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Abstract: The current burst of device concepts based on nanoscale domain-control in magnetically
and electrically ordered systems motivates us to review the recent development in the design of
domain engineered oxide heterostructures. The improved ability to design and control advanced
ferroic domain architectures came hand in hand with major advances in investigation capacity of
nanoscale ferroic states. The new avenues offered by prototypical multiferroic materials, in which
electric and magnetic orders coexist, are expanding beyond the canonical low-energy-consuming
electrical control of a net magnetization. Domain pattern inversion, for instance, holds promises of
increased functionalities. In this review, we first describe the recent development in the creation of
controlled ferroelectric and multiferroic domain architectures in thin films and multilayers. We then
present techniques for probing the domain state with a particular focus on non-invasive tools allowing
the determination of buried ferroic states. Finally, we discuss the switching events and their domain
analysis, providing critical insight into the evolution of device concepts involving multiferroic thin
films and heterostructures.

Keywords: multiferroic; magnetoelectric; ferroelectrics; domain inversion; ferroelectric vortices;
domain imprint

1. Introduction

Multiferroic materials with coexisting electric and magnetic order are technologically
attractive [1–4]. In ferroic and multiferroic materials, an area with uniformly oriented order parameter
is defined as a domain. A domain wall separates two adjacent domains with different order parameter
orientations. In the absence of coupling between the order parameters, the independent access to either
the electric or magnetic domain states suggests higher storage density for memory architectures [5,6].
When ferroic states are coupled, correlations of domain pattern are expected and the magnetoelectric
coupling can, for instance, enable low-energy-consuming electric-field control of the magnetic order,
which is of great interest for ultra-efficient spintronic applications [7,8].

Domain state and domain wall engineering are essential for applications of ferroic thin films since
the switching mechanism is driven by nucleation and motion of domain walls. In thin films hosting
a reversible electric polarization, the interplay between epitaxial strain and electrostatics renders
the control of the domain architecture possible using the lattice and charge degrees of freedom [9].
Optimal device operation puts rigorous requirements on the domain states. Ferroelectric tunnel
junctions, in which the tunneling current depends on the polarization state, require the stabilization
of the single-domain state for maximized resistance difference [10,11]. Other device paradigms
benefit from domain formation, which increases the dielectric response [12–15], enhances tunneling
across tunnel junctions [16] or allows domain pattern inversion [17]. Furthermore, domain walls can
have functionalities different from the bulk of domains [18,19] such as enhanced ferroelectricity [20],
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magnetism [21], multiferroicity [22] or magnetoelectric coupling [23], increased conductivity [24,25],
and photovoltaic efficiency [26].

The increased control of complex domain architecture using charged surface states at oxide
interfaces, defects in stoichiometry or domain imprint across interfaces, as described in this review,
leads to new developments for buried domain states in oxide heterostructures. Here, we place emphasis
on the recent advances in domain design and manipulation in ferroelectric and multiferroic thin films
and heterostructures. Therefore, the first part of this review is devoted to ferroic domain design in thin
layers and superlattices. In the following sections, we review the progress and challenges in accessing
the domain state and the switching events in multiferroics, especially in buried layers.

2. Controlled Ferroelectric and Multiferroic Domain Architectures in Thin Films

2.1. Domain State and Domain Wall Engineering in Ferroelectric Thin Films

The domain state in ferroelectric thin films is set by a combination of factors such as strain, chemistry
and charge screening at the interfaces, and layer thickness. Domain engineering in ferroelectric thin
films using epitaxial strain has been reviewed in great detail, see [1,27,28] for references. Here, we
shed light on recent development in ferroelectric domain engineering using electrostatic boundary
conditions and chemistry at oxide interfaces [29–33].

The onset of net ferroelectric polarization triggers the accumulation of bound surface charges
in ferroelectric materials. This charge accumulation, in return, creates a depolarizing field oriented
oppositely to the ferroelectric polarization. The depolarizing field plays a decisive role in determining
the domain state and can, for instance, induce domain splitting [34,35] or, in extreme cases, suppress
the net ferroelectric polarization [18,36,37].

By acting on the screening of ferroelectric bound charges, the depolarizing field strength can
be modulated. The electrostatic environment can be engineered by interfacing ferroelectric layers
with metallic/dielectric layers or by changing the environment, i.e., adsorbates and surrounding gas
atmosphere. This represents alternative routes towards control of polarization state and domain
formation in ferroelectric thin films.

In the case of the prototypical ferroelectric system with uniaxial out-of-plane polarization
such as ultrathin Pb(Zr0.2Ti0.8)O3 (PZT), charges accumulate mainly at top and bottom interfaces.
The introduction of a metallic buffer provides sufficient charge screening to stabilize a single-domain
state. However, intentionally introducing a large depolarizing field can benefit the ferroelectric
properties as demonstrated by Liu et al. [38]. Inserting a dielectric SrTiO3 (STO) layer in a PZT/STO/PZT
heterostructure resulted in faster nucleation speed attributed to preexisting domains induced by
depolarizing field in the remanent state and reduced leakage current. Here, the ultrathin STO layer gets
partially polarized by the surrounding ferroelectric matrix, even in the presence of domains. Resonance
tracking-piezoresponse force microscopy phase images and switching spectroscopy piezoresponse
force microscopy (SSPFM) loops in Figure 1a–f compare the domain state and switching behavior in
heterostructures without STO, with three unit cells (uc) and 10 uc thick STO layers. Inserting a 3 uc
thick STO layer results in domain formation and a drastic decrease of built-in voltage (shift of the
ferroelectric hysteresis towards negative/positive voltages). When the thickness of the dielectric is
further increased to 10 uc, the effect vanishes as the heterostructure starts behaving as two decoupled
PZT layers.

