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Abstract
An important criterion to consider in genetic evaluations is the extent of genetic connectedness across management 
units (MU), especially if they differ in their genetic mean. Reliable comparisons of genetic values across MU depend on 
the degree of connectedness: the higher the connectedness, the more reliable the comparison. Traditionally, genetic 
connectedness was calculated through pedigree-based methods; however, in the era of genomic selection, this can be 
better estimated utilizing new approaches based on genomics. Most procedures consider only additive genetic effects, 
which may not accurately reflect the underlying gene action of the evaluated trait, and little is known about the impact of 
non-additive gene action on connectedness measures. The objective of this study was to investigate the extent of genomic 
connectedness measures, for the first time, in Brazilian field data by applying additive and non-additive relationship 
matrices using a fatty acid profile data set from seven farms located in the three regions of Brazil, which are part of the 
three breeding programs. Myristic acid (C14:0) was used due to its importance for human health and reported presence of 
non-additive gene action. The pedigree included 427,740 animals and 925 of them were genotyped using the Bovine high-
density genotyping chip. Six relationship matrices were constructed, parametrically and non-parametrically capturing 
additive and non-additive genetic effects from both pedigree and genomic data. We assessed genome-based connectedness 
across MU using the prediction error variance of difference (PEVD) and the coefficient of determination (CD). PEVD values 
ranged from 0.540 to 1.707, and CD from 0.146 to 0.456. Genomic information consistently enhanced the measures of 
connectedness compared to the numerator relationship matrix by at least 63%. Combining additive and non-additive 
genomic kernel relationship matrices or a non-parametric relationship matrix increased the capture of connectedness. 
Overall, the Gaussian kernel yielded the largest measure of connectedness. Our findings showed that connectedness 
metrics can be extended to incorporate genomic information and non-additive genetic variation using field data. We 
propose that different genomic relationship matrices can be designed to capture additive and non-additive genetic effects, 
increase the measures of connectedness, and to more accurately estimate the true state of connectedness in herds.
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Introduction
Genetic connectedness is a statistical measurement that allows 
reliable comparisons of the genetic values across management 
units (MU) by capturing the linkage among herds. The genetic 
values of animals from different MU (e.g., contemporary groups, 
farms, and herds) can be ranked using best linear unbiased 
prediction (BLUP). However, the accuracy of these comparisons 
depends on the degree of connectedness among MU: the higher 
the connectedness, the more reliable the comparison. Genetic 
connectedness has traditionally been calculated through 
pedigree-based methods (Lewis et al., 1999b; Kuehn et al., 2007a); 
however, these methods may underestimate connectedness 
in production systems such as the beef cattle industry, where 
commercial herds are poorly registered and multi-sire mating 
is practiced (Caires et  al., 2012; Barbosa et  al., 2013; Tonussi 
et al., 2017; Cavani et al., 2018). A lack of connectedness occurs: 
when the MU are genetically isolated (or semi-isolated) or 
there is limited sharing of genetic material; with the use of 
an incomplete numerator relationship matrix based on poor 
pedigree data (Carneiro et  al., 2001); and with poor use of 
artificial insemination (AI). Genomic data are expected to more 
accurately estimate the relationship between individuals using 
information from genetic markers, such as single nucleotide 
polymorphisms (SNP), by measuring covariance among relatives 
and distant relatives previously ignored by a pedigree-based 
method (Habier et al., 2007).

Yu et  al. (2017) evaluated the utility of genome-based 
connectedness in mice and cattle and noted that genomic 
relatedness could improve the extent of genetic connectedness 
measures compared with the pedigree when additive 
inheritance was assumed. The gain in connectedness measures 
was later shown to be associated with increased prediction 
accuracy based on cross-validation (Yu et  al., 2018). Genetic 
connectedness studies were subsequently extended to account 
for non-additive genetic effects (Momen and Morota, 2018). 

Those authors performed a computer simulation and found 
the increased measures of connectedness using additive and 
non-additive genomic relationship matrices under non-additive 
gene action. Collectively, those studies demonstrated that 
genomics can be used to enhance measures of connectedness. 
However, evaluations of genetic connectedness from field data 
remain limited.

