based

on their order of activation. See Materials and methods - K-means clustering for more details, and Figure 7—source data 1 for full lists of genes in

each cluster. The number of genes within the cluster, as well as the number of genes with an RpaA or RpaB peak in their promoters (targets) is listed.

The expression values of each gene across all four light conditions in this work were normalized to a range of 0 to 1, and the normalized expression

values were averaged within each cluster (solid lines). The shaded region on the plot indicates the standard deviation of the normalized expression

values within the cluster. The light intensity profile for each condition is plotted as dashed lines in the same color with values corresponding to the right

y-axis. (B) Average expression profiles of genes belonging to the Middle dusk gene cluster under Clear Day (magenta) and Shade pulse (gray)

conditions (left y-axis), presented as in (A). (C) Average expression profiles of genes belonging to the Late dusk gene cluster under Clear Day (magenta)

and Shade pulse (gray) conditions (left y-axis), presented as in (A).

DOI: https://doi.org/10.7554/eLife.32032.030

The following source data and figure supplement are available for figure 7:

Source data 1. Lists of genes belonging to the Early, Middle, and Late dusk clusters, and scaled gene expression values.

DOI: https://doi.org/10.7554/eLife.32032.032

Figure supplement 1. Average expression profiles of the major dusk gene clusters under various conditions.

DOI: https://doi.org/10.7554/eLife.32032.031
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transcriptional regulation (Dalchau et al., 2010) in plants, it remains unclear what gene regulatory

circuits are sufficient to explain such behavior.

At present there is no mechanistic model to explain the differential response of these clusters to

circadian regulation and changes in sunlight. Given that there are unknown regulators involved in cir-

cadian gene expression (Figure 6A,B), and because it is not possible to exhaustively test all possible

models of regulation of dusk gene expression, we sought to construct the simplest models that can

describe the expression dynamics of these clusters using a phenomenological modeling approach.

Such models can be used to highlight regulatory architectures that are sufficient to recapitulate the

observed gene expression dynamics, as well as direct further mechanistic studies to reveal the

underlying molecular details of regulation.

Given the clear roles for RpaA ~P and RpaB ~P in activating dusk genes, we asked whether the

dynamic expression of the major dusk gene clusters in naturally-relevant light conditions could be

described by these variables. We constructed phenomenological models that describe the kinetics

of the synthesis and breakdown of an average gene in each of the dusk gene clusters (Mangan and

Alon, 2003) (see Materials and methods, Mathematical modeling). The rate of synthesis was the sum

of a baseline rate of transcription and a maximal adjustable rate of transcription that could be modu-

lated by the activity of one or more regulators. We described the the effects of a regulator such as

RpaA ~P or RpaB ~P using a Hill function, whose shape is determined by the Hill coefficient and the

coefficient of activation. We determined how well a model could describe the dynamics of a cluster

by fitting it to the Clear Day and Shade pulse data and assuming all parameters could vary freely

(see Materials and methods, Mathematical modeling; Table 1).

We began by asking whether levels of RpaA ~P or RpaB ~P (Figure 8A) can describe the gene

expression dynamics of the major dusk clusters in natural light conditions. We first constructed mod-

els in which dusk cluster gene expression is solely dependent on RpaA ~P. Activation by RpaA ~P

can recapitulate the ordered activation of the dusk gene clusters through differential coefficients of

activation for RpaA ~P, but cannot describe the light-responsive expression of these genes (RpaA-

only models, Figure 8—figure supplement 1A–C; Table 2). Further, activation by RpaB ~P alone

cannot describe the dusk gene expression patterns of the clusters (RpaB-only models, Figure 8—fig-

ure supplement 1D–F; Table 2). However, models in which dusk gene expression is a function of

BOTH RpaA ~P and RpaB ~P can recapitulate much of the time-of-day and light intensity dependent

expression of the Early and Late clusters and nearly all of the expression dynamics of the Middle

clusters (RpaA and RpaB models, Figure 8B–E; Table 2). This suggests that RpaB ~P is a variable

which can capture the effects of dynamic light conditions on RpaA ~P activity. The fit parameters for

simple joint activation can accommodate indirect activation through downstream regulators like

sigma factors and thus do not require direct RpaA/B binding to all genes. Conceptually, our results

suggest that transcription factors whose activity track the measured dynamics of both RpaA ~P and

RpaB ~P can describe the circadian and light-responsive expression of dusk genes. However, joint

activation by RpaA ~P and RpaB ~P predicts that the Early and Late clusters will respond similarly to

Shade and Sunset in Clear Day conditions (Figure 8C,E), and thus cannot capture well the circadian

gating of these clusters.

Table 1. Fitting bounds.

Bounds used for fitting the variables in our simple model of gene expression. H is the Hill coefficient,

b is the max transcription rate, a is the decay/dilution rate, B is the background transcription rate,

and K is a coefficient of activation/repression (see equations 1-3, p. 1–3). The units of b, a, and B are

normalized expression/hr; K is in normalized expression units.

Variable Lower bound Upper bound

H 0 7

b 0 80

a 0 80

B 0 10

K 0 1

DOI: https://doi.org/10.7554/eLife.32032.038

Piechura et al. eLife 2017;6:e32032. DOI: https://doi.org/10.7554/eLife.32032 16 of 33

Research article Computational and Systems Biology Genes and Chromosomes

https://doi.org/10.7554/eLife.32032.038
https://doi.org/10.7554/eLife.32032


Figure 8. Phenomenological modeling of the activation of clusters of light-responsive dusk genes. (A) Normalized RpaA~P levels (left plot) and

RpaB~P levels (right plot) under Clear Day (magenta) and Shade pulse (gray) conditions used as input for mathematical models of dusk gene

expression. RpaA~P or RpaB~P levels from all four light conditions were normalized to a range of 0 to 1. (B) In the ‘RpaA and RpaB’ models, RpaA~P

and RpaB ~P jointly activate the expression of the Early (E), Middle (M), or Late (L) cluster. See Materials and methods - Mathematical modeling for

Figure 8 continued on next page
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Figure 8 continued

more details. (C) Simulations of the best fit ‘RpaA and RpaB’ model for the Early dusk genes. Average cluster expression data is shown as faded solid

lines, and the best fit simulations are shown as dotted lines. Data for Clear Day conditions are plotted in magenta, and Shade pulse in gray. See

Materials and methods - Mathematical modeling for more details. (D) Simulations of the best fit ‘RpaA and RpaB’ model for the Middle dusk genes,

plotted as in (C). (E) Simulations of the best fit ‘RpaA and RpaB’ model for the Late dusk genes, plotted as in (C). (F) In the ‘Feedback’ models, another

cluster activates or represses the expression of the Early (E), Middle (M), or Late (L) cluster alongside joint activation by RpaA~P and RpaB~P. (G)

Simulations of the best fit ‘Feedback’ model for the Early dusk genes, plotted as in (C). In this model, Late cluster expression represses Early cluster

expression alongside activation by RpaA~P and RpaB ~P. (H) Simulations of the best fit ‘Feedback’ model for the Middle dusk genes, plotted as in (C).

