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Abstract
Neurocritical care (NCC) is not only generally guided by principles of general intensive care, but also directed by specific goals and
methods. This review summarizes the common pulmonary diseases and pathophysiology affecting NCC patients and the progress
made in strategies of respiratory support in NCC. This review highlights the possible interactions and pathways that have been
revealed between neurological injuries and respiratory diseases, including the catecholamine pathway, systemic inflammatory
reactions, adrenergic hypersensitivity, and dopaminergic signaling. Pulmonary complications of neurocritical patients include
pneumonia, neurological pulmonary edema, and respiratory distress. Specific aspects of respiratorymanagement include prioritizing
the protection of the brain, and the goal of respiratory management is to avoid inappropriate blood gas composition levels and
intracranial hypertension. Compared with the traditional mode of protectivemechanical ventilationwith low tidal volume (Vt), high
positiveend-expiratorypressure (PEEP),andrecruitmentmaneuvers, lowPEEPmightyieldapotentialbenefit inclosingandprotecting
the lung tissue.Multimodal neuromonitoring can ensure the safety of respiratorymaneuvers in clinical and scientific practice. Future
studies are required to develop guidelines for respiratory management in NCC.
Keywords: Neurocritical care; Pneumonia; Respiratory management; Multimodel neuromonitoring; Tracheostomy; Mechanical
ventilation; Positive end-expiratory pressure
Introduction

Patients in neurocritical care (NCC) compose one of the
groups of patients in need of the most intensive care. NCC
is not only generally guided by principles used in the
general intensive care unit (ICU), but also directed by
specific goals and methods for three reasons. First,
neurocritical illnesses tend to be severe or emergent.
These conditions necessitate the early phase of decision-
making regarding the methods implemented for respira-
tory support. In addition, the incidence of respiratory
disorders in the NCC unit is significantly higher than that
in the general ICU.[1] Respiratory disturbance, however,
has been shown to worsen the outcomes in NCC patients
by causing conditions such as delirium and ICU-acquired
weakness.[2] Respiratory support, including intubation,
ventilation, and sedative choices, directly affects brain
perfusion.[3] The goal of respiratory support is different in
NCC patients from that in other patients, as the brain or
lungs are prioritized.[4] Strategies for respiratory support
and management, including artificial airways, the prone
position, protective mechanical ventilation (MV), and
drugs for airway management, have been summarized in
previous studies.[5] Controversies still exist concerning the
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proper timing of a tracheostomy and levels of positive end-
expiratory pressure (PEEP) in neurocritical patients.
Although these topics have been widely studied in the
general ICU, detailed guidelines on respiratory manage-
ment in the NCC unit are not available.

We searched the electronic database PubMed and
analyzed all the relevant literature. Based on the previous
knowledge, this review will describe the research progress
made in brain and lung interactions, pulmonary compli-
cations, and respiratory strategies in neurocritical patients
and emphasize the importance and specifics of respiratory
management in NCC.
Pathophysiology

Several theories regarding lung vulnerability after brain
damage, including the “blast” theory, secondary inflam-
matory reaction, “double-hit” model, and pulmonary
venule adrenergic hypersensitivity, have been studied in
recent years. Inappropriate ventilation and respiratory
diseases, however, can lead to secondary brain damage
due to vagal signaling and high sensitivity of the brain to
CO2 and O2 levels.
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Brain to lung pathway

Blast theory is characterized by a transient increase in
catecholamine after an acute increase in intracranial
pressure (ICP).[6,7] Catecholamine release has been
reported to be linked to neurogenic pulmonary edema
(NPE) in patients with traumatic brain injury (TBI).[8] It
was first defined by Theodore and Robin[7] in 1976 as a
catecholamine storm that can cause vasoconstriction of
pulmonary venules, followed by a transient increase in
intravascular pressure and change in the permeability of
the capillary alveolar membrane, which eventually leads
to protein leaking into the mesenchyme of the lung.