In BiFeO3 (BFO) thin films, a monodomain state [39], periodically striped domains [40–42] or arrays
of flux-closure domain pattern [43] can be achieved by modifying the electrostatic boundary conditions.
Monodomain states and configurations with 71◦ domain walls experience large depolarizing fields due
to a single out-of-plane polarization component and can only be stabilized on conducting buffer layers
providing sufficient charge screening. In the absence of a metallic buffer, the BFO polarization state tends
to evolve into a configuration with 109◦ domain walls for which the out-of-plane component and the
corresponding surface charges cancel out [42,44]. Ferroelectric flux-closure domains self-assemble near
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the interface of the BFO film and an insulating TbScO3 (TSO) substrate. Another path opening the range
of control over the domain state in ferroic thin films consists of introducing defects in stoichiometry
during the growth process [45,46]. Recently, Li et al. revealed that defects in stoichiometry can influence
the domain architecture of thin films [47]. Temporarily changing the growth temperature during
the deposition using oxide molecular beam epitaxy of multiferroic BFO thin film on TSO substrate
results in an Fe2O3 defect layer which affects the domain structure. At the negatively charged Fe2O3

defect layer, the initial 109◦ domain wall configuration changes to a 71◦ domain wall configuration.
Figure 1g–h shows the resulting change of domain pattern and the induced formation of charged
domain wall, confirmed by cross-sectional conducting atomic force microscopy (C-AFM), see Figure 1i.
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Figure 1. Resonance tracking-piezoresponse force microscopy phase images and switching spectroscopy
piezoresponse force microscopy (SSPFM) loops compare the domain state and switching behavior
without STO (a,d), with 3 uc (b,e) and with 10 uc (c,f) thick STO spacer in the PZT/STO/PZT
heterostructure. Reprinted with permission from [38], copyright Wiley-VCH Verlag GmbH and
Co. KGaA, 2015. (g–i) Cross-sectional PFM phase image (g), a sketch of the domain state (h) and c-AFM
image showing a change of domain pattern from 109◦ to 71◦ domain wall type by adding defects
during the synthesis of BFO on TSO (i). Reprinted with permission from [47], copyright Wiley-VCH
Verlag GmbH and Co. KGaA, 2015.

2.2. Engineering Multiferroic Domains in Thin Films

In a multiferroic system with coexisting ferroelectric and (anti-)ferromagnetic orders [48], domains
can be defined for each order parameter and they may or may not be coupled. Hence, the resulting
domain architecture gains in complexity but also in functionality. Materials with coupled ferroic
domains, i.e., multiferroic domains, include type I multiferroics (e.g., BFO [49], YMnO3 [50,51]) where
the order parameters establish independently, exhibiting different ordering temperatures, and type II
multiferroics where both ferroic order share a common origin (e.g., orthorhombic TbMnO3 [52,53],
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TbMn2O5 [54], MnWO4 [55]). For reviews on the general topic of multiferroic and magnetoelectric
materials, see, for example, [3,56,57].

In thin-film heterostructures, the study of multiferroic domains is largely focused on BFO-based
systems. The seminal work from Wang at al. [49] demonstrated the coexistence of ferroelectric
and weak ferromagnetic state in compressively strained epitaxial thin films at room temperature.
In domain-engineered BFO-based heterostructures, this led to the full net magnetization reversal via
magnetoelectric coupling with either in-plane or out-of-plane electric field [58,59]. Sando et al. [60]
further observed a control of the spin cycloid propagation direction in the antiferromagnetic state
by various epitaxial strain states (Figure 2a), promising for magnonics [61] and spintronics with
antiferromagnets [62]. With the progress in thin film epitaxial design, new multiferroic materials
have been realized, beyond the realm of the BFO prototypical perovskite structure by nanoscale
engineering of additional order parameters through strain and epitaxy [63]. Such systems are to be
distinguished from so-called composite or artificial multiferroics where coupling typically appears
at the interfaces between two separate ferroic materials guiding their individual domain formation
(see section “Domain pattern transfer in artificial multiferroic heterostructures”).

In ferroelectric-LuFeO3/ferrimagnetic-LuFe2O4 superlattices, the coveted coexistence and coupling
of ferroelectric and magnetic order at room-temperature were achieved by epitaxial stabilization [63].
Multiferroicity could be demonstrated by propagating the improper geometrically driven polarization
order parameter from LuFeO3 into the ferrimagnetic LuFe2O4 in short-period superlattices.
In atomically engineered multilayers, the cooperative interplay of the ferroelectric and ferrimagnetic
order was shown and an increased magnetic transition temperature in LuFe2O4 was measured once
inserted into the ferroelectric-LuFeO3/ferrimagnetic-LuFe2O4 superlattice, see Figure 2b–d.
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Figure 2. (a) The energy of three magnetic states in BFO thin films (cycloid with propagation direction
along <110>, along <110>, and collinear antiferromagnetic order close to [001]) relative to the energy of
collinear antiferromagnetic order with antiferromagnetic vector along in-plane [110]. Tuning the in-plane
strain results in stability of different states. Reprinted with permission from [60], copyright Springer
Nature, 2013. (b,c) Magnetization vs. temperature for a series of (LuFeO3)m/(LuFe2O4)1 superlattices
and the magnetization loops as a function of the magnetic field for the (LuFeO3)9/(LuFe2O4)1 superlattice.
(d) The ferromagnetic Curie temperature, the total moment per iron cation in LuFe2O4 at 50 K assuming
the moment of LuFeO3 remains constant and average polarization from high-angle annular dark-field
imaging in scanning transmission electron microscopy for superlattice layering plotted as a function of
composition. Regions I and II show data for the (LuFeO3)1/(LuFe2O4)n and (LuFeO3)m/(LuFe2O4)1

series, respectively. Reprinted with permission from [63], copyright Springer Nature, 2016.
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2.3. Domain Pattern Transfer in Artificial Multiferroic Heterostructures

The lack of single-phase magnetoelectric multiferroics, exhibiting simultaneously strong and
coupled magnetic and ferroelectric orders at technologically relevant temperatures, is driving
the increased effort into the development of so-called artificial multiferroic heterostructures.
In artificial multiferroic heterostructures, these orders are combined by assembling different ferroic
materials [1,64,65]. This can be achieved by designing ferromagnetic columnar nanostructures in a
ferroelectric matrix [66–69] or in bilayer heterostructures. We will here focus on the latter case, where
domain investigations have been reported.