In this model, Late cluster expression activates Middle cluster expression alongside activation by RpaA ~P and RpaB~P. (I) Simulations of the best fit

‘Feedback’ model for the Late dusk genes, plotted as in (C). In this model, Middle cluster expression activates Late cluster expression alongside

activation by RpaA ~P and RpaB~P.

DOI: https://doi.org/10.7554/eLife.32032.033

The following figure supplements are available for figure 8:

Figure supplement 1. Best fit simulations of ‘RpaA-only’ and ‘RpaB-only’ models in which RpaA~P or RpaB~P solely activates the expression of the

dusk gene clusters.

DOI: https://doi.org/10.7554/eLife.32032.034

Figure supplement 2. Models in which either the Middle or Late cluster feeds back to influence Early cluster expression.

DOI: https://doi.org/10.7554/eLife.32032.035

Figure supplement 3. Models in which either the Early or Late cluster feeds back to influence Middle cluster expression.

DOI: https://doi.org/10.7554/eLife.32032.036

Figure supplement 4. Models in which either the Early or Middle cluster feeds back to influence Late cluster expression.

DOI: https://doi.org/10.7554/eLife.32032.037

Table 2. Fitting results.

The definitions of the variables are given in Equations 1-3, p. 1–3. The error is defined as the square root of the sum of the squared

deviations between simulation and data.

Model Cluster Figure BX bX aX KAX HAX KBX HBX KYX HYX Error

RpaA-only Early 7D 0.71 37.54 72.71 0.71 6.76 - - - - 0.85

RpaB-only Early 7-Fig. Supp. 2C 0.37 24.03 78.62 - - 0.37 0.78 - - 1.01

RpaA and RpaB Early 7G 0.35 51.28 37.76 0.35 4.19 0.8 2.5 - - 0.41

Feedback, M act. Early 7-Fig. Supp. 3A 0.01 55.85 30.01 0.01 0.3 0.87 2.38 0.06 2.47 0.37

Feedback, M rep. Early 7-Fig. Supp. 3B 0.67 58.69 38.89 0.67 6.96 0.62 2.47 0.96 7 0.24

Feedback, L act. Early 7-Fig. Supp. 3C 0.2 35.87 19.03 0.2 4.43 0.98 3.35 0.05 6.15 0.38

Feedback, L rep. Early 7I, 7-Fig. Supp. 3D 0.75 69.34 42.68 0.75 6.22 0.59 3.53 0.71 2.39 0.21

RpaA-only Middle 7D 0.79 37.95 63 0.79 6.76 - - - - 0.86

RpaB-only Middle 7-Fig. Supp. 2C 0.26 0.03 - - - 0.26 5.6 - - 0.85

RpaA and RpaB Middle 7G 1 57.46 25.97 1 4.96 0.52 4.12 - - 0.29

Feedback, E act. Middle 7-Fig. Supp. 4A 0.8 23.73 22.19 0.8 6.96 0.49 4.53 0.21 6.35 0.32

Feedback, E rep. Middle 7-Fig. Supp. 4B 0.73 71.08 39.24 0.73 5.14 0.53 6.58 0.74 0.88 0.35

Feedback, L act. Middle 7I, 7-Fig. Supp. 4C 0.18 78.63 76.5 0.18 6.09 0.33 2.64 0.16 1.55 0.16

Feedback, L rep. Middle 7-Fig. Supp. 4D 0.68 31.02 17.98 0.68 3.34 0.57 6.79 1 0 0.44

RpaA-only Late 7D 0.96 39.82 64.37 0.96 6.7 - - - - 0.78

RpaB-only Late 7-Fig. Supp. 2C 0.05 0 0 - - 0.05 0.68 - - 0.79

RpaA and RpaB Late 7G 0.95 77.65 67.1 0.95 7 0.48 5.9 - - 0.5

Feedback, E act. Late 7-Fig. Supp. 5A 0.99 23.93 20.01 0.99 5.8 0.4 6.95 0.18 6.77 0.53

Feedback, E rep. Late 7-Fig. Supp. 5B 0.76 59.81 18.43 0.76 6.22 0.69 6.13 0.47 3.12 0.29

Feedback, M act. Late 7I, 7-Fig. Supp. 5C 0.37 27.3 16.09 0.37 3.72 0.01 3.46 0.91 6.23 0.22

Feedback, M rep. Late 7-Fig. Supp. 5D 0.86 25.1 14.46 0.86 6.92 0.48 7 1 0 0.52

DOI: https://doi.org/10.7554/eLife.32032.039
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We reasoned that additional regulatory interactions downstream of RpaA and RpaB, or ‘network

motifs’ (Alon, 2006), could account for the observed gating of the Early and Late clusters. Thus, we

constructed models in which dusk cluster gene expression is positively or negatively dependent on

the expression of another cluster alongside activation by RpaA ~P and RpaB ~P (Feedback models,

Figure 8F–I; Figure 8—figure supplements 2–4; Table 2). Interestingly, the gating of the Early clus-

ter is recapitulated by a model incorporating an incoherent feedforward loop in which the Late clus-

ter represses Early cluster expression downstream of RpaA ~P and RpaB ~P activation (Figure 8G;

Figure 8—figure supplement 2; Table 2). Further, the gating of the Late cluster is well described

by a coherent feedforward loop in which Late cluster expression is dependent on RpaA ~P, RpaB ~P,

AND Middle cluster expression levels (Figure 8I; Figure 8—figure supplement 4; Table 2). Thus,

we highlight regulatory schemes downstream of RpaA and RpaB which can generate large time-of-

day differences, or circadian gating, in the response to a decrease in light intensity.

Our results highlight that the measured dynamics of RpaA ~P and RpaB ~P can account for the

dynamics of large groups of clock-controlled genes after environmental changes and suggest regula-

tory schemes that can diversify gene expression responses downstream of RpaA and RpaB. The

models suggested here offer constraints and testable hypotheses to guide future studies of the

molecular mechanisms underlying these responses.