The emergence of the concept called pulmonary venule
adrenergic hypersensitivity has challenged the blast
theory. The latter includes the coexistence of high
hydrostatic pressure and pulmonary endothelium injury.
However, in some cases, after brain injury, despite the
occurrence of NPE with direct pulmonary endothelial
damage, no changes in systemic pressure have been
found.[9,10] In pulmonary venule adrenergic hypersensi-
tivity theory, NPE may result in pulmonary vasoconstric-
tion and endothelial integrity changes following massive
sympathetic discharge.[10]

After severe TBI, cerebral and systemic inflammatory
reactions are triggered, and systemic inflammation is
thought to play a major role in the development of
pulmonary edema and alveolar damage.[6,11] The double-
hit model was introduced in 2009. The first hit
summarizes the effects of the catecholamine storm and
systemic inflammatory reactions.[12] After the first hit, the
lung is vulnerable to the second hit, which will eventually
cause damage to the lung, such as a high tidal volume (Vt),
inadequate PEEP during ventilation, and other further
injurious events.[12] According to the double-hit model,
pulmonary edema is the result of both the first hit and the
second hit after brain injury.[6] Another theory is related to
the endocrine system.[13,14] When the hypothalamic-
pituitary-adrenal (HPA) axis is activated by TBI or
surgical stressors, it releases corticotrophin-releasing
hormones and arginine vasopressin.[13] These two hor-
mones eventually stimulate the release of corticosteroids
through the HPA axis. Corticosteroids mediate the anti-
inflammatory response after trauma and are responsible
for the hemodynamic response, which maintains blood
pressure. In neurocritical patients, the persistence of an
anti-inflammatory response can lead to secondary adrenal
insufficiency, followed by systemic inflammatory response
syndrome. This secondary adrenal insufficiency has been
detected in 25% of neurocritical patients (∼50% of
patients after TBI or subarachnoid hemorrhage
[SAH]).[1,15] Tan et al[16] demonstrated that intracranial
hypertension and surgical stress can increase the apoptosis
rate of the hypothalamus and pituitary gland in rats and
rabbits.

Despite the humoral regulation pathways, TBI can also
increase the risk for nosocomial pneumonia following
neural circuit deficits, especially in the brain stem,
including altered mental status, dysphagia, impaired gag
and cough reflexes, and inability to clear secretions.[17]
780
Lung to brain pathway

Lung injuries and inappropriate ventilation can result in
secondary brain damage in neurocritical patients, aggra-
vating the sensitivity of the brain to acute injuries. The
mechanisms of secondary brain injuries are closely related
to neuroinflammation, hypoxemia, the vagal pathway,
and the reactivity of cerebral blood vessels to oxygen and
carbon dioxide concentrations.

In a previous study, lung injuries aggravated the sensitivity
of the brain to acute injuries.[10] Indeed, lung injuries have
been shown to promote the release of proinflammatory
cytokines, which can spread into the systemic circulation,
cause neuronal apoptosis and disrupt neural circuits.[18,19]

Moreover, because hypoxemia and inflammation cause
endothelial dysfunction, breakdown of the blood-brain
barrier, and subsequent extravasation of erythrocytes,
cerebral microbleeds will occur after lung injury, predom-
inantly involving the brainstem, cerebellum, and juxta-
cortical white matter.[18,20]

González-López et al[21] reported that MV stimulates type
2 dopamine receptor and inactivates the prosurvival Akt/
glycogen synthase kinase 3 beta pathway, which may lead
to neural cell apoptosis. These authors also found that
pulmonary transient receptor potential vanilloid type-4
mechanoreceptors and purinergic receptors participate in
the mechanisms of ventilator-associated brain damage.[22]

Arterial carbon dioxide and oxygen levels are both related
to cerebral blood flow (CBF) and ICP.[23-25] Howarth[26]

demonstrated a novel role for astrocytes in mediating
vasodilation in CBF responses to hypercapnia in vivo.
They also demonstrated that ICP increases following the
elevation of CBF. On the other hand, hyperventilation,
which sometimes results in secondary hypocapnia, can
result in cranial vasoconstriction and a decrease in CBF,
and it can eventually lead to cerebral ischemia.[27] Oxygen
levels in the blood and cerebral tissue are also crucial in
neurocritical patients. McBryde et al[28] found that both
carotid chemoreceptors and astrocytes can sense hypoxia
and ischemia and then determine the level of sympathetic
activity and arterial pressure to optimize CBF. Thus, a
decrease in arterial oxygen pressure (PaO2) during MV is
related to an increase in CBF and ICP.[29,30]
Pulmonary Complications in NCC

Systemic changes secondary to neurocritical injuries can
induce impairments in pulmonary function. The con-
ditions and disorders that often occur in these patients
include not only pneumonia, adult respiratory distress
syndrome (ARDS), and NPE, but also several abnormal
respiratory patterns and sleep-disordered breathing.[31]

Lung injuries triggered by neurocritical damage can have
significant effects on outcomes, such as the selection of
treatment plans, disease prognosis, and mortality.
Pneumonia