In Brazil, cattle herds are often separated by large distances, 
and the rates of AI are low. A  recent study by the Brazilian 
Association of Artificial Insemination (ASBIA, 2019) showed that 
only 16% of Brazilian dams are inseminated, with just a few 
farms available to measure expensive traits that require specific 
techniques or tests, such as postmortem beef quality traits.

The fatty acid (FA) profile of beef is a trait of interest due to 
its association with cardiovascular disease in humans (Mensink 
and Katan, 1992). According to Lawrie (2006), C14:0 is one of the 
most predominant saturated FA in cattle meat, which interferes 
with hepatic low-density lipoprotein receptors and consequently 
increases the amount of circulating low-density lipoprotein 
cholesterol (Grundy and Denke, 1990; Katan et  al., 1994; Katan 
et  al., 1995; Sacks and Katan, 2002). Considering the growing 
consumer demand for protein sources with a healthy lipid profile, 
several strategies have been applied to identify and manage the FA 
profile of beef (Faucitano et al., 2008; Liu et al., 2010; Aboujaoude 
et al., 2016; Berton et al., 2016; Chiaia et al., 2017).

Non-additive genetic variation for FA has been previously 
reported in cattle. For example, Malau-Aduli et al. (1998, 2000) 
reported significant dominance effects in Jersey, Limousin, 
and Jersey × Limousin crossbred cattle. Li et al. (2012) detected 
significant additive and dominant effects for 19 individual FA in 
commercial beef steers. Kramer et al. (2016) identified epistatic 
interactions associated with FA concentrations in Angus cattle. 
Thus, the use of connectedness metrics including additive and 
non-additive gene effects may help to improve the quality of 
genetic value comparisons in breeding programs.

To date, few connectedness studies have been performed in 
Brazil (Carneiro et al., 2001; Pegolo et al., 2012), and the impact 
of genomic relatedness on connectedness measures in Nellore 
cattle has not been reported. Assessing connectedness statistics 
through genomic information may be useful for designing 
breeding programs and effectively linking units to improve 
the quality of across unit genetic evaluations, which in turn 
enhance the genetic improvement of Brazilian beef cattle. 
Therefore, the aim of this study was to investigate the extent of 
genomic connectedness measures in Nellore cattle by applying 
additive and non-additive relationship matrices, and to estimate 
variance components considering additive, dominance, and 
epistatic effects for myristic acid (C14:0).

Material and Methods
Data

Ethics statement
This study was approved by the ethics committee in the 
Faculdade de Ciências Agrárias e Veterinárias, Universidade 
Estadual Paulista, Jaboticabal, São Paulo, Brazil.

Fatty acid profile data set
The data set included animals from seven farms located in the 
southeast, northeast, and mid-west of Brazil, which are part of 
three beef cattle breeding programs: DeltaGen (F1 [n = 200], F2 
[n = 22], F3 [n = 80]); Paint (F4 [n = 190], F6 [n = 292], F7 [n = 51]); 
and Nelore Qualitas (F5 [n = 90]). These seven farms only collect 

Abbreviations

H2 broad-sense heritability
h2 narrow-sense heritability
σ2
d dominance genomic variance

σ2
e  residual variance

σ2
g additive genomic variance
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genomic variance
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u additive genetic variance

A numerator relationship matrix
BLUP best linear unbiased prediction
C14:0 myristic acid
CD coefficient of determination
FA fatty acid
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MME mixed model equations
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samples postmortem for analysis of beef quality traits due to 
the costs of collecting these phenotypes.

The GPS location of each farm was provided by the respective 
breeding program. The FA profile phenotypes were obtained for 
Nellore bulls with an average age of 24 mo. The methodology 
used to determinate FA profiles was consistent with that used 
in a previous study by Lemos et al. (2016). We analyzed myristic 
acid (C14:0) because of its importance to human health and high 
content in animals from feedlots (Zock et al., 1994). The pedigree 
included 427,740 animals born between 1977 and 2011. A total of 
n = 925 animals having C14:0 phenotype were genotyped using 
777,962 SNP (Illumina, San Diego, CA). Following the removal of 
markers with a minor allele frequency less than 0.05, 505,367 
SNP remained for further analysis. Missing genotypes were 
imputed using allele frequency estimates from a binomial 
distribution from the data. The seven farms were treated as MU.