Discussion

Changes in light adjust circadian gene expression to optimize
metabolism in response to shifting ambient light intensity
We show that natural fluctuations in light intensity significantly affect the dynamics of circadian gene

expression (Figures 2 and 3). While previous studies have measured genome-wide gene expression

in a single natural light condition (Waldbauer et al., 2012), here we compare genome-wide circa-

dian gene expression in several physiologically-relevant conditions, including Clear Day, High Light

pulse, Shade pulse, and Low Light, to carefully dissect the effects of light on clock output. Natural

light changes most greatly affected a large fraction of the dusk genes (Figures 2B and 3C,

D), possibly because most of the direct targets of RpaA are dusk genes (Markson et al., 2013). We

speculate that the opposing trends we observe in dawn gene expression (Figure 2—figure supple-

ment 3 and Figure 3—figure supplement 1) may in part be due to competition for RNAP between

the dusk and dawn genes (Gruber and Gross, 2003; Mauri and Klumpp, 2014) or by growth-rate-

dependent mechanisms (Scott et al., 2010), as this group of genes contains the primary growth

genes. A systematic exploration of the effects of light on circadian genes will be necessary to fully

elaborate the contributions of light, clock, and growth rate on circadian gene dynamics.

We find that large groups of light-responsive dusk genes are activated by diminished light condi-

tions to different extents depending on the time of day the stimulus is applied. These differences in

activation may serve to optimally change metabolism for a given light condition and time of day.

The light-responsive dusk genes grouped into three clusters - Early, Middle, and Late - with different

activation dynamics during Sunset at the end of the Clear Day versus the Shade pulse in the after-

noon (Figure 7, see Figure 7—source data 1 for full lists of genes in each cluster). Glycogen break-

down genes and the central carbon metabolism genes glyceraldehyde-3-phosphate dehydrogenase

and oxalate decarboxylase belong to the Middle dusk genes, which are activated to similar levels by

Shade and Sunset (Figure 7B). This suggests that cyanobacteria delay the activation of glycogen

breakdown pathways (Reimers et al., 2017) until just before dusk when grown under Clear Day con-

ditions, but can transiently activate these genes in response to Shade to access alternate energy

reserves if necessary. Interestingly, genes encoding pyridine nucleotide transhydrogenase, which

reversibly converts NADH to the NADPH required for electron transport, belong to the Late cluster

and are strongly activated only by Sunset and not afternoon Shade (Figure 7C). Such a response

might delay the adjustment of the relative levels of NADH/NADPH until only when absolutely

needed at night, when NADPH is potentially important for defense against reactive oxygen species

(Diamond et al., 2017). The cytochrome c oxidase genes belong to the Early cluster, which respond

more intensely to Shade than to Sunset (Figure 7A). This enzyme is essential for preventing photo-

damage in response to rapid changes in light intensity (Lea-Smith et al., 2013); such changes are

not expected to occur during the night, where it serves solely as the terminal electron acceptor for
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respiration. More generally, the genome-wide gene expression dynamics measured here qualita-

tively agree with predictions from a whole-cell model of S. elongatus that assumed optimization of

growth (Reimers et al., 2017). To resolve how the circadian and light-dependent transcriptional

changes effect these metabolic changes, future studies must measure enzyme levels and metabolic

fluxes under fluctuating light conditions.

Mechanistic principles underlying the activation of light-responsive
dusk genes
While light does not alter the post-translational oscillator/transcription-translation feedback loop cir-

cadian circuit, it regulates the activation of dusk genes via RpaA ~P promoter binding (Figure 4) and

RpaB promoter binding through its phosphorylation state (Figure 5) at a subset of dusk genes.

RpaA binding upstream of its target genes under dynamic light conditions (Figure 4C) correlates

with the changes in expression of non-RpaA target genes (Figure 6B). Thus, RpaA ~P may remain

the ‘master regulator’ of circadian gene expression whose promoter binding activity is altered by

other molecular factors that encode information about the environment, such as RpaB. Previous

work suggested that changes in RpaB ~P phosphorylation would alter RpaA ~P levels through com-

petition with the enzymes that control RpaA ~P levels (Espinosa et al., 2015). However, we find that

RpaA ~P levels remain constant (Figure 4A,B) under conditions in which RpaB ~P levels change sub-

stantially (Figure 5A,B), arguing that RpaB ~P does not influence RpaA ~P levels. RpaB ~P might

influence RpaA ~P binding at promoters where both proteins bind (Figure 6—figure supplement 1)

as previously suggested (Hanaoka et al., 2012), and joint control of sigma factors by RpaA and

RpaB could feedback to affect RpaA binding at select promoters. Still, the question of how light

changes RpaA ~P binding in a promoter-specific way remains unclear.

We define a clear role for the stress-responsive transcription factor RpaB as a transcriptional acti-

vator of a large subset of dusk genes (Figure 5E). Further, we demonstrate that decreases in light

intensity like a Shade Pulse lead to increases in RpaB ~P levels to allow RpaB to activate the expres-

sion of genes. This result shows that RpaB acts in scenarios beyond its previously appreciated role in

High Light stress (Kato et al., 2011; Seki et al., 2007; Hanaoka and Tanaka, 2008; López-

Redondo et al., 2010). RpaA ~P and RpaB ~P might cooperate to indirectly regulate the expression

of most light-responsive dusk genes by jointly controlling the expression levels of multiple sigma fac-

tors (Figure 6—figure supplement 1) (Hanaoka et al., 2012). However, our attempts to cleanly per-

turb RpaB activity to further explore its role as a regulator of dusk genes were unsuccessful, in part

because the rpaB gene is essential (López-Redondo et al., 2010). The role of sigma factors in this

network of regulation, while strongly implied, remains ambiguous and attempts to assess this role

using genetic deletion of sigma factors yielded inconclusive results. More subtle approaches such as

anchors away (Haruki et al., 2008) might allow perturbation experiments that clearly explicate the

roles of the sigma factors and RpaB in mediating circadian gene expression.

Although complex molecular mechanisms underlie the light-responsive expression of dusk genes,

we demonstrate that phenomenological models effectively describe the differential activation of

large groups of dusk genes to afternoon Shade and Sunset. These models suggest that transcription

factors with the dynamics of RpaA ~P and RpaB ~P (Figure 8A) are sufficient to reproduce much of

the activation of the Early, Middle, and Late clusters in response to a Shade pulse in the afternoon

or Sunset just before night (Figure 8C–E). Our models suggest that additional feedback from the

other gene clusters may be necessary to achieve the extent of circadian gating observed for the

Early and Late clusters (Figure 8G–I). Our models suggest that interactions between the major dusk

clusters can diversify the responses of these clusters to signals from RpaA and RpaB. Regulatory

interactions between the sigma factors RpoD6, RpoD5, and SigF2 (Figure 6—figure supplement 1),

which belong to the Early, Middle, and Late clusters, respectively, could generate feedback down-

stream of RpaA and RpaB similar to that in our models (Figure 8—figure supplements 2–4) to gen-

erate the diverse responses of the dusk clusters to light conditions. However, feedback could also

come from other sources with similar dynamics to the cluster expression levels. Indeed we could not

simultaneously fit our models to all four light conditions, likely because of global growth-rate-depen-

dent differences between the Low Light and Clear Day conditions. Thus, complete modeling of tran-

scription dynamics of light-dependent dusk genes likely requires explicitly including the effects of

metabolism and growth on gene expression (Reimers et al., 2017; Burnap, 2015; Scott et al.,