The interface between ferroelectric and ferromagnetic thin films is particularly compelling-aside
from ordinary interface effects, like those arising from strain and broken inversion symmetry, interfacing
two ferroic orders can enable magnetoelectric coupling and the imprint of ferroelectric domain
architecture into the adjacent ferromagnetic domain state. In artificial multiferroic heterostructures,
the application of an electric field can result in a net change in the magnetic order of the ferromagnetic
component. There are three distinct ways to achieve magnetoelectric coupling [64]: Via (i) strain,
(ii) direct (spin) exchange and (iii) charge co-upling. The electrical control of magnetism has been
reviewed in great detail previously, here we restrict ourselves to the visualization of domain imprint
across the ferroelectric/ferromagnetic interface.

(i) In strain-coupled artificial multiferroics, a piezoelectric and a magnetostrictive layer are
elastically coupled once the magnetoelastic anisotropy in the system becomes stronger than the
magnetocrystalline anisotropy [70]. This leads to controllable magnetoelastic anisotropy due
to propagation of epitaxial strain across the interface. One instructive example investigated by
Chopdekar et al. is CoFe2O4 (CFO)–BaTiO3 (BTO)– composite [71]. The strain-induced variation
in the ferromagnetic state was imaged via x-ray linear dichroism (XLD) (Figure 3a,b) and related to
corresponding in-plane and out-of-plane BTO ferroelectric domains. X-ray magnetic circular dichroism
(XMCD) was used to spatially resolve the domain pattern in ferromagnetic CFO (Figure 3c–e) imprinted
by ferroelectric BTO– domains. This experiment shows that different in-plane (a1, a2) and out-of-plane
(c) ferroelectric domains have a one-to-one correlation to magnetic domains with varying magnetic
uniaxial anisotropy. Similar effects were observed in other ferromagnets: CoFe [72], CoFeB [73,74],
Fe [75], La1-xSrxMnO–3 (LSMO) [76], Ni [77], and NiFe [78]. A key requirement for these observations
is strong elastic pinning of magnetic domain walls onto ferroelectric domain walls [79].

(ii) In exchange-coupled multiferroic composites, the interaction occurs between a ferromagnet and
a single-phase multiferroic magnetoelectric with uncompensated antiferromagnetic order. The electric
field acts on both ferroelectric polarization and the direction of antiferromagnetic spin ordering in the
multiferroic. This allows a direct exchange effect between the antiferromagnetic and ferromagnetic
spin orderings. Although the physics of exchange coupling is different from that of strain coupling,
both produce lateral modulations of magnetic anisotropy leading to domain transfer. Trassin et al. [41]
determined the interfacial coupling with spatial resolution in the prototypical multiferroic Co90Fe10

(CoFe)/BFO heterostructure by imaging magnetization using scanning electron microscopy with
polarization analysis (SEMPA) and underlying polarization with back-scattered electrons (BSE)
(Figure 3f,g). A one-to-one coupling between the BFO ferroelectric domain and the weak ferromagnetic
moment results in a domain transfer into the adjacent exchanged-coupled ferromagnetic layer CoFe
grown on top of the BFO layer. Induced uniaxial magnetic anisotropy is rationalized by an interfacial
exchange coupling between the CoFe moments and the canted antiferromagnetic moment in BFO.
Similar exchange coupling was observed for other ferromagnets, such as LSMO [80], NiFe [81], Co [82].
Although BFO is undoubtedly the most promising multiferroic, operational at room temperature, other
single-phase multiferroics like YMnO3 [83] and LuMnO3 [84] can also induce exchange coupling.

(iii) Charge-coupled artificial multiferroics make use of the ferroelectric field effect: Bound charges
at the ferroelectric interface are screened by the ferromagnetic layer, leading to either accumulation
(hole-doped) or depletion (electron-doped) states in the ferromagnet when the ferroelectric polarization
is pointing away from or towards the ferromagnet, respectively. If the ferromagnet is a strongly
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correlated system, this can result in drastic alterations of magnetization and even domain imprint.
This mechanism is different from the two mentioned previously, because changes in magnetization are
limited to interfaces, up to a screening length [85]. However, full domain transfer could be achieved
in the ultrathin regime. The effect has been most widely studied in LSMO [86–88] interfaced with
ferroelectrics, such as BTO and PZT. It has also been predicted for ferromagnetic metals [89,90] and
SrRuO3 (SRO) [91].Materials 2018, 11, x FOR PEER REVIEW  6 of 23 
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Figure 3. (a) Angular dependence of linear dichroism in CFO at Fe L2 edge for a1-a2 type BTO domains
at 295 K, with XLD domains in (b) measured at θ = 180◦ and arrow indicating the in-plane [110]
substrate direction. (c–e) X-ray magnetic circular dichroism (XMCD) domains in 7 µm × 11 µm area
for a1 (stripe with red box) or a2 (stripe with a black circle) domain variants for various angles θ
with the x-ray incidence direction shown with small arrows, showing uniaxial in-plane magnetic
anisotropy. Adapted from reference. Reprinted with permission from [71], copyright the American
Physical Society, 2012. (f) Scanning electron microscopy with polarization analysis (SEMPA) image
of CoFe magnetization (direction indicated by the color wheel) and (g) simultaneously acquired BSE
image of underlying ferroelectric domain structure. Reprinted with permission from [41], copyright
the American Physical Society, 2013.