Connectedness statistics

Genetic connectedness statistics are mostly defined as a function 
of the inverse of the coefficient matrix, which can be obtained 
from Henderson’s mixed model equations (MME) (Henderson, 
1984). In this study, we assessed genome-based connectedness 
across management units by applying the prediction error 
variance of difference (PEVD) (Kennedy and Trus, 1993) and 
coefficient of determination (CD) (Laloë, 1993).

Prediction error variance of difference
Prediction error variance (PEV) was obtained by fitting the 
following standard linear mixed model:

y = Xb+ Zu+ ε,

where y is a vector of phenotypes, X is an incidence matrix of 
systematic effects including management units, b is a vector of 
systematic effects (contemporary group including animals born 
in the same farm, year, and from the same management group at 
yearling, and age at slaughter as linear covariate), Z is an incidence 
matrix relating individuals to phenotypic records, u is a vector of 
random additive genetic effects, and ε is a vector of residuals. The 
joint distribution of random effects for this model is

Ö
y
u
ε

è

∼ N


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Ö
Xb
0
0

è

,

Ö
ZKσ2

uZ
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where σ2
u is the additive genetic variance, σ2

e  is the residual 
variance, and K is one of the positive (semi) definite relationship 
matrices defined later.

The inverse of MME coefficient matrix of Henderson (1984) 
is represented as

C−1=

ñ
X′XX′Z
Z′XZ′Z+ K−1λ

ô−1

=

ñ
C11C12

C21C22

ô
,

where λ is the ratio of σ2
e /σ

2
u. The PEV for i th individual (ûi) is 

written as

PEVi= Var(ûi − ui)
= Var(ui|ûi)
= Var(ûi|ui)
= C22

ii σ
2
ε ,

where C22
ii  represents the ith diagonal element of the C22 

coefficient matrix. Then, the PEVD of genetic values between 
individuals from different MU (Kennedy and Trus, 1993) is 
given by

PEVD(ûi − ûj)=
[
PEV(ûi) + PEV(ûj)− 2PEC(ûi, ûj)

]

= (C22
ii − C22

ij − C22
ji + C22

jj )σ
2
ε

= (C22
ii + C22

jj − 2C22
ij )σ

2
ε ,

where ii and jj refer to the diagonal elements of C22 matrix, 
corresponding to the ith and jth individuals, respectively, 
and the off-diagonal elements of C22 are denoted by ij. PECij 
is the prediction error covariance between the errors of 
genetic values, which is the off-diagonal element of the PEV 
matrix. Smaller PEVD indicates that the individuals are more 
connected.

The average PEVD between individuals across two MU was 
defined as follows:

PEVDi′j′ =
1

ni′ .nj′

∑
i∈i′

∑
j∈j′

PEVDij,

where i is an animal in MU i′, j is an animal in MU j′, ni′and nj′ 
represent the total number of records in i′ and j′ units, and the 

sum of all pairwise differences between two units is ∑
i∈i′

∑
j∈j′

PEVDij

.

Coefficient of determination
CD is defined by scaling the inverse of the coefficient matrix by 
corresponding coefficients from the relationship matrix, in other 
words, CD accounts for the reduction of connectedness due to 
relationship variability between individuals under comparison. 
The extent of CD ranges between 0 and 1, with larger values 
indicating increased connectedness.

A pairwise CD between individuals i and j is given by (Laloë 
et al., 1996)

CDij = 1− λ
C22
ii + C22

jj − 2C22
ij

Kii + Kjj − 2Kij
,

where Kii and Kjj are the ith and jth diagonal elements of K.
The CD between two units can be scaled using the individual 

average PEVD with the average pairwise relationship differences 
across individuals to compute the individual average CD as 
described by Yu and Morota (2020)

CDi′j′ = 1− λ

1
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∑
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∑
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Genomic kernel relationship matrices

Parametric relationship matrices
The extent of connectedness measures depends on the choice of 
relationship matrix K. In this study, we evaluated six K matrices. 
The pedigree-based relationship matrix (K = A) was calculated 
to obtain the additive numerator relationship, reflecting the 
probability that alleles are identical by descendent inherited 
from a common ancestor (Wright, 1922). The diagonal element 
aij, which is the numerator relationship coefficient between 
two animals i and j for a population of n individuals is equal 
to 1+ Fj, where Fj is the inbreeding coefficient of animal i.The 
off-diagonals of this matrix are twice the kinship coefficients 
and are equivalent to the numerators of Wright’s correlation 
coefficients (Wright, 1922; Malécot, 1948). The A matrix among 
925 animals was constructed using the pedigree records of 
427,740 animals.