Pneumonia is commonly seen in stroke patients and is
associated with poor outcomes. The most frequently
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cultured pathogens in NCC patients are gram-negative
bacilli and gram-positive cocci, with sputum being the
most commonly used sample for cultivation and detec-
tion.[32] Risk factors for pneumonia in stroke patients who
have been identified in systematic reviews include the
following: older age, male, MV, nasogastric tube,
dysphagia, diabetes, pre-existing respiratory conditions,
atrial fibrillation, and smoking.[33,34] Among the risk
factors, ventilation and dysphagia have been studied more
widely in recent years regarding the feasibility of an
intervention. For example, the timing of tracheostomy in
TBI patients[35] and the optimal ventilation strategies of
NCC patients have been discussed.[25]

Ventilator-associated pneumonia (VAP) is commonly seen
in NCC patients with MV. The incidence of VAP has been
shown to be 21% to 60% in patients with severe TBI,[36]

20% to 48% in those with SAH, and approximately 28%
in those with stroke.[1] The pathogen that is detected in
most cases is S. aureus, followed by H. influenzae, S.
pneumoniae, E. coli, and other types of pathogens that are
found in some patients.[36-38] Apart from the risk factors
mentioned above, other factors associated with the
treatment process are worth noting. Esnault et al[36]

confirmed that early-onset VAP is associated with
therapeutic hypothermia, serious thoracic trauma, and
gastric aspiration before intubation. Early enteral feeding,
oral care, and prophylactic antibiotics have been reported
to protect NCC patients from VAP.[38,39]

Another type of pneumonia associated with a neuro-
critical state is aspiration pneumonia. Dysphagia, which
has been reported in 37% to 45% of stroke patients,[40] is
associated with pneumonia and poor outcomes in these
patients.[41] Feng et al[42] investigated the mortality rate
associated with aspiration pneumonia in stroke patients,
and the authors found that dysphagia is a critical factor in
the development of aspiration pneumonia. Ding et al[43]

studied dysphagia, and it has been considered a common
factor in different models for predicting poststroke
pneumonia.
Respiratory distress and pulmonary edema

ARDS is an alveolar condition characterized by the
formation of the hyaline membrane and dysfunction of
gas exchange. ARDS has a high mortality rate, and the
incidence of ARDS that has been reported in different
journals ranges from 19% to 35%.[1,44] Mrozek et al[1]

summarized the incidence of ARDS to be 20% to 25% in
patients with severe TBI, 20% to 38% in those with
SAH,[45] and approximately 4% in those with stroke.[46]

The risk factors for developingARDS in patientswith brain
injury include severe primary neurological disease, hemo-
dynamic instability, a history of chronic diseases, and other
general risk factors.[1,46] ARDSpatients in theNCCunit are
generally treated with protective MV (pMV) and require
restrictive bodyfluidmanagement.[24]This year, a study ina
neurological ICU stated that assisted orthostatism can be a
safe auxiliary treatment for severeARDS, as it improved the
PaO2/FiO2 in 95.6% of the patients without causing
significant hemodynamic repercussions.[47]NPE is a type of
protein-rich edema of the lung.
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It is diagnosed with bilateral infiltrates and PaO2/FiO2 of
< 200mmHg in patients with severe injury of the central
nervous system (CNS) and increased ICP when left atrial
hypertension and other common causes of ARDS are not
present. With prior participation of the neuropathway, it
differs from other types of pulmonary edema and has a
higher incidence in neurocritical patients. NPE secondary
to neurocritical injuries has an estimated incidence
ranging between 2% and 50%, and it occurs more often
in patients with severe TBI than in those with SAH.[1,48]

Based on the mechanism of NPE related to sympathetic
nervous activity, Chen et al[49] examined heart function in
204 patients with SAH and found that heart rate
variability can predict the occurrence of NPE.
Respiratory Support in NCC

Respiratory management in NCC follows the general rules
of intensive care, but specific aspects are different from
general ICU because of the higher incidence of respiratory
disorders in theNCC unit.[27,50,51] Patients being treated in
the NCC unit are in various states of unconsciousness and
have different types of respiratory drive disorders. Thus,
patients in the NCC unit are often ventilated because of
unconsciousness and potential respiratory disorders or
airway obstructions, not primary respiratory failure.