3. Accessing the Domain State in Ferroic Multilayers

Domain investigation is a critical element in the understanding of complex oxide multifunctional
layers [92] since the order-parameter coupling, and interfacial properties express themselves in the
ferroic domain architecture. In thin films, the reduced domain dimension to the nanoscale adds to
the difficulty of independently probing multiple ferroic states coexisting in a single phase. Despite
tremendous advances in understanding ferroelectrics, fundamental aspects of their behavior once
inserted in multilayers or superlattices remain unclear. The main reason is the intricate nature of the
interactions between polar and non-polar layers and the difficulty to access buried ferroelectric states
in heterostructures.

By design, the ferroelectric component in artificial multiferroic heterostructures is covered by
a conducting ferromagnetic layer. Non-crystalline, oxidation-sensitive ferromagnetic layers need to
be grown on top of a ferroelectric layer, after the high-temperature ferroelectric material deposition
process. In the case of crystalline ferromagnetic layers for strain-induced interfacial coupling, the
ferroelectric film plays the role of the substrate to influence the ferromagnetic lattice and therefore lies
underneath the metallic layer. This buried nature results in a loss of information about the ferroelectric
domain architecture when using conventional techniques such as PFM. The magnetic domain state of
the top layer can, however, be accessed directly with scanning probe microscopy, see Figure 4a,b [93,94]
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or techniques such as magneto-optical Kerr effect (MOKE) or photoemission electron microscopy
(PEEM) [95,96].Materials 2018, 11, x FOR PEER REVIEW  7 of 23 
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Figure 4. (a) Magnetoelectric characterization of the Pt/CoFe/BFO/SRO//DSO heterostructure.
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buried FE BFO domain structure. In the inset, the multilayer structure is depicted. (b) MFM performed
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with the same orientation as in the BFO film not covered by CoFe. Reprinted with permission from [93],
copyright the American Physical Society, 2018.

3.1. Probing Buried Polarization States (Invasive)

3.1.1. Scanning Transmission Electron Microscopy (STEM)

Advanced microscopy techniques such as STEM are becoming standard for highly resolved
polarization mapping within heterostructure cross-sections and in the planar view [97]. The atomic
displacements corresponding to the ferroelectric polarization can be mapped out for domains extending
along the zone axis directions. This powerful tool allowed the first experimental observation of flux
closure domain patterns [98], Néel type ferroelectric domain wall [99], ferroelectric vortices [100]
and skyrmions [101] in PbTiO3/STO (PTO/STO) superlattices (Figure 5a,b), but remains a destructive
analysis. Further progress in accessing the domain dynamics using differential phase contrast [102,103]
and displacement mapping of switching at the atomic resolution are anticipated.

3.1.2. Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS)

Another approach towards the determination of buried polar states consists of probing the surface
chemistry of ferroelectric films. Polarization switching events have mostly been analyzed with the
assumption of unchanged stoichiometry. Ievlev et al. [104] revealed the chemical state evolution after
a ferroelectric switching event in BFO thin films using TOF-SIMS. The SIMS technique sputters off

ions from the film and therefore addresses the depth profile of the cation composition. The local
application of an electric field is accompanied by a redistribution of the base cation (Bi+ and Fe+, but
also adsorbates). This phenomenon concerns the entire switched volume. The chemical profiles of
various elements are mapped after a local switching event in Figure 5c,d. The change in the contrast of
cations population correlates with the poled volume within the ferroelectric film.

With the increasing knowledge of the impact of surface chemistry on switching properties of
ferroelectric materials, these works [94,105] further suggest surface chemistry as a tool to probe polar
states in complex oxide thin films in device designs and in superlattice architectures.

3.1.3. Piezoresponse Force Microscopy (PFM)

Nanoscale domain patterns in ferroelectric thin films are most commonly imaged by PFM [106].
However, PFM is surface-sensitive and lacks the resolution in-depth, i.e., access to the volume
distribution of nanosized domains and domain walls. Towards the investigation of nanoscale domains
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within the films thickness, Steffes and coworkers [107] have been developing a scanning probe technique
using a combination of PFM and nanomaching. In tomographic domain analysis (Figure 5e), the
surface material is progressively removed via mechanical friction with the scanning tip, exposing
successive sections of the domain state down to the substrate. This technique, however, puts some strict
restrictions on the operation conditions since mechanical stress can drastically impact the ferroelectric
state in thin layers [108].
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Figure 5. (a) Cross-sectional high-resolution STEM image with an overlay of the polar displacement
vectors for a PTO10/STO10 superlattice on DyScO3 (DSO). A magnified image of a single
vortex–antivortex pair, the curl of the polar displacement and the polarization vectors from a phase-field
simulation of the same superlattice. Reprinted with permission from [100], copyright Springer Nature,
2016. (b) Planar-view dark-field STEM imaging shows the widespread occurrence of circular features
in a (PTO16/STO16)8 superlattice with an inset of the FFT of the image, corresponding to the reciprocal
space studies. Below are the images of a single skyrmion bubble with the mapped polarization vectors.
Reprinted with permission from [101], copyright Springer Nature, 2019. (c) Top surface topography and
secondary Bi+ ions distribution. (d) XZ depth profiles of secondary ion concentrations. Reprinted with
permission from [104], copyright 2016 American Chemical Society. (e) Tomographic reconstruction of
ferroelectricity from a BFO thin-film heterostructure. Reprinted with permission from [107], copyright
2019 National Academy of Sciences.

3.2. Non-Invasive Probe of Buried Ferroelectric Domains

3.2.1. X-Ray Diffraction

X-ray diffraction of thin films is an effective non-invasive probe of ferroelectric polarization via
measurement of structural parameters. In single layers, tetragonality and thus indirectly polarization
can be accessed through measurements of the out-of-plane and in-plane lattice parameters. However,
detection in the ultrathin regime is limited by the reduced sample volume. The superlattice architecture
is, therefore, used to reproduce ultrathin film behavior while providing increased active volume.
The ferroelectric/dielectric superlattices became the model system for such analysis [109,110]. It revealed
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the unprecedented capabilities of x-ray diffraction applied to thin films with periodic domain
architectures [111–115]. Furthermore, nanofocused x-ray diffraction imaging [116–118] is an emerging
approach to locally probe domain and domain wall architectures in thin films.