The genomic relationship matrix (K = G) was used to 
capture the genomic similarity among individuals, estimating 
the proportion of the genome between individuals that is 
identical by state. The G matrix was obtained as a function of 
the allele content including elements of 0, 1, and 2 representing 
the copies of reference alleles according to VanRaden (2008) as 
follows:

G = WaW
′

a /

(
2

m∑
k=1

pk (1− pk)

)
,

where Wa is a centered incidence matrix taking values 0− 2pk 
for zero copies of the reference allele; 1− 2pk for one copy of 
the reference allele; and 2− 2pk for two copies of the reference 
allele. Here pk is the allele frequency at SNP k = 1, . . . ,m.

To capture dominance genetic effects, we constructed a 
dominance relationship matrix (K = D) according to Vitezica 
et al. (2013):

D = WdW
′

d /
m∑

k=1

(2pk(1− pk))
2,

where Wd is the dominance marker incidence matrix, taking 
values of −2pk2 for zero copies of the reference allele; 2pk(1− pk)

2

for one copy of the reference allele; and −2(1− pk)
2 for two 

copies of the reference allele.
By combining the aforementioned G and D, we considered 

the following scenarios: pedigree (A), additive (G), additive and 
dominance (G+ D), additive and additive by additive epistasis 
(G+ G#G), and additive, dominance, and additive by additive 
epistasis (G+ D+ G#G), where # denotes the Hadamard product 
(Henderson, 1985). For a multi-kernel approach, a single kernel 
matrix was derived by weighting each of these kernels by its 
relative contribution to the total genetic variation according to 
Momen and Morota, (2018).

Gaussian kernel
In a Gaussian kernel (K = GK), the relationship between 
individuals is defined as distances on the Euclidean space, 
creating genetic relatedness in terms of spatial distance (de 
los Campos et  al., 2010). The relationship between a pair of 
individuals i and j with their genotype vectors wi ∈ (0, 1, 2) and 
wj ∈ (0, 1, 2) is given by

GK
(
wi,wj

)
= exp

Ä
−θd2ij

ä

=
m∏

k=1

exp
Ä
−θ

(
wik −wjk

)2ä ,

where dij =
√(

wi1 −wj1
)2

+ · · ·+
(
wik −wjk

)2
+ · · ·+

(
wim −wjm

)2  

is the Euclidean distance between two individuals, and θ is 
a positive bandwidth parameter that controls the overall 
smoothness of the kernel function. A small Euclidean distance 
between two individuals means that their genotypes are similar 
in state, or in other words, that they have a strong relationship. 
The parameter θ is what controls the extent of genomic similarity 
between individuals. As θ increases, the kernel approaches zero 
(i.e., local kernel), and smaller θ produces entries closer to 1, in 
other words, two individuals match perfectly (i.e., global kernel) 
(Morota et al., 2013). We employed a kernel averaging approach 
(de los Campos et al., 2010) by integrating two kernel matrices 
(GK1 and GK2) using two extreme values of θ, so the mean of 
the off-diagonals elements in each kernel were 0.2 and 0.8, 
respectively. The averaged GK was obtained by

GK =
σ2
GK1

σ2
GK1 +σ

2
GK2

GK1+
σ2
GK2

σ2
GK2 +σ

2
GK1

GK2,

where σ2
GK1 and σ2

GK2 are variance components attached to 
kernels GK1 and GK2, respectively. A BLUP model coupled with a 
Gaussian kernel matrix is known as reproducing Hilbert spaces 
regression (Morota and Gianola, 2014).