2010).
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Closing remarks
RpaB and its cognate upstream histidine kinase NblS (van Waasbergen et al., 2002) have been

implicated in a variety of stress responses (Marin et al., 2003; Mikami et al., 2002;

Shoumskaya et al., 2005), which suggests that the mechanisms and regulatory circuits defined here

may apply to other environmental changes such as temperature or osmolarity. The requirement of

RpaB for mediating the environmental response of circadian genes suggests that the circadian circuit

coevolved with RpaB to optimize responses to predictable and unpredictable changes in the envi-

ronment and motivates the further exploration of the interaction between light and circadian

rhythms in S. elongatus. Resolution of this interaction and subsequent integration into whole cell

models of cyanobacterial growth (Burnap, 2015; Westermark and Steuer, 2016) will help to explain

the fitness benefits of the circadian clock (Johnson and Egli, 2014) and optimize synthetic biology

efforts to engineer cyanobacteria to produce useful compounds (Ducat et al., 2011) from the con-

stantly changing sunlight in nature.

Genomics data
All high throughput sequencing data is available from the Gene Expression Omnibus with the acces-

sion number GSE104204.

Materials and methods
The resources table includes the genetically modified organisms and strains, cell lines, reagents, and

software that are essential to reproduce the results presented.

Key resources table

Reagent type or resource Designation Source or reference Identifiers Additional information

Strain, strain background
(Synechococcus elongatus)

PCC 7942 (wild-type) ATCC Cat. Num. 33912

Strain, strain background
(Escherichia coli)

Tuner (DE3) EMD Millipore Cat. Num. 70263

Gene (S. elongatus) RNA polymerase Beta’ subunit N/A Cyanobase:
Synpcc7942_1524

Gene (S. elongatus) rpaB N/A Cyanobase:
Synpcc7942_1453

Recombinant DNA reagent RNA polymerase beta
prime subunit FLAG

This paper Addgene: 102337 Plasmid encoding C-terminal
FLAG tag RNA polymerase Beta’
subunit (Synpcc7942_1524)
with Kan selection marker,
targeted to integrate at
native gene locus

Recombinant DNA reagent pET-48b(+) EMD Millipore Cat. Num. 71462

Renetic reagent (S. elongatus) EOC 398 and EOC 399 This paper S. elongatus PCC7942 transformed
with RNA polymerase beta prime
subunit FLAG plasmid.
Confirmed by PCR and
Western blot.

Antibody anti-RpaB This paper Anti-RpaB serum was
produced by Cocalico Biologicals.
Anti-RpaB was affinity
purified as described in
this work.

Antibody anti-RpaA This paper Anti-RpaA serum was produced
by Cocalico Biologicals as
described in Markson et al., 2013.
Anti-RpaA was affinity
purified as described in
this work.

Antibody FLAG M2 mouse monoclonal
antibody

Sigma Aldrich Cat. Num. F3165

Continued on next page

Piechura et al. eLife 2017;6:e32032. DOI: https://doi.org/10.7554/eLife.32032 21 of 33

Research article Computational and Systems Biology Genes and Chromosomes

https://doi.org/10.7554/eLife.32032


Continued

Reagent type or resource Designation Source or reference Identifiers Additional information

Software, algorithm Imagequant GE Healthcare

Software, algorithm Bowtie PMID: 19261174

Software, algorithm Peak-Seq PMID: 19122651

Software, algorithm MATLAB MathWorks

Commercial assay or kit RNeasy Mini kit Qiagen Cat. Num. 74104

Commercial assay or kit Ribo-Zero bacteria
rRNA removal kit

Illumina Cat. Num. MRZMB126

Commercial assay or kit Truseq Stranded mRNA
sample prep kit

Illumina Cat. Num. 20020594

Commercial assay or kit NEBNext Ultra II DNA
library prep kit

New England
Biolabs

Cat. Num. E7645S

Chemical compound, drug Phos-tag
Acrylamide AAL-107

Wako Pure
Chemical Industries

Cat. Num. 304–93521

Cyanobacterial strains
Most experiments were conducted in a pure wildtype background of Synechococcus elongatus

PCC7942 (ATCC catalog number 33912, RRID:SCR_001672). For RNAP ChIP experiments, we used

a strain in which the b0 subunit of RNA polymerase (Synpcc7942_1524, gene info available through

Cyanobase, RRID:SCR_007615) was C-terminally tagged with a 3x FLAG epitope (a gift from Ania

Puszynska). To make this strain, wildtype S. elongatus was transformed with a plasmid encoding the

Synpcc7942_1524 gene with sequence encoding a 3X GS linker and a 3X FLAG epitope inserted

before the stop codon, targeted to insert at the native locus of the gene. A downstream kanamycin

resistance cassette was used for selection. This plasmid is available through Addgene with the ID

102337. Two different clones of this strain, EOC398 and EOC399, were confirmed by sequencing

colony PCR fragments that amplified the modified regions of the gene, and the presence of the

tagged subunit was confirmed with Western blotting.

Construction of light apparatus
To grow the cyanobacteria in different light profiles, we constructed an apparatus to control the

intensity of four high powered LED arrays (parts list in Table 3, p. 2). ‘Warm white’ LED arrays ( ~ 1

in. x 1 in., Bridgelux) were chosen because of maximal overlap with the phycobilisome absorption

spectrum. An LED array was mounted on a heatsink (Nuventix) and powered by a Flexblock LED

Table 3. Parts for controllable light source.

The table includes the parts chosen for their specific properties. The remaining parts, such as wires, heat shrink tubing, thermal paste

for mounting the LEDs on the heat sinks, proto-boards, and housing are quite general and specific brands are unnecessary.

Part name Digikey part number Current price ($) Quantity

PWR SUP MEDICAL 18V 8.3A 150W EPS439-ND 73.71 1

CONN RCPT 8CONT DIN SLD PNL MNT SC2007-ND 5.64 1

LEDDynamics Flexblock BUCK BOOST 48V, 700 mA 788–1038-ND 19.99 4

AD7376 digital potentiometer AD7376ARWZ10-ND 8.66 4

AC to DC power supply, 10VDC, 275 mA 993–1233-ND 4.68 2

BXRA-30E1200-B-03, Bridgelux, Warm white, LED Not sold at Digikey.

Need to order from: 10.47 4

AMBIT ELECTRONICS, INC.

Aavid thermalloy Spotlight 47W heat sink 1061–1092-ND 9.50 4

Arduino Uno Board Rev3 1050–1024-ND 21.49 1

DOI: https://doi.org/10.7554/eLife.32032.040
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driver (LEDdynamics) wired in the ‘boost only’ configuration (Table 4, p. 3). The intensity of the LEDs

was controlled by varying the voltage input into the DIM line of the Flexblock between 0 and 10 V.