In addition, because various NCC patients have special
needs and ventilator targets, the implementation of
neuroprotective strategies, including a tailored ventilatory
approach on patients with ABI, might effectively improve
survival and functional outcome in these patients.[27,52]

For example, choking or esophageal reflux should be
avoided for patients with cerebral hemorrhage or
unruptured aneurysms.[51] Protective ventilation with
low tidal volumes (6–8mL/kg of ideal body weight) could
be safely applied to TBI patients.[53]

The goal of respiratory support in NCC patients is to
avoid fatal secondary damage, including cerebral ische-
mia, hemorrhage, functional impairment, and even
death,[54-56] due to factors such as inappropriate oxygen
or carbon dioxide levels, aspiration, and airway obstruc-
tion, which differs from the goal in patients in the general
ICU, which is to alleviate primary respiratory dis-
eases.[57,58] The reasonable ranges of oxygen and carbon
dioxide levels may differ from general ICU patients.
We collected the results of different studies concerning
respiratory protection maneuvers in NCC patients, and
Figure 1 is a summary of the possible potential risks.

Both hypoxemia and hyperoxia should be avoided because
the neurological outcomes can worsen. Hypoxemia is
related to cerebral ischemia and functional impairment,
while hyperoxia is related to excessive free radicals and
oxidative stress, which impair cerebral autoregulation and
cause damage to the lung and brain tissue.[56,59] An
association between hypoxia and an increase in mortality
in NCC patients has been reported,[56,60] while Fallenius
et al[29] reported no correlation with long-termmortality in
patients with spontaneous intracranial hemorrhage. Both
hypercapnia and hypocapnia have a conspicuous effect on
ICP.Althoughhypercapniamaybepermissive in thegeneral
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Figure 1: Potential risks of respiratory protective strategies. CPT: Chest physiotherapy; PaCO2: Arterial carbon dioxide pressure; PaO2: Arterial oxygen pressure; PEEP: Positive end-
expiratory pressure; pMV: Protective mechanical ventilation; Vt: Tidal volume.
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ICU, it is often prohibitive in NCC patients because of the
ability to elevate ICP. However, some researchers have
stated that controlled hypercapnia benefits patients with
SAH and vasospasm by increasing CBF and tissue
oxygenation while monitoring ICP.[58,61] Hypocapnia
occurs in approximately 92%of aneurysmal SAH patients,
mostly when they breathe spontaneously with minimal
ventilation support.[27,58] In addition, hypocapnia is
associated with a poor functional outcome in these
patients.[58] Low arterial carbon dioxide levels result in a
reduction in CBF and vasoconstriction, followed by brain
tissue hypoxia.[23] The effects of hypercapnia and hypo-
capnia necessitate a moderate level of arterial carbon
dioxide. Expert consensus for neurosurgical critical care in
Chinasuggestsmaintainingarterial carbondioxidepressure
(PaCO2) at 35 to 45 mmHg, SpO2 > 95%, and PaO2
> 80mmHg.[51]

Intubation and tracheostomy

Intubation and tracheostomy are ways of creating artificial
airways. In theNCCunit, intubation is indicated in patients
withunconsciousnessorGlasgowcomascore (GCS)< 8,an
782
abnormal blood gas composition including hypoxemia and
hypercapnia, or respiratory and airway disorders, and it is
indicated for treatments such as MV and the control of the
ICP or seizures.[3] Tracheostomy is indicated in NCC
patients who need long-term (>2 weeks) artificial airway
and respiratory support, GCS < 8, and dysphagia. To
reduce discomfort and sedation during intubation, better
oral and tracheobronchial care that does not hinder the
ability to communicate should be provided.[5,62]

The maneuvers of the intubation process and prehospital
intubationhavebeendiscussed in different studies becauseof
the potential risks of intubation in NCC patients, including
an increase in the ICP resulting from laryngoscopy stimuli,
hypoxemiaduringtheoperation,andaspiration,especially in
difficult airways.[63,64] The LEMONapproach and amenda-
tory rating scales have been recommended in several studies
for the identification of difficult airways.[3,65] These tools
may be beneficial in selecting the appropriate technique
(awake fiberoptic or rapid sequence induction), tools (video
or direct laryngoscopy), and operator (anesthesiologist,
attending, or trainee) during the intubation process.[65] In

http://www.cmj.org


Chinese Medical Journal 2022;135(7) www.cmj.org
recent years, researchers have recommended rapid sequence
intubation (RSI) with sedation during the operation process
to reduce the stimuli in laryngoscopy.[3,63] Although a
retrospective study reported that trauma severity influenced
mortality more than intubation in prehospital admissions, a
large cohort-matched study noted that prehospital intuba-
tion in patients with TBI was associated with higher in-
hospital mortality.[54,66]