Throughout this study, we used R statistical computing 
environment (R Development Core Team, 2019) to estimate 
variance components and connectedness metrics with the 
following packages: the BGLR package (Pérez and de Los Campos, 
2014) to estimate variance components and the GCA package 
(Yu and Morota, 2020) to compute connectedness measures.

Results

Heritability estimates

Descriptive statistics and genetic parameter estimates for C14:0 
are presented in Table 1 for parametric kernel matrices. In this 
study, we estimated narrow-sense heritability (h2) accounting for 
additive effects only (K = A or G) and broad-sense heritability 
(H2) accounting for additive, dominance, and epistasis  
(K=G+ D, G+ G#G, or G+ D+ G#G).

Narrow- and broad-sense heritability estimates for C14:0 
ranged from 0.142 (±0.095) to 0.462 (±0.092). Heritability 
estimates were lower when using the pedigree relationship 
matrix compared with the other relationship matrices, likely 
because of incomplete pedigree data. The h2 estimate from G was 
approximately two-fold higher than that from A. Moreover, the 
inclusion of dominance (G+ D) and epistatic effects (G+ G#G 
and G+ D+ G#G) increased the heritability estimates. These 
findings suggest that C14:0 may be controlled by additive as well 
as non-additive gene action.

Prediction error variance of difference
Figure  1 shows the PEVD estimates across MU derived from  
A, G,G+ D,G+ G#G, and G+ D+ G#G for C14:0. The smaller 
the PEVD, the higher the connectedness. The smallest PEVD 
connectedness measures were found in A, ranging from 1.654 
to 1.707. When comparing A with G, enhanced connectedness 
measures were observed by reduced PEVD (1.387–1.422). The 
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MU were more connected when genomic information was used. 
The inclusion of dominance (G+ D) moderately enhanced the 
PEVD across MU, with estimates ranging from 1.288 to 1.315. 
Accounting for additive and additive epistasis (G+ G#G) in the 
model marginally increased the measures of connectedness. 
Including additive, dominance, and additive by additive epistasis 
(G+ D+ G#G) resulted in the highest connectedness estimates 
among the parametric kernel relationship matrices. The use of 
GK significantly increased estimates of genetic connectedness 
across all MU. Overall, A yielded the least connected measures, 
while GK produced most connectedness estimates that were 
considered to be less connected.

Coefficient of determination
Individual average CD for each of the six scenarios is presented 
in Figure 2. The higher the CD, the higher the connectedness, 
and a similar pattern was found as reported for PEVD. The 
largest measured CD (0.456) was obtained with GK, and the 
smallest CD (0.146) was obtained with A. The MU presented 
low levels of connectedness in A, in which the highest estimate 
was 0.171. Compared to the pedigree-based method, genetic 
relatedness inferred from G increased the estimates of genetic 
connectedness across MU, and this trend was enhanced when 
dominance (G+ D) and epistasis (G+ G#G) were included. 
Combining additive, dominance, and epistasis in G+ D+ G#G 
resulted in greater measures of connectedness than any of 
the parametric relationship kernel matrices. The estimates of 
CD for G+ D+ G#G ranged from 0.427 to 0.445. GK presented 
the highest CD estimates, ranging from 0.442 to 0.456. These 
results demonstrated the importance of accounting for additive, 
dominance, and epistasis when the trait is also controlled by 
non-additive gene action.

Connectedness within and across breeding 
programs

Farms F1–F3 belonged to the DeltaGen breeding program. F1 
and F3 farms were found to be the most connected across all 
scenarios. Farms F4, F6, and F7 belonged to the Paint breeding 
program. Although all MU presented similar connectedness 
values for CD, F4 and F6 were found to be the most connected, 
whereas F7 was well connected with the other two MU. Finally, 
we investigated the connectedness of the MU between the three 
different breeding programs and found that only one MU from 
Nelore Qualitas (F5) was adequately connected with the other MU. 
This pattern also appeared when we analyzed MU from DeltaGen 
and Paint, suggesting that these three breeding programs are 
connected, probably because of the use of AI in recent years.

Discussion
This study presents genome-based connectedness estimates 
in Nellore cattle using phenotype and genotype samples of 
commercial herds from the three breeding programs. The 
phenotype studied in this analysis is not routinely measured in 
breeding programs. Phenotypic information relating to the C14:0 
trait was only available for a small number of contemporary 
groups in the MU, which could limit the data connection.