We used a digital potentiometer (AD7376, Analog Devices) as a controllable 10 V source. The volt-

age output of the digipot was controlled via serial peripheral interface with an Arduino Uno board

(Arduino) (see Table 5, p. 4). Each LED array was controlled separately, and a single array was suffi-

cient to grow a single 750 mL culture of S. elongatus. All wires carrying substantial currents from the

main power supply to the LED arrays were rated 18 AWG, and all other wires were rated 22 AWG.

The relatively low voltage of the main power supply (18 V) is essential for being able to turn off the

LED arrays completely.

Calibrating light conditions
A single LED was mounted to shine perpendicular to the ground and isolated from other light sour-

ces. A single 750 mL cyanobacterial culture in a 150 cm2 BD Falcon Tissue culture flask (Fisher Scien-

tific) was placed beneath the LED, tilted such that the broad face of the culture was almost

perpendicular to the incoming light. Each LED was calibrated by passing a known voltage input to

the LEDs and recording the intensity of the light in �mol photons m�2 s�1 at the position of the sur-

face of the culture directly beneath the LED using a LI-COR LI-250A light meter equipped a quantum

sensor. To access a greater dynamic range of light intensity values, we calibrated the lights to give

light intensity values at either of two distances from the light source — raised towards the lights to

access higher light intensities, or lowered away from the lights to access lower light intensities.

To define the Clear Day conditions, we used light intensity values measured by the Ground-based

Atmospheric Monitoring Instrument Suite, Rooftop Instrument Group on March 23rd, 2013

(Figure 1B, dark blue line, [Petty and Weidner, 2017]). We used this light intensity profile to define

the rate of change of light intensity in our Clear Day condition, with a maximal light intensity of 600

�mol photons m�2 s�1. This intensity is consistent with measurements of light intensity in aquatic

environments (Waldbauer et al., 2012), while also offering an order of magnitude difference in

intensity compared to the Low Light condition, which was a constant 50 �mol photons m�2 s�1. The

Shade pulse condition was defined by dividing the intensity value of our Clear Day profile by 10 fold

between 8 and 9 hr after dawn. The High Light pulse was defined as the intensity of the Clear Day

condition between 8 and 9 hr after dawn. Low Light cultures were grown continuously at 50 �mol

photons m�2 s�1. We generated the dynamic changes in light intensity of our conditions by changing

the intensity of the LED every three minutes by passing the calibrated voltage value corresponding

to the appropriate light intensity of our defined profile. The light intensity values of the Low Light

and Clear Day conditions are listed in Figure 2—source data 1, and the High Light and Shade pulse

values are listed in Figure 3—source data 1. After the 12 hr light profile, the LEDs were turned off

for 12 hr during the dark period. Cultures were grown semi-turbidostatically (OD750 maintained at

0.3) with periodic dilution in BG-11M media supplemented with 10 mM HEPES pH 8.0 at 30 �C, con-

tinuously bubbled with 1% CO2 in air, and shaken at 25 rpm in an enclosure impermeable to room

lighting. Cells were not grown with antibiotics during the course of the experiment.

Table 4. Wiring the FlexBlock LED driver.

The FlexBlock LED driver needs to be connected in a ’boost only’ configuration (see spec sheet for

more details), with connections as shown.

Line Connection

DIM GND GND of 10 V power supply/Arduino

DIM Wipe of AD7376 potentiometer (Pin 16)

Vin+ +of 18V power supply AND + of LED array

Vin- GND of 18V power supply

LED+ NC (not connected)

LED- - of LED array

DOI: https://doi.org/10.7554/eLife.32032.041
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Purification of anti-RpaA and anti-RpaB antibodies
Recombinant RpaA was purified as previously described (Takai et al., 2006). To purify recombinant

RpaB, we cloned the rpaB gene (Synpcc7942_1453, gene info available through Cyanobase, RRID:

SCR_007615) into the pET48-b + plasmid (Novagen) and overexpressed Trx-His-tagged RpaB in

Novagen Tuner (DE3) competent cells carrying this plasmid by adding 300 �M IPTG to mid-log

phase cultures. RpaB was purified from cell lysate using Ni-NTA chromatography as described previ-

ously (Gutu and O’Shea, 2013). The Trx-His tag was cleaved from RpaB and removed using a subse-

quent Ni-NTA step as described (Gutu and O’Shea, 2013). Purified, cleaved RpaB was dialyzed into

a buffer containing 20 mM HEPES-KOH, pH 8.0, 150 mM KCl, 10% w/v glycerol, and 1 mM DTT.

Protein concentration was measured with the Pierce BCA assay, and aliquots were flash frozen and

stored at �80˚C .

Anti-RpaB serum was generated by immunization of two rabbits with purified RpaB by Cocalico

Biologicals (Reamstown, PA). RpaA- and RpaB-conjugated Affigel 10/15 resin (Bio-Rad) was pre-

pared following manufacturer’s instructions as described previously (Gutu and O’Shea, 2013). Anti-

RpaB serum was first passed over an RpaA-conjugated resin and the flowthrough collected to sub-

tract cross-reacting antibodies. Anti-RpaB antibodies were then purified from the flowthrough using

an RpaB-conjugated resin as described previously (Gutu and O’Shea, 2013). The same process was

repeated to purify anti-RpaA antibodies using rabbit serum described previously (Markson et al.,

2013), passing the serum over an RpaB-conjugated resin and purifying with an RpaA-conjugated

resin. No cross reactivity of the purified anti-RpaA and anti-RpaB antibodies for the opposite regula-

tor was detected via ELISA assay.

Measurement of RpaA ~P and RpaB ~P levels
Ten mL of cyanobacterial culture with OD750 ¼ 0:3 were collected on cellulose acetate filters and

flash frozen prior to storage at �80 �C. Cell lysates for Western blotting were prepared from the col-

lected cells as described previously (Markson et al., 2013). Equal amounts of cell lysate (10–15 �g)

were resolved on Phos-tag acrylamide gels (Wako Laboratory Chemicals) and transferred to nitrocel-

lulose membranes as described previously (Gutu and O’Shea, 2013). Membranes were probed with

Table 5. Wiring the AD7376 potentiometer.

We used the SOIC-16 housing for the AD7376 potentiometer for ease of soldering to wires. The table

indicates how each pin was connected. The length of the GND wire from the Arduino board to the

shared ground needs to be kept short (~ 2 in. or less) for SPI communication.