Recent studies on tracheostomy in NCC patients mainly
focus on the optimal timing and ways of performing a
tracheostomy. The optimal timing is still being debated,
considering theadvantages anddisadvantagesofperforming
a tracheostomy earlier or later in time. Early-stage
tracheostomy, defined as onewith a cutoff of 7 to 8 days,[67]

is associated with a reduction in the need for sedation, the
incidence of nosocomial infection, and the time of MV and
ICU stay comparedwith prolonged intubation, and it is cost
effective. [67-71] Recently, some studies also found that early
tracheostomy after severe brain injury is associated with a
better neurological outcome, reduced in-hospital time, and
reduced risk for VAP.[35,72] However, whether early
tracheostomy affects the long-term mortality rate is
controversial.[67,68,71] Jibaja et al[57] expressed the view that
conducting one primary tracheostomy is advisable in
patients at risk (with severe cervical spine injuries,
infratentorial severe injuries, repeated failed extubation,
prolongedMV, and poor neurological states). The results of
tracheostomy performed later in timemay exclude a certain
percentage of those patients who would have undergone an
early-stage tracheostomy, but postponed tracheostomymay
be accompanied by a higher incidence of complications.[68]

Progress has beenmade in improving theway tracheostomy
is performed to prevent intracranial hypertension by
avoiding hyperextension of the neck and shortening the
duration of the procedure.[5,73] Different types of tracheos-
tomy equipment may have similar outcomes in general
patients, but percutaneous/puncture-dilated tracheostomy
has been recommended in NCCpatients as a safe and quick
treatment, as it has the advantages of reducing the incidence
of bleeding, tracheal stenosis, and infections.[73,74]
Airway management

Airway management before and after intubation or
tracheostomy includes sputum drainage and drugs for
RSI and spasmolysis. Sputum is a common cause of airway
obstruction, and it produces an artificial airway airflow
sound or whistle sound. Sputum drainage is crucial in
patients with acute neurological impairment. Thus,
optimal methods of achieving airway humidification
and clearing in NCC patients are essential and worth
discussing. Drugs for airway spasmolysis include seda-
tives, analgesics, muscle relaxants, and nitric oxide (NO).

Some doctors have compared different liquids for airway
humidification in the lungs in patients with TBI, and they
found that 0.9% sodium chloride (NaCl) with ambroxol is
an ideal airway humidification liquid.[75] It was found to
have anti-inflammatory and antioxidant properties, as it
promoted the synthesis and secretion of pulmonary
surfactants and inhibited the release of inflammatory
factors and cytokines.
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The inflated cuff of the endotracheal tube is designed to
prevent microaspiration; thus, the cuff pressure should be
at a moderate level at 20 to 30 cm of water, as air leakage
or aspiration occurs when it is too low, and tracheal or
subglottic stenosis occurs when it is too high.[5,76,77] In
NCC patients, the cuff pressure may decline with
extubation and the transition to a prone position.[78] In
addition, the high incidence of pneumonia further
emphasized the necessity of determining and monitoring
cuff pressure. However, the palpation method performed
with the operator’s fingers was suggested to be inadequate
to determine the cuff pressure;[77] thus, guidelines and
equipment are required.

Chest physiotherapy (CPT) can mobilize respiratory
secretions and increase the amount of tracheobronchial
mucus that is cleared from the respiratory tree. Although
CPT can increase ICP,[79] it has been indicated to be safe in
NCC patients.[80-82] Tomar et al[81] evaluated the safety of
different CPT techniques in patients with TBI, and they
found that an automated or mechanical method of
performing CPT can be executed without a transient rise
in ICP, while the manual method might jeopardize
cerebral circulatory pathophysiology. CPT is safe in
patients with ICP monitoring in situ.[83]

Adequate sedation in neurocritical patients is paramount.
Sedation can ease fear and anxiety, reduce ICP and
cerebral oxygen consumption, facilitate tolerance of the
endotracheal tube and MV, and reduce sympathetic
nervous activity.[3] Rajajee et al[3] summarized the variety
of sedatives available and the common sedatives used in
NCC patients. Alpha-2 agonists such as dexmedetomidine
have been shown to have no effect on the ICP and
hemodynamic variability when they are included in
standard sedation.[84] However, in several studies, they
have been reported to reduce the duration of MV and ICU
stays more than traditional sedatives such as propofol and
remifentanil.[85,86]

Although analgesics such as fentanyl were found to be
ineffective in treating episodic intracranial hypertension,
analgesia is recommended before sedation in some
studies.[87] Because the analgesic effect of most sedatives
is unsatisfactory and sedation without pain control is a
risk factor for delirium,[3] analgesia with the use of short-
acting opioids is recommended. Additionally, patients in a
coma with adequate pain control and airway construction
do not need sedatives.