In Brazil, the beef cattle industry is concentrated in two main 
regions: the southeast and the mid-west. The recent expansion 
of agriculture has introduced animal husbandry to new regions. 
Figure 3 shows the distance (in kilometers) between the farms 
evaluated in our study. Farms F1–F3 are part of the DeltaGen Ta
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Program and are spread across three regions (mid-west, 
southeast, and northeast). F1 and F3 are the most distant units 
in this program. Within the Nellore Paint program, farms F4, F6, 
and F7 are located in the mid-west and southeast regions in 
Brazil. The distance between F4 and F6 is the longest, despite 
being located in the same region.

 Overall, considering each farm apart from its breeding 
program, F4 was the closest to any other farm, while F6 was 
the most distant. The average distance between two farms 
was 1,188 km. The extent of connectedness may be partially 
explained by the geographic position of each farm, since 
Brazilian herds consist of many subpopulations isolated by 
geographical distance, limiting the sharing of genetic material 
across MU. Overall, we did not find a clear relationship between 
connectedness and distance. Thus, geographical location alone 
does not explain the extent of connectedness.

The degree of connectedness reflects the reliability of 
comparisons between animals of different MU (Kennedy 
and Trus, 1993; Tosh and Wilton, 1994; Hanocq et  al., 1999; 
Carneiro et al., 2001; Mathur et al., 2002; Roso et al., 2004). Low 
connectedness implies that the reliability of genetic value 
comparisons and animal rankings across MU are not sufficiently 
reliable (Lewis et al., 1999a; Lewis and Simm, 2000; Kuehn et al., 
2008). Theoretically, the extent of connectedness may be of 
less concern (Fernando et  al., 1983; Kennedy and Trus, 1993; 

Fries and Roso, 1997). Kennedy and Trus (1993), and Tosh and 
Wilton (1994) reported that disconnected MU may not lead to 
biased predictions if the genetic values of the base animals are 
randomly and identically distributed throughout the population. 
However, this is less true for field populations such as beef cattle 
in Brazil, because of genetic selection, drift, limited use of AI, 
and low phenotyping rates in hard-to-measure traits, which 
have an impact on the genetic means and variance component 
estimates of the MU (Clément et al., 2001; Tosh and Wilton, 1994; 
Kuehn et al., 2007b; Tarrés et al., 2010).

Estimates of genetic parameters
Connectedness is often used to design or evaluate the 
effectiveness of breeding programs prior to phenotyping. 
However, phenotypic information enters the derivation of 
connectedness through heritability or the ratio of variance 
components (λ). In the present study, we evaluated the FA 
C14:0 (myristic acid). In general, the narrow-sense heritability 
estimates for individual FA profiles in the Longissimus thoracis 
muscle of beef cattle are low to moderate (Tait et al., 2007; Cesar 
et al., 2014; Lemos et al., 2016; Feitosa et al., 2017), ranging from 
0.17 to 0.64. Our estimates for myristic acid using A (0.141) were 
lower than those reported by Tait et al. (2007), of 0.23, in Angus 
cattle, but were closer when G (0.274) was used in our study. 
Using a population of Nellore Cattle, Aboujaoude et  al. (2016) 

Figure 1. Individual average PEVD for C14:0. A: pedigree kernel relationship matrix. G: additive genomic kernel relationship matrix. G + D: additive and dominance 

genomic kernel relationship matrices. G + G#G: additive and epistasis genomic kernel relationship matrices. G + D + G#G: additive and dominance and epistasis 

genomic kernel relationship matrices. GK: Gaussian kernel relationship matrix.
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reported a genomic h2 estimate of 0.25. Cesar et al. (2014) and 
Feitosa et al. (2017) reported genomic h2 estimates of C14:0 in 
Nellore Cattle of 0.17 and 0.25, respectively.