Pin Connection

1 +of 10 V power supply

2 GND (shared GND between that of 10V power supply and Arduino

3 GND

4 GND

5 pin 10 on Arduino (or any other pin designated as a Slave Select, such as 5, 6, or 9

6 +5V of Arduino

7 pin 13 on Arduino (SCLK)

8 NC (not connected)

9 NC

10 NC

11 pin 11 on Arduino (MOSI)

12 +5V of Arduino

13 NC

14 +of 10V power supply

15 NC

16 DIM line of FlexBlock

DOI: https://doi.org/10.7554/eLife.32032.042
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1/5000 dilution of purified anti-RpaA and anti-RpaB antibody. RpaA blots were then incubated with

goat anti-rabbit HRP-conjugated secondary antibody and developed using the Pierce Femto chemi-

luminescence kit. The exposed blots were imaged with an Alpha Innotech Imaging station. RpaB

blots were incubated with Goat anti-Rabbit Westerndot 585 antibody (RRID:AB_2556786) and

imaged with a Typhoon Imager. The intensities of the bands corresponding to unphosphorylated

and phosphorylated RpaA/B were quantified using Imagequant software (GE Healthcare Life Scien-

ces, RRID:SCR_014246) using rubber band background subtraction. The percent of RpaA (or RpaB)

phosphorylated was quantified as the intensity of the RpaA ~P band divided by the sum of the inten-

sities of the RpaA and RpaA ~P bands, multiplied by 100. Values reported in Figures 4A,B and and

5A,B represent the average of two separate measurements from replicate Western blots, with error

bars displaying the range of the measured values (See Figure 4—source data 1, and Figure 5—

source data 1 for raw data from the replicate experiments). The trends seen were reproducibly

observed between separate biological replicates of the light condition time courses.

RNA sequencing
Twenty-five mL of cyanobacterial culture with OD750 ¼ 0:3 were collected on cellulose acetate filters

and flash frozen prior to storage at �80 �C. Cells were resuspended in RNAprotect Bacteria reagent

(Qiagen), and 1/3 of the cells were resuspended in a buffer containing 15 mg/mL lysozyme, 10 mM

Tris-Cl, 1 mM EDTA pH 8, and 50 mM NaCl and incubated for 10 min. RNA was purified from the

lysed cells using the Qiagen RNeasy Mini Kit. Ribosomal RNA was depleted from 1.25 �g of purified

RNA using the Ribo-Zero bacteria rRNA removal kit (Illumina). Strand-specific RNAseq libraries were

prepared from the depleted RNA using the Truseq Stranded mRNA Sample prep kit (Illumina) and

sequenced on an Illumina HiSeq 2500 machine by the Bauer Core Facility at the Harvard FAS Center

for Systems Biology. Sequencing reads were aligned to the S. elongatus genome using Bowtie

(RRID:SCR_005476) as described previously (Markson et al., 2013), with samples averaging 8 million

aligned reads. We quantified expression of a gene by counting the number of aligned sequencing

reads corresponding to the appropriate strand between the start and stop of each gene (gene info

obtained from Cyanobase, RRID:SCR_007615), and normalized these values between all samples

from the light conditions in this work using median normalization, followed by dividing the median

normalized read count value by the length of the open reading frame of the gene, as described pre-

viously (Anders and Huber, 2010; Markson et al., 2013). The time course and RNA sequencing was

repeated twice for two biological replicates (data available in Figure 2—source data 1 and Fig-

ure 3—source data 1). The data plotted in this work are from replicate 2, and the trends observed

are reproduced in both biological replicates.

Definition of circadian genes
We defined a subset of previously identified circadian genes on which to focus our analysis. We

began with a list of 856 previously described reproducibly circadian genes (Markson et al., 2013;

Vijayan et al., 2009). We next required that these genes have a Cosiner amplitude (Kucho et al.,

2005) of greater that 0.15 under Constant Light conditions (Vijayan et al., 2009). We also required

that the gene display expression of at least one read per nucleotide in at least one time point of the

RNA sequencing experiments in this study. These filters produce a list of 450 high confidence circa-

dian genes.

We noted that genes classified as dawn (class 2) and dusk (class 1) genes under Constant Light

conditions (Vijayan et al., 2009) showed maximal expression at a different time of day under our

Low Light conditions, while the relative ordering of genes by Cosiner phase (Kucho et al., 2005)

from Constant Light conditions (Vijayan et al., 2009) was preserved. As such, we redefined dawn

genes as those genes with a phase of 40� to 189� under Constant Light conditions (Vijayan et al.,

2009), and dusk genes as those with a phase of 190� to 360� and 0� to 39�, as determined by the

Cosiner algorithm (Kucho et al., 2005). These definitions produce a list of 169 high confidence

dawn genes, and 281 high confidence dusk genes. The expression of our redefined circadian genes

under Constant Light conditions is plotted in Figure 2—figure supplement 2. The list of high confi-

dence circadian genes and high confidence class assignments is available in Figure 2—source data

1 and Figure 3—source data 1.
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ChIP sequencing
One hundred and twenty mL of OD750 0.3 cyanobacterial culture were removed and crosslinked with

1% formaldehyde at 30 �C for 5 min in front of a light source. Crosslinking was quenched with 125

mM glycine. Crosslinked cells were washed twice with phosphate buffered saline, pelleted, and flash

frozen prior to storage at �80 �C.

Pellets were resuspended in 1 mL of BG-11M supplemented with 500 mM L-proline and 1 mg/mL

lysozyme and incubated at 30 �C for 1 hr to digest the cell wall. Cells were collected and resus-

pended in a Lysis buffer (50 mM HEPES pH 7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1%

sodium deoxycholate, and 1x Roche Complete EDTA-free Protease Inhibitor Cocktail) prior to shear-

ing in a Covaris E220 Adaptive Focus System (Peak Incident Power = 175; Duty Factor = 10%; Cycles

per burst = 200; Time = 160 s). The lysates were cleared via centrifugation, and concentration was

determined via the Pierce BCA Assay.

For a given pulldown, 800 �g of lysate was incubated overnight at 4 �C in 500 �L of lysis buffer

with 8 �g of anti-RpaA, anti-RpaB, or FLAG M2 mouse monoclonal antibody (Sigma-Aldrich) for

RNAP pulldowns. A mock pulldown was carried out in which equal amounts of lysate from every

time point of the time course (Shade 0, 15, 60 min, High Light 0, 15, 60 min) in a total of 800 �g was

incubated with 8 �g of rabbit Igg. Next, 35 �L of Dynabeads protein G (Thermo Fischer Scientific)

equilibrated in lysis buffer were added and the sample was incubated with mixing for 2 hr at 4 �C.

The beads were washed and DNA was eluted and purified as described previously (Markson et al.,

2013).

Sequencing libraries were prepared from the purified ChIP DNA using the NEBNext Ultra II DNA

Library Prep Kit (New England Biolabs, Ipswich, MA). Libraries were sequenced on an Illumina HiSeq

2500 instrument by the by the Bauer Core Facility at the Harvard FAS Center for Systems Biology.