Hadjimichael et al. [119] recently demonstrated the potential of diffuse scattering for nanoscale
investigation of domain and domain wall architecture in ferroelectric PTO/STO superlattices. Local
reciprocal space maps (RSM) were measured around the out-of-plane (002) Bragg PTO reflection.
The additional periodicity emerging from nanoscale domain ordering can be directly addressed
by analyzing satellite peaks on the diffuse scattering ring. By selecting the corresponding x-ray
angles and scanning the sample area, the domain structure can be spatially mapped out. Figure 6a
shows the results demonstrating the impact of a topographical defect on the superlattice domain
distribution. This establishes graphoepitaxy [120], i.e., influencing epitaxial growth using substrate
patterning, as a route for domain engineering in thin film heterostructures. Resonant x-ray diffraction
experiments performed on multiferroic GaFeO3 thin films [121] further demonstrated the efficiency of
diffraction-based techniques for analysis of cationic distribution [122] and polarization in oxide thin
films [123].
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Figure 6. (a) In-plane local reciprocal space maps (RSM) around the out-of-plane (002) Bragg reflection
with satellite peaks on a diffuse scattering ring corresponding to the stripe domain periodicity in the
PTO/STO superlattice. Spatially scanning the area at the x-ray angles of the satellite peaks in the (100),
(110) and (010) direction around the defect shows the domain type dependence on the defect shape,
i.e., the domains lie parallel to the lines of the defect. Reprinted with permission from [119]. (b) SHG
images of voltage-poled 180◦ domain walls in PZT films grown on SRO buffered (DSO) show the total
in-plane polarization, the polarization parallel to the (c) [001] DSO direction and (d) [110] DSO direction.
Reprinted with permission from [99], copyright Wiley-VCH Verlag GmbH and Co. KGaA, 2016.

3.2.2. Optical Second Harmonic Generation (SHG)

Optical SHG is a non-destructive, non-invasive probing technique for polarization in ultrathin
ferroelectric films. The SHG technique is sensitive to inversion symmetry breaking and, therefore. ideal
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for probing ferroelectricity. Previously devoted to bulk ferroic materials investigation, SHG has become
an essential tool for the examination of ferroelectric domains in thin films. Its potential as a ferroic
state probe has been the topic of several reviews dealing with bulk and thin film materials [92,124,125].

Despite the lack of spatial resolution (optical resolution limit), a net polarization can be optically
detected in domain-engineered films, exhibiting either a single-domain state or a domain architecture
leading to a net polarization. The polarization analysis using SHG is not affected by increasing leakage
currents in the low thickness range, which prevent the determination of intrinsic ferroelectric behavior
using the conventional ferroelectric testing approach. The SHG investigation, therefore, enables the
determination at the ultrathin limit of ferroelectricity.

Recently, a specific non-linear optical signature of tilted 180◦ ferroelectric domain walls
corresponding to a mixed Ising–Néel domain-wall type was shown for the first time
(Figure 6b–d) [99,126]. This observation, confirmed by STEM imaging, challenges the expectation
of Ising-like 180◦ ferroelectric domain walls in ferroelectric thin films. Furthermore, the
exceptional capability of SHG to probe the ferroelectric domain architecture within the volume
was demonstrated [127]. This is critical for the understanding of domain wall motion during switching
events [128].

3.3. Probing Magnetic Domain Architectures (Non-Invasive)

3.3.1. Magnetic Force Microscopy (MFM)

Magnetic domain pattern investigation at the nanoscale is nowadays enabled by the development
of magnetic force microscopy (MFM) operating under magnetic fields and cryogenic temperatures.
The developments in low-temperature scanning probe microscopy led to major improvements in
measurement sensitivity [129–131]. In MFM, a nanosized magnetized probe tip responds to magnetic
stray fields emerging from magnetic samples. However, most of the multiferroic systems exhibit
an antiferromagnetic order, having no net magnetic moment and therefore no stray fields. In some
cases, the Dzyaloshinskii–Moriya interaction (DMI) results in a symmetry-allowed spin canting and,
therefore, the appearance of a weak ferromagnetic moment which can be picked up by MFM [52,57,132].
In the multiferroic hexagonal rare-earth ferrites (h-RFeO3), the weak ferromagnetic behavior has been
directly observed using MFM at 50 K, see Figure 7a,b [133]. In this work, the ability to probe small
canted moments down to 0.002 µB/fu was demonstrated.

3.3.2. Single Spin Magnetometry

The single-spin magnetometer technique is currently pushing the minimum detectable magnetic
moment to even lower values (a few femtotesla). It is based on a point-like impurity nitrogen-vacancy
(NV) defect in diamond [134–138] mounted on a scanning tip, which provides probing with excellent
spatial resolution [139]. This scanning-probe technique was used to spatially resolve the local magnetic
order in multiferroic antiferromagnetic BFO thin films (Figure 7c,d) [129]. A periodic modulation
in the magnetic response corresponding to a spin cycloid was measured, and a correlation with the
ferroelectric domain architecture obtained by PFM was demonstrated in the magnetoelectric system.

3.3.3. Optical SHG

In some cases, SHG is sensitive to the reduction of symmetry through the magnetic ordering of
spins. In a seminal demonstration of this concept, antiferromagnetic domains were imaged in Cr2O3

magnetoelectric crystal using optical SHG [140]. More recently, SHG has been used to identify the
antiferromagnetic contribution of the SHG dependence on incident light polarization and to probe
sub-micron sized antiferromagnetic domains in BFO thin films (Figure 7e) [141]. Furthermore, this
optical tool can be used for ultrafast dynamics investigations such as the recent example of tracking
motion of antiferromagnetic order parameter in YMnO3 crystals [142].