In the current study, we evaluated six relationship matrices 
using pedigree and genomic data accounting for additive and 
non-additive genetic variation into the kernel relationship 
matrices. We found that the heritability estimates from A were 
the lowest. In the beef cattle industry, the poor records for herds 
are problematic, especially for beef quality traits evaluated after 
slaughter. This affects both the measurement relationships and 
the genetic parameter estimates (Fouilloux et  al., 2008a). Here, 
approximately 55% of records contained no sire information. 
The percentage of animals with known sires in each farm 
was F1 = 13%, F2 = 72%, F3 = 81.25%, F4 = 57.36%, F5 = 63.15%, 
F6  =  27.39%, F7  =  100%, and for a total 413/925 animals in the 
data set. This data set is composed by commercial herds, and in 
Brazil, most farms are under a multiple service sires (MS) mating 
system, which consists of groups of cows clustered with several 
bulls in the same paddock during a riding season (Cardoso and 
Tempelman, 2003). MS improves the conception rate (Lunstra 
and Laster, 1982), but results in an uncertain paternity scenario. 
Therefore, incomplete pedigree data due to MS negatively affect 
the accuracy of genetic evaluations (Cardoso and Tempelman, 
2003).

In the breeding programs in our study, the mating season 
begins with AI in all dams. However, if the dam is not pregnant, 
the MS mating system is applied. The bulls used in this system are 
usually from the same farm, and they only produce one generation 
of progeny. The calf born from the MS mating system is slaughtered 
because of uncertain paternity. These calves are considered to have 
unreliable genetic merit, which means that they are not candidates 
for breeding, while allowing phenotypes to be obtained from the 
slaughtered animals. The use of genomic information can enhance 
the feasibility of genetic evaluation and increase the prediction 
accuracy of these novel traits in the beef cattle industry.

The use of SNP, which capture molecular similarity and 
Mendelian sampling, determines relationships between 
individuals at the genomic level, recovering information 
missing in the pedigree. Cesar et al. (2014) first reported genomic 
heritability estimates for FA in Nellore cattle and showed that 
SNP panels are a promising tool for the genetic improvement 
of Nellore cattle in Brazil, mainly because of the effective cost 
strategy for their application in breeding programs. We found 
that the heritability estimates from G were larger compared to 
those from A, recovering a greater proportion of additive genetic 
variance. Our observations are consistent with those of Ishii 
et al. (2013) in Japanese Black cattle and Saatchi et al. (2013) in 
US Angus cattle.

Figure 2. Individual average CD for C14:0. A: pedigree kernel relationship matrix. G: additive genomic kernel relationship matrix. G + D: additive and dominance 

genomic kernel relationship matrices. G + G#G: additive and epistasis genomic kernel relationship matrices. G + D + G#G: additive and dominance and epistasis 

genomic kernel relationship matrices. GK: Gaussian kernel relationship matrix.
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It is also critical to account for dominance and/or epistatic 
variation to optimize breeding designs, such as mate allocation. 
Several animal studies (Serenius et  al., 2006; Sun et  al., 2014; 
Moghaddar and van der Werf, 2017; Joshi et al., 2018; Ebrahimi 
et al., 2019) have reported that dominance heritability is often 
significantly greater than zero, and its inclusion in prediction 
models could improve performance in those studies. We 
observed dominance and epistatic variance for C14:0, suggesting 
that C14:0 may be controlled by both additive and non-additive 
genetic variation.

Connectedness statistics

Because of missing pedigree data in the present study, 
connectedness statistics using the numerator relationship matrix 
resulted in the lowest connectedness estimates, indicating that 
A may provide an incorrect picture of connectedness for C14:0 
in the population studied. In contrast, G consistently enhanced 
the measures of connectedness. The results from G highlight 
how genomic data can help us to better observe the true state of 
connectedness, particularly when pedigree data are less reliable. 
This supports the findings of Yu et al. (2017), who reported that 
genomic relatedness inferred from SNP increases the estimates 
of genetic connectedness across MU compared to estimates 
of pedigree information. As noted by Yu et al. (2017, 2018), the 
availability of genomic information provides an opportunity to 
improve the quality of genetic value comparisons and revisit a 
number of critical questions related to connectedness.