We created sequencing libraries of ChIP experiments from two separate biological repeats of the

time course experiment. Reads were aligned to the S. elongatus genome using Bowtie (RRID:SCR_

005476) as described previously (Markson et al., 2013), resulting in an average of 3 million aligned

reads for replicate 1, and 5 million aligned reads for replicate 2.

ChIP-seq analysis
The aligned read data per genomic position was smoothed with a Gaussian filter (window size = 400

base pairs, standard deviation = 50). Each data set was normalized to the Mock ChIP-seq experi-

ment and peaks which were significantly enriched above the Mock were identified in each data set

using a previously described (Markson et al., 2013) custom-coded form of the Peak-seq algorithm

(Rozowsky et al., 2009). Within each replicate time course for a given protein, we compiled a list of

peaks which were enriched at least 3.5 fold over the Mock experiment at the position of highest

ChIP signal. Finally, we required that a peak be detected in both replicates for it to be considered.

This analysis generated 114 RpaA peaks, 218 RpaB peaks, and 451 RNAP peaks. To calculate enrich-

ment for a peak, we determined the ChIP signal at a given time point at the genomic position of the

highest ChIP signal detected for that peak and divided this by the value of the Mock experiment at

that position. The data plotted in this manuscript are from replicate 2, but all trends hold in replicate

1. We assigned a gene as a target of a peak if: (i) the start codon of the gene was within 500 bp of

the position of maximal ChIP signal within a peak; (ii) the peak resided upstream of the gene; (iii)

The gene was the closest gene to that peak on the same strand. Lists of RNAP, RpaA, and RpaB

peaks and gene targets are found in Figure 3—source data 2, Figure 4—source data 2, and Fig-

ure 5—source data 2, respectively.

For Figures 3G, 4C and 5C, we identified all RNAP, RpaA, or RpaB peaks with dusk gene targets

based on the above criteria, respectively. 82 dusk genes are targets of RNAP peaks, 56 dusk genes

were targets of RpaA peaks, and 42 dusk genes are targets of RpaB peaks. Then, for each peak -

dusk gene pair, we calculated the change in gene expression of the dusk gene after 60 min, and the

change in ChIP enrichment of the upstream peak over the mock pulldown (described above) after 60

min in High light, each compared to their respective values at Low light at 8 hr since dawn. We plot-

ted these data on the x- and y-axes, respectively, with orange triangles. We repeated this process,

comparing gene expression and ChIP enrichment values after 60 min in Shade compared to 8 hr

since dawn in Clear Day conditions, and plotted the data as gray circles. We calculated the correla-

tion coefficient between the change in gene expression and the change in ChIP enrichment for all
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peak-gene pairs of the relevant factor in the High Light pulse, and then calculated the same correla-

tion in Shade pulse conditions separately. We calculated the correlation coefficients comparing

changes after 15 min in either the High Light or Shade pulse conditions, and list these values in the

legends of Figure 3—figure supplement 2, Figure 4—figure supplement 2, and Figure 5—figure

supplement 2. The data used for these plots for RNAP, RpaA, and RpaB are available in Figure 3—

source data 2, Figure 4—source data 2, and Figure 5—source data 2, respectively. We plot data

from replicate 2, and the trends are reproduced in replicate 1.

For Figure 3—figure supplement 2, Figure 4—figure supplement 2, and Figure 5—figure sup-

plement 2, we took the lists of RNAP/RpaA/RpaB peaks with dusk gene targets from above. For

each peak - gene pair, we calculated the log2 fold change in ChIP enrichment of the peak and the

change in expression of the downstream gene in 15 or 60 min in the High Light pulse compared to

the value at 8 hr since dawn in Low Light conditions. We repeated these calculations for each peak-

gene pair in 15 or 60 min in Shade pulse compared to 8 hr since dawn in Clear Day conditions. We

used hierarchical clustering on the collective ChIP and gene expression data from both conditions to

determine the plotting order of the peak-gene pairs in the heat maps, and then plotted the log2

change in ChIP enrichment and dusk target gene expression in the two conditions in separate heat

maps. The change in enrichment of a peak and the change in expression of its target dusk gene are

aligned horizontally in their respective heat maps. The leftmost column of each heat map is white,

because this column compares the time 0 data to itself and thus has a log2 value of 0. One RpaA

peak resides upstream of two dusk genes, and two RpaB peaks reside upstream of two dusk genes

each, and thus the listed number of RpaA and RpaB peaks is smaller than the number of RpaA and

RpaB target dusk genes. The data used for these plots for RNAP, RpaA, and RpaB are available in

Figure 3—source data 2, Figure 4—source data 2, and Figure 5—source data 2, respectively. We

plot data from replicate 2, and the trends are reproduced in replicate 1.

For Figures 4D and 5D we identified all dusk genes that were targets of both RpaA and RNAP

(for Figure 4D) or both RpaB and RNAP (for Figure 5D). 33 dusk genes are targets of both RpaA

and RNAP peaks, and 27 dusk genes are targets of both RpaB and RNAP. Then, for each pair of

RpaA/B - RNAP peaks, we calculated the change in ChIP enrichment of the RpaA/B peak after 60

min, and the change in ChIP enrichment of the RNAP peak upstream of the same dusk gene over

the mock pulldown (described above) after 60 min in High light, each compared to their respective

values at Low light at 8 hr since dawn. We plotted these data on the x- and y-axes, respectively, with

orange triangles. We repeated this process, comparing RpaA/B ChIP enrichment and RNAP ChIP

enrichment values after 60 min in Shade compared to 8 hr since dawn in Clear Day conditions, and

plotted the data as gray circles. We calculated the correlation coefficient between the change in

RpaA/B ChIP enrichment and the change in RNAP ChIP enrichment for all RpaA/B - RNAP peak pairs

of the relevant factor in the High Light pulse, and then calculated the same correlation in Shade

pulse conditions separately. We calculated the correlation coefficients comparing changes after 15

min in either the High Light or Shade pulse conditions, and list these values in the legends of Fig-

ure 4—figure supplement 3, and Figure 5—figure supplement 3. The RNAP, RpaA, and RpaB

peaks associated with each dusk gene are listed in Figure 2—source data 1 and Figure 3—source

data 1, and the enrichment values for these peaks are listed in Figure 3—source data 2, Figure 4—

source data 2, and Figure 5—source data 2, respectively. The data plotted here are from replicate

2, and the trends are reproduced in replicate 1.