Materials 2019, 12, 3108 11 of 23

Materials 2018, 11, x FOR PEER REVIEW  11 of 23 

 

The single-spin magnetometer technique is currently pushing the minimum detectable magnetic 363 
moment to even lower values (a few femtotesla). It is based on a point-like impurity nitrogen-vacancy 364 
(NV) defect in diamond [134–138] mounted on a scanning tip, which provides probing with excellent 365 
spatial resolution [139]. This scanning-probe technique was used to spatially resolve the local 366 
magnetic order in multiferroic antiferromagnetic BFO thin films (Figure 7c,d) [129]. A periodic 367 
modulation in the magnetic response corresponding to a spin cycloid was measured, and a 368 
correlation with the ferroelectric domain architecture obtained by PFM was demonstrated in the 369 
magnetoelectric system. 370 

3.3.3. Optical SHG 371 
In some cases, SHG is sensitive to the reduction of symmetry through the magnetic ordering of 372 

spins. In a seminal demonstration of this concept, antiferromagnetic domains were imaged in Cr2O3 373 
magnetoelectric crystal using optical SHG [140]. More recently, SHG has been used to identify the 374 
antiferromagnetic contribution of the SHG dependence on incident light polarization and to probe 375 
sub-micron sized antiferromagnetic domains in BFO thin films (Figure 7e) [141]. Furthermore, this 376 
optical tool can be used for ultrafast dynamics investigations such as the recent example of tracking 377 
motion of antiferromagnetic order parameter in YMnO3 crystals [142]. 378 

 379 

Figure 7. (a,b) Topographic, and MFM image of the h-LuFeO3 film at 50 K after zero-field cooling. 380 
Reprinted with permission from [133], copyright the American Physical Society, 2017. (c) The 381 
electronic spin of a single NV defect placed at the apex of a diamond scanning-probe tip is used as an 382 
atom-sized magnetic field sensor. (d) Top panel, photoluminescence scan of the diamond scanning-383 
probe showing the bright emission from a single NV defect. Bottom panel, spectrum recorded while 384 
applying a bias field along the NV axis. Magnetic field image of the BFO film, the black dashed lines 385 
are attributed to ferroelectric domain walls leading to abrupt rotations of the cycloidal propagation 386 
vector. Reprinted with permission from [129], copyright Springer Nature, 2017. (e) Polar plots of the 387 
SHG dependence on the incident light polarization direction (with vertical analysis) with fits of the 388 
SHG data, composed of the time-invariant (ferroelectric) part (grey areas) and the time-noninvariant 389 
(antiferromagnetic) part (white areas). Reconstructed image of the antiferromagnetic texture in BFO 390 
sample, color scale representing the asymmetry of the SHG polar plots. Reprinted with permission 391 
from [141], copyright Springer Nature, 2019. 392 

Figure 7. (a,b) Topographic, and MFM image of the h-LuFeO3 film at 50 K after zero-field cooling.
Reprinted with permission from [133], copyright the American Physical Society, 2017. (c) The electronic
spin of a single NV defect placed at the apex of a diamond scanning-probe tip is used as an atom-sized
magnetic field sensor. (d) Top panel, photoluminescence scan of the diamond scanning-probe showing
the bright emission from a single NV defect. Bottom panel, spectrum recorded while applying a bias
field along the NV axis. Magnetic field image of the BFO film, the black dashed lines are attributed to
ferroelectric domain walls leading to abrupt rotations of the cycloidal propagation vector. Reprinted
with permission from [129], copyright Springer Nature, 2017. (e) Polar plots of the SHG dependence on
the incident light polarization direction (with vertical analysis) with fits of the SHG data, composed
of the time-invariant (ferroelectric) part (grey areas) and the time-noninvariant (antiferromagnetic)
part (white areas). Reconstructed image of the antiferromagnetic texture in BFO sample, color scale
representing the asymmetry of the SHG polar plots. Reprinted with permission from [141], copyright
Springer Nature, 2019.

4. Switching Events in Multiferroics

As described above, the domain analysis post switching provides critical insight into the ferroic
behavior. Efforts are now focusing on operando measurements, i.e., probing evolving magnetic and
electric domain states during the application of an external field. The investigation of multiferroic
switching dynamics, involving domain wall motion, is expected to lead to discoveries beyond the
determination of the switching time-scale. The investigation of artificial multiferroic systems is
accompanied by the challenge of observing a buried switching event operando.

4.1. Imaging a Multiferroic Magnetoelectric Switch

In ferroic materials, beyond the iconic square-like hysteresis of the macroscopic response subject to
an applied conjugate field, an understanding and control of ferroic order at the domain level is highly
desired. A magnetoelectric multiferroic switch can express itself as a change of electric (magnetic)
domain state under the application of a magnetic (electric) field in the remanent state. Magnetoelectric
behavior can be demonstrated at the scale of a single ferroic domain and domain walls. The few
existing measurements on dynamics of magnetoelectric switching are based on optical SHG and PFM



Materials 2019, 12, 3108 12 of 23

imaging with SHG having the advantage of operando probing the domain state locally during the
magnetoelectric switch.

Figure 8a,b shows examples of the change in the ferroelectric domain state induced by the magnetic
field. In the prototypical multiferroic TbMnO3, SHG imaging revealed the domain architecture during
the polarization flop induced by magnetic field [53]. The spatially resolved information led to the
demonstration of the deterministic nature of the phase transition and the formation of charged domain
walls in spin-driven ferroelectric multiferroics.
Materials 2018, 11, x FOR PEER REVIEW  13 of 23 

 