Muscle relaxants and NO also help restore respiratory
function in neurocritical patients. Muscle relaxants can
correct hypoxemia and prevent MV-associated lung
injury.[5] Sugammadex has been used in some cases to
accelerate weaning from the ventilator after prolonged
MV.[88] NO inhalation is immunomodulatory and
pathogen static, and it assists in the reversal of pulmonary
hypertension.[4] Terpolilli et al[89] reported that in mice,
NO inhalation can reduce secondary brain damage after
TBI. Guo et al[90] discussed the influence of NO on
cerebral autoregulation and noted that NO may assist in
the regulation of CBF, which can be considered a new
therapeutic target.
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Parameters of MV

Regarding MV, compared with patients without neuro-
logical conditions, patients with neurological conditions
have shown a longer ventilation duration, higher rates of
tracheostomy, and less extracerebral organ dysfunc-
tion.[91] Considering the effect of standard MV on lung
tissue damage, clinicians and researchers promote pMV in
patients with respiratory disorders and intensive care. To
open the lung and keep it open in the NCC unit, patients
are recommended toundergopMVwitha smallVt, elevated
PEEP, and recruitment maneuvers (RMs).[1] However, in
recent years, controversies have been discussed in several
studies on the effect of high PEEP and low PEEP.[92,93]

Little progress has been made in clarifying the role
and safety of high-frequency ventilation (respiratory rate
> 150breathsperminute,Vt 1–5mL/kg[94]) inpatientswith
neurological diseases.

PEEP is a method of keeping the alveoli open at the end of
expiration. Although inducing alveolar hyperinflation has
been shown to increase PaCO2 and ICP in a previous
study,[95] moderate PEEP (5–15 cm H2O) is beneficial for
mechanically ventilated patients with acceptable hemody-
namic changes; it has been shown to be beneficial for
improving oxygenation, preventing and recruiting alveo-
lar collapse, and reducing the risk of atelectasis in patients
with low Vt.

[27,96] In clinical practice, in the management
of neurocritical patients with ARDS, PEEP has few
negative effects on the intracranial condition and can
even benefit brain tissue oxygenation.[50,97,98] A study
conducted by Boone et al[97] demonstrated that the
fluctuations of the ICP and cerebral perfusion pressure
(CPP) in patients with severe lung injury are more sensitive
to PEEP than those in the other patients, but the
application of PEEP does not appear to have a clinical
effect overall. However, recent studies have suggested that
instead of keeping the lungs open, the goal should be to
close down the lungs and keep them closed to protect the
lung tissue when low PEEP (�3 cm H2O) is applied in
ARDS patients, but data on this topic are not available in
neurocritical patients.[92,93]

pMV with low Vt and moderate PEEP is safe for patients
after brain injury, but its positive effects on the outcome
must be better delineated.[50,69] A small Vt is related to
hypercapnia in patients with pMV. It may be permissive in
the general ICU, but it deserves vigilance in the NCC
unit.[12] Vt is positively associated with the incidence of
ARDS and negatively associated with PaCO2 and ICP in a
dose-response relationship.[99] Thus, a low Vt decreases
the incidence of lung injuries but is accompanied by
PaCO2 and ICP increases, which may affect most NCC
patients. However, a randomized clinical trial involv-
ing 961 patients without ARDS in the ICU found that a
low Vt was not more effective than an intermediate Vt.

[92]

Avoiding hypercapnia necessitates the monitoring of the
cerebral hemodynamic index and carbon dioxide level,
which is part of the multimodal neuro-monitoring
process.[4,27] Intra-operative pMV with low tidal volumes
(6–8mL/kg) has been shown to reduce the incidence of
post-operative pulmonary complications, while intraop-
erative high PEEP might negatively affect hemodynamics
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in nonobese patients.[100] Intra-operative pMV will be
studied in a single-center, parallel-group randomized
controlled trial to determine its efficiency and safety in
neurosurgical patients undergoing a craniotomy.[101]

Recruitment maneuvers (RMs) for collapsed pulmonary
alveoli can open the lung and improve oxygenation and
respiratory system compliance in ARDS patients.[102,103]

However, the management of ICP hinders reaeration by
lung units in neurocritical patients undergoing RMs. RMs
may interfere with venous blood return and increase
intrathoracic pressure, which increases ICP and decreases
cerebral arterial blood pressure.[104,105] Although contin-
uous positive airway pressure (CPAP) is currently themost
common RM, clinical experiments comparing different
RMs in NCC patients have been conducted by several
researchers, who reported that maneuvers with a lower
airway pressure and longer duration are better than
traditional CPAP.[27,106] RMs are safe with the strict
monitoring of systemic and cerebral parameters.