For Figure 4—figure supplement 3 and Figure 5—figure supplement 3, we took the lists of

RpaA/RpaB - RNAP peaks pairs upstream of the same dusk gene from above. For each RpaA/B -

RNAP peak, we calculated the log2 fold change in ChIP enrichment of the RpaA/B peak and the

change in ChIP enrichment of the RNAP peak upstream of the same dusk gene in 15 or 60 min in

the High Light pulse compared to the value at 8 hr since dawn in Low Light conditions. We repeated

these calculations for each peak-gene pair in 15 or 60 min in Shade pulse compared to 8 hr since

dawn in Clear Day conditions. We used hierarchical clustering on the collective RpaA/B and RNAP

ChIP data from both conditions to determine the plotting order of the RpaA/RpaB - RNAP peak

pairs in the heat maps, and then plotted the log2 change in RpaA/B ChIP enrichment and RNAP

ChIP enrichment in the two conditions in separate heat maps. The change in enrichment of an RpaA/

B peak and the change in enrichment of the RNAP peak upstream of the same dusk gene are

aligned horizontally in their respective heat maps. The leftmost column of each heat map is white,

because this column compares the time 0 data to itself and thus has a log2 value of 0. The RNAP,
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RpaA, and RpaB peaks associated with each dusk gene are listed in Figure 2—source data 1 and

Figure 3—source data 1, and the enrichment values for these peaks are listed in Figure 3—source

data 2, Figure 4—source data 2, and Figure 5—source data 2, respectively. The data plotted here

are from replicate 2, and the trends are reproduced in replicate 1.

For Figure 4—figure supplement 4D–F, Figure 6D, and Figure 6—figure supplement 1D–F,

we identified all RpaA, RpaB, and RNAP peaks that targeted the specified gene, as described above.

Then, we calculated the log2 change in RpaA (dashed red line), RpaB (dotted blue line), RNAP

(dashed green line) ChIP enrichment or expression of the downstream gene (solid black lines) in the

High Light pulse compared to 8 hr since dawn in the Low Light condition, and plotted these values

with downward triangles. We repeated these calculations, comparing enrichment and gene expres-

sion in the Shade pulse to the data at 8 hr since dawn in the Clear Day condition, and plotted these

values with circles. The RNAP, RpaA, and RpaB peaks associated with each dusk gene are listed in

Figure 2—source data 1 and Figure 3—source data 1, and the enrichment values for these peaks

are listed in Figure 3—source data 2, Figure 4—source data 2, and Figure 5—source data 2,

respectively. The data plotted here are from replicate 2, and the trends are reproduced in replicate

1.

K-means clustering
We calculated normalized expression values of high confidence dusk genes under our dynamic light

conditions, as well as in previously described RpaA perturbations in Constant Light (Markson et al.,

2013). We separately normalized the data from set of dynamic light conditions (Low Light, Clear

Day, High Light pulse, Shade pulse) and the Constant Light data (Wildtype, OX-D53E cells — rpaA-,

kaiBC-, Ptrc::rpaA(D53E) — without inducer, OX-D53E with inducer, [Markson et al., 2013]) using

z-score normalization, and used this data to separate the dusk genes into eight groups with k-means

clustering in MATLAB (RRID:SCR_001622) using Pearson correlation as the distance metric. We

focused our analysis on the three largest clusters which accounted for most of the dusk genes (187/

281 genes). The lists of genes belonging the three major clusters are found in Figure 7—source

data 1.

Mathematical modeling
We observed very regular and systematic changes in the expression of large clusters of dusk genes

in natural light conditions (Figures 2, 3 and 7) that correlated with RpaA=B recruitment of RNAP

(Figures 4–6). Thus, our goal was to determine whether simple phenomenological models similar to

that inspired by Alon (Alon, 2006) could reproduce these observations and offer some intuition into

how they might arise. While most of the dusk genes underwent systematic changes, a small group of

~ 20 genes including kaiBC was relatively insensitive to changes in light intensity (Figure 4—figure

supplement 4), and we do not model those genes’ expression dynamics.

Our model treats the activation or repression of the expression of a dusk gene cluster by

RpaA~P;RpaB ~P, or another cluster using effective Hill kinetics. We coarse-grained each of the

three groups of circadian dusk genes (the Early, Middle, and Late clusters in Figure 7) to a single

effective gene with the average dynamics of the group (Figure 7, solid lines). We modeled the

dynamics of a gene cluster X using a simple kinetic model of an AND gate at a promoter

(Mangan and Alon, 2003),

dX=dt¼ BX þbX f ðRpaA~P;KAX ;HAXÞf ðRpaB~P;KBX ;HBXÞf ðY;KYX ;HYXÞ�aXX (1)

where BX is the basal transcription rate; f is a function of the interaction of X with

RpaA~P;RpaA~P, or another cluster Y; bX is the max transcription rate; and aX is the decay/dilution

rate. Activating interactions were treated using a simple Hill function,

f ðu;K;HÞ ¼ ðu=KÞH=ð1þðu=KÞHÞ; (2)

where u is the concentration of the active transcription factor, H is the Hill coefficient of interaction,

and K is the coefficient of activation. Bacteria can easily tune the interactions between proteins and

between transcription factors and promoters to adjust H and K for different clusters (Buchler et al.,

2003). RpaA~P and RpaB~P, were treated as activators, consistent with the results from Figures 4–

6. Repressive interactions between clusters were treated using
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f ðu;K;HÞ ¼ 1=ð1þðu=KÞHÞ; (3)

where K is now the coefficient of repression. In Equation 1, RpaA~P;RpaB~P, and Y were mea-

sured experimentally; the remainder of the parameters were left free.

We determined the sufficiency of a model to describe the data by fitting the parameters using

the range of values shown in Table 1. Time propagation of the differential Equation 1 was per-

formed using the ode45 solver in MATLAB (RRID:SCR_001622), with Xðt ¼ 0Þ set as the observed

expression level at the beginning of the simulated time period. Model fitting was performed in MAT-

LAB using the non-linear least squares solver lsqnonlin.

The Akaike Information Criterion (AIC) and the Chi-squared test are typically used to quantify

whether a model with more parameters fits the data better than another with fewer parameters sim-

ply because it is more complex. However, both approaches are for statistical models in which little

to no information is used to construct the model and are not strictly applicable to the model con-

structed here, which is based on our understanding of transcription. If we do use AIC to compare

the models, the feedback models are predicted to be most probable.

In our model, H and K are effective constants that represent the overall ability of

RpaA~P;RpaB ~P, or another gene cluster Y to affect gene expression. These constants include

potential indirect activation through the sigma factors, which is may be why joint activation by

RpaA~P and RpaB~P describe the dynamics of the Middle cluster reasonably well. However, circa-

dian gating of the Early and Late dusk genes requires further interactions that cannot be described

by Hill functions of measured RpaA ~P and RpaB~P levels. Clearly there may be more complex net-

works at play than those we have considered here, and much more needs to be done to fully model

gene expression in S. elongatus. Here we have constructed a first model to suggest simple principles

underlying the interaction of circadian and light regulation of dusk genes and offer directions for fur-

ther exploration.
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