 426 

Figure 8. (a) SHG images of the polarization flop from Pc to Pa, driven by a reorientation of the spin-427 
cycloidal plane from bc to ab with the application of a magnetic field. Reprinted with permission from 428 
[53], copyright AAAS, 2015. (b) PFM phase dependency on the orientation of the magnetic field 429 
applied to the PZTFT lamella. Growth of regions with polarization direction indicated by red with 430 
the application of 3 kOe perpendicular to the lamellar surface, contraction of these regions with an 431 
application of -3 kOe. Scale bar, 2  μm. Reprinted with permission from [143]. (c) Evolution of the 432 
magnetic domain structure in multiferroic MnWO4 during quasi-static electric-field poling and the 433 
SHG hysteresis loop. Reprinted with permission from [144], copyright the American Physical Society, 434 
2011. (d) In-plane PFM image of ferroelectric micrometer-sized domains and the corresponding 435 
magnetic field distribution recorded with the scanning-NV magnetometer. (e) Antiferromagnetic 436 
configurations from SHG image of ferroelectric single domain state (left), the PFM images of a local 437 
application of an electric field (middle) and the SHG image of the antiferromagnetic configuration 438 
after the polarization switch (right). Reprinted with permission from [129], copyright Springer 439 
Nature, 2017. 440 

4.2. Controlling Domain Dynamics  441 
The epitome of controlled domain evolution during switching events is perhaps the inversion 442 

of domain pattern, i.e., a switching event which reverses the ferroic order parameter in each domain, 443 
but the initial domain pattern is perfectly reproduced. For example, coupling between a complex set 444 
of order parameters in multiferroics can allow to independently switch one order parameter with an 445 
external field while another retains the memory of the domain pattern. The generality of the concept 446 
was demonstrated in the work of Leo et al. [17] by achieving domain inversion in both multiferroic 447 
Mn2GeO4 and magnetoelectric Co3TeO6 , see Figure 9a–e. Other systems exhibiting the inversion of 448 
the domain pattern are expected to be discovered. The order-parameter coupling described above 449 
can, for instance, be allowed only at the domain walls. The hexagonal manganite family of 450 
compounds might be a possible candidate for such domain inversion phenomena. In these materials, 451 

Figure 8. (a) SHG images of the polarization flop from Pc to Pa, driven by a reorientation of the
spin-cycloidal plane from bc to ab with the application of a magnetic field. Reprinted with permission
from [53], copyright AAAS, 2015. (b) PFM phase dependency on the orientation of the magnetic field
applied to the PZTFT lamella. Growth of regions with polarization direction indicated by red with
the application of 3 kOe perpendicular to the lamellar surface, contraction of these regions with an
application of -3 kOe. Scale bar, 2 µm. Reprinted with permission from [143]. (c) Evolution of the
magnetic domain structure in multiferroic MnWO4 during quasi-static electric-field poling and the SHG
hysteresis loop. Reprinted with permission from [144], copyright the American Physical Society, 2011.
(d) In-plane PFM image of ferroelectric micrometer-sized domains and the corresponding magnetic
field distribution recorded with the scanning-NV magnetometer. (e) Antiferromagnetic configurations
from SHG image of ferroelectric single domain state (left), the PFM images of a local application of an
electric field (middle) and the SHG image of the antiferromagnetic configuration after the polarization
switch (right). Reprinted with permission from [129], copyright Springer Nature, 2017.

In a multiferroic solid solution between lead zirconium titanate (PZT) and lead iron tantalate
(PFT), PZTFT, PFM measurements showed a change in the ferroelectric domain population under an
application of a magnetic field [143].

The desired energy-efficient control of magnetic order by electric field is shown in Figure 8c–e.
The pioneering experiment dealt with bulk MnWO4 single crystals [144]. The magnetic response
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induced by electric field was optically probed by SHG through transparent electrodes used for the
electric field application (Figure 8c). This direct access to domain state dynamics led to the establishment
of the magnetoelectric switching at the millisecond timescale. More recently, a local ferroelectric switch
created using PFM in multiferroic BFO films were shown to affect the antiferromagnetic order imaged
either by NV center magnetometry or SHG [129,141] (Figure 8d,e). The propagation direction of a
spin cycloid or the reset of the domain pattern was demonstrated to depend on the ground state of
the system.

4.2. Controlling Domain Dynamics

The epitome of controlled domain evolution during switching events is perhaps the inversion of
domain pattern, i.e., a switching event which reverses the ferroic order parameter in each domain,
but the initial domain pattern is perfectly reproduced. For example, coupling between a complex set
of order parameters in multiferroics can allow to independently switch one order parameter with an
external field while another retains the memory of the domain pattern. The generality of the concept
was demonstrated in the work of Leo et al. [17] by achieving domain inversion in both multiferroic
Mn2GeO4 and magnetoelectric Co3TeO6, see Figure 9a–e. Other systems exhibiting the inversion of
the domain pattern are expected to be discovered. The order-parameter coupling described above can,
for instance, be allowed only at the domain walls. The hexagonal manganite family of compounds
might be a possible candidate for such domain inversion phenomena. In these materials, the linear
magnetoelectric coupling is symmetry-forbidden in the bulk [56,57]. However, SHG experiments
revealed that ferroelectric and antiferromagnetic domain walls are coupled [50].
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Figure 9. (a–d) Sequentially taken SHG images of the ±Mx,z domain pattern on a z-oriented Co3TeO6

at the given magnetic fields Hy. (e), Dependence of the Mx,z domain state on a magnetic field Hy.
The domain-state-sensitive SHG interference was measured on two spots of 500 µm diameter that lie in
opposite domain states (blue and orange data points). Tuning the magnetic field between positive and
negative values reverses the magnetization of each domain while the domain pattern remains intact.
Reprinted with permission from [17], copyright Springer Nature, 2018. (f) In BFO films grown on
DSO, the combination of elastic and electrostatic boundary conditions results in an unchanged domain
pattern after local electric field application, before (left side) and after (right side).

As an alternative to multiple order parameters, the epitaxial strain could play a critical role in the
deterministic interexchange of domain patterns. In complex oxide thin films, strain engineering can be
used to control the domain pattern. In the case of multiferroic films BFO films grown on DSO, the
anisotropic strain state induced by the (110)-oriented orthorhombic substrate results in a stripe-like
domain pattern [42].