Time of weaning and extubation

The extubation failure rate of NCC patients has been
reported to be 17.2% to 38.0% in different studies, and
ventilation discontinuation accounted for 50% of the
deaths in neurovascular patients.[50,57,107] Strategies of
weaning from MV and extubation have been developed
from studies and protocols in patients without neuro-
critical conditions.[57] Patients with brain injuries were
rarely described in the latest guidelines for weaning or
extubation strategies.[50] Waiting for full neurological
recovery is not mandatory. ProlongedMV in patients with
subdural hematoma (>4 days) is associated with pulmo-
nary complications and a longer hospital stay.[108]

Factors associated with the success of MV and extubation
withdrawalshavebeen identifiedand summarized in several
studies.[50,57,107] Anderson et al[109] found that following
four commands, closing the eyes, showing two fingers,
wiggling the toes, and coughing, were protective factors for
extubation success. A multicentric cohort study of patients
with severe brain injury identified four features associated
withextubationsuccess:anageof< 40years,visualpursuit,
swallowing attempts, and aGCSof> 10.[107] Jibaja et al[57]

expressed the view that not answering verbal commands or
a lowGCS does not indicate a delay or contraindication for
MV or extubation withdrawal.

Studies about extubation failure in NCC patients have
mentioned predictors, such as airway dysfunctions
(pneumonia, atelectasis, thick secretion, no gag reflex,
weak cough, and deglutition), neurological statuses (a
GCS of < 7–9, inability to follow commands), and the
duration of MV.[110-113] Several studies have emphasized
the predictive role of fundamental state (age, fluid balance)
and upper-airway functions irrespective of neurological
status.[112,114] However, Mayer et al[113] stated that
neurological status is more important than pulmonary
status in deciding whether to perform extubation. Cohn
et al[111] retrospectively reviewed the data in pediatric
NCCpatients and found that aweak cough reflexmight be
a risk factor for failed extubation.
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Algorithms and criteria before extubation have been
reported by researchers.[115,116] The spontaneous breathing
trial (SBT) is a consensus approach used to predict
extubationsuccess.Mullagurietal[115] studiedanalgorithm
in108NCCpatientsusingzeropressure support anda zero-
PEEPSBT, followedby5-cmH2Opressure support anda5-
cm H2O PEEP SBT, in patients who failed the zero-PEEP
SBT, and the researchers found that most NCC patients
who were otherwise ready to be extubated could safely be
extubated after passing a zero-PEEP SBT. Tanwar et al[116]

suggested that the airway care score can be used as a
criterion for early extubation success.

Extracorporeal gas exchange

Extracorporeal decarboxylation is the normalization of the
serum carbon dioxide level in vitro through the canalization
of arteries and veins. Blood flow occurs in a pumpless
arteriovenous system tocreatepressure gradients for the two
blood vessels. As the blood flows across the device, it
normalizes the carbon dioxide level, resulting in an
improvement in the blood pH and a decrease in the
occurrence of ventilator-induced lung injuries.[117] This
approach isapplied inpatientswithnormaloxygenationand
severehypercapnia.[118]Theuseof this approach is restricted
because of the potential intracranial hemorrhagic risk with
the application of a large dose of heparin and the lack of
evidence regarding improved outcomes in patients.[118,119]

Extracorporeal membrane oxygenation (ECMO) is more
effective than extracorporeal decarboxylation in patients
with both hypercapnia and hypoxemia. It can reduce the
aggressiveness of MV and reduce the mortality rate in
patients with indications for ECMO.[5] Two types of
ECMO exist: venovenous ECMO (vv-ECMO), where
blood is taken from the inferior vena cava and returned to
the superior vena cava, and veno-arterial ECMO, where
blood is returned to the aorta. Starting ECMO > 7 days
after the initiation of MV yields no benefits.[120] The need
for relatively high doses of heparin increases the risk of
these complications in NCC patients.[121] To date, only a
few cases of the use of ECMO in NCC patients have been
reported; because intracranial hemorrhage complications
can occur after prolonged ECMO or vv-ECMO, ECMO is
considered a rescue for severe hypoxemia respiratory
failure in trauma patients.[120-124] The use of special
biomaterials in modern ECMO without initial anti-
coagulation has been considered a valid option for
patients with a high risk of bleeding.[5,122]