This anisotropic domain architecture imposes periodic electrostatic and elastic boundary conditions
at each domain wall which can preserve the memory of the initial domain pattern, and hence the
ferroelectric (multiferroic) domain state. The magnetization reversal induced by an electric field in
multiferroic BFO thin films relies precisely on such a memory effect of the domain pattern. For a given
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range of pulse widths and electric field amplitudes, a switching event occurs within each domain.
The combination of elastic and electrostatic boundary conditions results in an unchanged domain
pattern after local polarization rotation [58] or reversal [59,145]. Figure 9f shows the PFM analysis
of a stripe-like BFO domain pattern. The stripe-like domain pattern is preserved after the electric
field application, but the polarization is 180◦ switched in each domain. This ferroelectric switching is
accompanied by the corresponding reversal of the local magnetic order in each domain.

This further suggests strain engineering as a possible route towards the inversion of domain
pattern in a wide variety of ferroic systems.

4.3. Evolution of Magnetoelectric Coupling in Artificial Multiferroic Heterostructures

Artificial multiferroic heterostructures hold promises for oxide electronics with low-power
consumption at room temperature [1,64]. Operando access to the domain correlation during or
after voltage application is the key to the understanding of the involved dynamics and switching
mechanisms. The seminal work from Lahtinen et al. demonstrated that one-to-one coupling of
ferroelectric–ferromagnetic domains in an artificial multiferroic system can be addressed optically in
the micrometer range using a combination of birefringent contrast imaging and magneto-optical Kerr
effect (MOKE) microscopy (Figure 10a,b) [70]. Motion of magnetic domain walls driven by an electric
field was recently demonstrated in perpendicularly magnetized Cu/Ni multilayers grown on BTO
single crystals. López González et al. have shown that ferroelectric and ferromagnetic domain walls
move in unison upon the application of out-of-plane electric field pulses. Neither a magnetic field nor
an electrical current is required for this domain-wall motion, the velocity of which is hence determined
by the electric field strength.
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Figure 10. (a) Ferroelectric (FE) and ferromagnetic (FM) microstructure after CoFe film growth on BTO
and (b) the application of an out-of-plane electric field of 10 kV/cm imaged using optical polarization
microscopy techniques. Reprinted with permission from [70], (c–e) (right) The spatially resolved MFM
scans show the magnetic domain structure of CoFe after the application of the indicated electric field.
MFM scans are recorded in the presence of an in-plane magnetic field of µ0H = 50 mT along [001]DSO,
(left) spatially resolved SHG images of buried ferroelectric BFO domains after application of indicated
electric fields. The red contour line highlights the area of the cross-shaped CoFe electrode. Reprinted
with permission from [93], copyright the American Physical Society, 2018.

In thin-film artificial multiferroic heterostructures, the nanoscale ferroelectric domain architecture
cannot be optically resolved. Understanding the dynamics of magnetoelectric poling is, however,
crucial for any technological implementations. De Luca et al. [93] shed some light on the magnetoelectric
coupling dynamics between BFO and CoFe by employing SHG and MFM techniques operando, see
Figure 10c–e. Ferroelectric and ferromagnetic domain states were investigated upon consecutive
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voltage applications. It was shown that the coupling between layers, as well as the domain pattern
transfer, needs to be activated by an electric field in the order of the ferroelectric coercive field of BFO.
Furthermore, spatially resolved SHG imaging through the magnetic electrode indicated the persistence
of one-to-one ferroelectric–ferromagnetic domain correlation after voltage application. In this system,
Manipatruni and colleagues [146] also demonstrated room-temperature voltage control of exchange
coupling (uniaxial anisotropy) in giant magnetoresistance (GMR) spin valves coupled to multiferroic
BFO. The BFO multiferroic imprint is absent in the pristine state, confirming a “wake-up” effect at
the first electrical pulse [146]. Once activated, the device exhibits magnetoelectric hysteresis loops in
good agreement with that of the ferroelectric hysteresis. Unidirectional anisotropy was confirmed by
reversing the direction of the magnetoelectric effect upon sample rotation by 90◦.

5. Conclusions and Perspective

The experimental access to ferroic domain states is in ongoing progress. New concepts such as
dynamical multiferroicity, i.e., generation of magnetization from varying electric polarization, could
enable the non-invasive probe of domain wall movement using NV center magnetometry [147,148].
The development of non-invasive techniques for probing ferroelectric state in the ultrathin regime, e.g.,
synchrotron x-ray diffraction and optical second harmonic generation, pushes the establishment of
new facets in the design of ferroelectric and multiferroic heterostructures.

Furthermore, the emergence of polarization and related electrostatic effects can be visualized
during deposition [35,149–154] because these materials may be grown epitaxially in the ferroelectric
phase. Reflection high energy electron diffraction (RHEED) is the reference diagnostic tool for structural
information during films synthesis but remains insensitive to the layer functionality. In situ SHG
experiments directly access the ferroelectric polarization during thin film deposition of ferroic oxide
multilayers [152]. Real-time, in-situ determination of the polarization state using SHG or x-ray
diffraction in complex multilayer architectures [153] opens avenues towards the control of domain
states in superlattices and the understanding to dynamics involved during the epitaxial design of
ferroelectric multilayers.

The domain visualization during the film deposition remains, however, a challenge. Improving
spatial resolution in non-invasive probes would bring an understanding of multiferroic domain
formation during the synthesis process.

Moreover, recent works have shown that ferroelectric domain walls and multiferroic states can be
deterministically tuned by optical means [155–157]. The demonstration of light-induced flexoelectric
effect in multiferroic BFO thin films, i.e., driving a strain gradient with laser illumination, further
reveals that light could be used to design new exotic polar states in oxide heterostructures, possibly
during the growth process. The ability to probe and design new ferroic and multiferroic states during
synthesis would enable new device paradigms relying on complex domain architectures. In situ control
of ferroic switching events or domain nucleation can drastically accelerate the integration of complex
oxide thin films into energy-efficient technologies.
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