Positioning and mobilization

Different positions and postures are suggested for NCC
patients because of their pulmonary disorders and altered
ICP. The proclive or reverse Trendelenburg position is a
position where the level of the patient’s head and chest is
higher than the feet, which decreases the ICP and end-tidal
carbon dioxide partial pressure.[125] It is commonly used in
patientswith intracranialhypertension.Thesupineposition
is the position where a patient lies down horizontally and
facesupward,andthisposition iscommonlyused inpatients
without intracranial hypertension or difficulty in gas
exchange. The prone position is the position where a
patient lies down and faces downward; it facilitates venous
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return, as the heart and lungs are at the lowest level of the
body. Because it improves pulmonary drainage and
oxygenation, the prone position is commonly used in
patientswith severeARDS,but todate, it hasbeenusedonly
in a few cases in the NCC unit. In patients without head
injury or a risk of intracranial hypertension, the prone
position is associated with a moderate elevation of the ICP
and an increase in oxygenation.[126,127] A retrospective
descriptive study suggested that the prone position is safe in
patients with severe ARDS, even in patients at risk of
intracranial hypertension.[128] ICP monitoring in the prone
position is required inpatientswhoareat riskof intracranial
hypertension or have a history of neurosurgery.[126-128]

Early mobilization is not widely deployed in NCC
patients, but recently, it has been reported to be safe,
feasible, and potentially beneficial.[129,130] A multicenter
study conducted in 10 patients with acute brain injury
found that early mobilization appears to favor clinical and
functional recovery.[130] Bahouth et al[129] proposed a
formalized Neurocritical Care Unit mobility algorithm for
adult patients with primary intracerebral hemorrhage.
The study suggested that within the first week after a
hemorrhagic stroke, a large percentage of patients can be
mobilized without additional adverse events, and the
implementation of a standardized algorithm is feasible
and reduces the incidence of pulmonary embolism.[131]

Gas exchange in neuro-monitoring

An appropriate blood gas composition is crucial for
neurocritical patients to avoid secondary brain damage.
Pandin et al[132] systemically introduced the concept of
multimodel neuromonitoring. Compared with other
means, multimodel neuromonitoring can detect early
neurological deterioration, consider individual patho-
physiological variations, and allow clinicians to make
individualized management decisions.[133] The process of
monitoring brain and spinal cord metabolism and
function can be summarized by five aspects: ICP and
CPP, which represent the driving pressure of brain
perfusion; trans-cranial Doppler, which shows the local
and regional CBF; brain tissue oxygen pressure (PbtO2),
which reflects the CBF and oxygen diffusion; the result of
microdialysis, which is associated with CNS metabolism;
and electroencephalogram monitoring, which reflects
CNS function. Multimodel neuromonitoring is useful
for monitoring gas exchange in brain tissues.[27,134]

Assessing pulmonary function and testing the blood gas
composition are important parts of a gas exchange
evaluation. Ventilator parameters, such as PEEP and Vt,
and gas composition parameters, such as PaO2 and
PaCO2, are indices that directly represent the gas exchange
level in the lung. Corradi et al[104] combined the use of
lung ultrasound and brain ultrasound in NCC patients
with demanding MV needs in ventilation management,
with the aim of tailoring the balance in intracranial
hypertension-directed and lung-protective therapy.[104]

Limitations

This article has several limitations. The first is that we
primarily searcheda singleEnglishdatabase.Consequently,
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our search terms possibly did not capture all aspects of the
topic. However, we minimized the likelihood of missed
articlesbyapplyingabroadsearchstrategy.Second, someof
the included articles were case reports, method introduc-
tions, or small sample studies. Thus, the interpretation of
some results may be limited.
Conclusion

Systemic changes secondary to neurocritical injuries can
induce impairments in pulmonary function.Although it has
been discussed for many years, the pathomechanisms
remain poorly defined. With the development of brain
science, brain-lung crosstalk is becoming a research
hotspot. Respiratory management in NCC follows the
general rules of intensive care, but in specific aspects, it is
differentdue to the higher incidenceof respiratory disorders
and the prioritization of protecting the brain inNCC.Thus,
strategies to protect the lungs and the brain are recom-
mended for NCC patients. However, the optimal strategies
for the management ofNCC patients remain controversial,
and further guidelines and criteria are urgently needed.
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