The increased interest in non-additive variation (Wolak 
and Keller, 2014; Varona et  al., 2018) suggests that it may be 
possible to account for such variation in connectedness studies. 
Momen and Morota (2018) demonstrated that connectedness 
metrics can be extended to incorporate non-additive genetic 
variation of complex traits. They showed an increase up to 
25% in the capture of connectedness using additive and non-
additive genomic kernel relationship matrices when the trait 
of interest is controlled by non-additive gene action. Our study 
investigated how the inclusion of such variation could impact 
connectedness metrics. Increased estimates of connectedness 
were observed when dominance and epistatic parametric 
kernels were included. The non-parametric relationship matrix 
(GK) models higher-order epistatic gene action by taking the 
Hadamard product between the G matrices when SNP were 
coded in an additive manner (Jiang and Reif, 2015). In our study, 
GK was better than all parametric approaches, highlighting the 
usefulness of GK for incorporating non-additive gene action. Nii 
et al. (2006) first reported the presence of epistatic quantitative 
trait loci for perirenal C14:0 in wild boars, and was later reported 
by Uemoto et al. (2009) on chromosome 16 in swine.

In livestock, the inclusion of dominance effects can be 
justified by the use of semen from a few genetically superior bulls 
and reproductive biotechnologies (such as multiple ovulation, 
embryo transfer, and in vitro fertilization). Consequently, the 
number of full sibling progenies increases, which increases 
the relationships within and between generations, as well as 

Figure 3. Farm distances in Km. F1—Dourados (MS); F2—Valparaíso (SP); F3—Cotegipe (BA); F4—Água Clara (MS); F5—Goianésia (GO); F6—Juruena (MT); F7—Piacatu (SP).
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dominance genetic relationships (VanRaden, 1992). The inclusion 
of such effects was reported by Varona and Misztal (1999), who 
noted that the inclusion of dominance effects into genetic 
evaluations enables the determination of specific combinations 
for mating schemes, and the separation of additive variation 
from the rest, especially in populations containing many full-
sibs in their pedigree. Hayes and Miller (2000) and Ishida and 
Mukai (2004) stated that ignoring non-additive genetic variance 
in breeds could result in biased predictions of genetic values, 
which would affect the animal’s classification as well as national 
and international comparisons.

Fouilloux and Laloë (2001) developed the criterion of 
admission to the group of connected herds (CACO) method to 
compare the average CD values of all herds and to cluster them. 
This method was applied by Pegolo et al. (2012) in Brazilian Nellore 
cattle using registered animal data from elite herds (National 
Association of Breeders and Researchers, ANCP, Ribeirão Preto, 
Brazil). They recorded weight after 210 d (h2 = 0.25) to investigate 
the trajectory of connectedness from 1999 to 2003 and from 
2004 to 2008. They found moderate estimates of pedigree-based 
connectedness and attributed the increase in connectedness 
to the use of AI, which increased 47% with the semen sales in 
that period. According to ASBIA (2011), only 10% of dams were 
inseminated at reproductive age. AI affects the measurement of 
genetic connectedness among herds (Fouilloux et al., 2008) and 
strongly influences the quality of pedigree information.

AI can accelerate genetic improvement in a population as 
it allows semen from animals with a higher genetic value to 
be utilized, which are not normally available for use in natural 
matings. It also increases the number of offspring per sire. Despite 
the growing use of AI, most commercial beef cattle programs in 
Brazil still use unproven sires for natural mating. In addition, 
programs that use AI still need a bull to mate with their dams 
in the case of AI failure, which is common on commercial farms 
where animals are destined for slaughter. As the MU evaluated 
in this study were not part of consolidated breeding programs, 
the use of AI was more than 50% of that in all farms, because 
of known paternity scenarios needed for the genetic evaluations. 
Thus, the use of the MS mating system in these programs incurs 
the costs of maintaining a non-pregnant cow in the herd.

Changes in connectedness levels reported by Pegolo et  al. 
(2012) showed that herd descriptors, such as the number of 
animals in the herd, the number of sires used in the herd, the 
percentage of connecting sires, the percentage of progeny from 
connecting sires, and the percentage of calves with unknown 
sires, cannot fully explain how the herds are connected. The use 
of different types or combinations of relationship matrices to 
those used in our study may be a viable approach to understand 
the complexity of genetic connectedness in livestock species.

Here, we describe the first application of genomic 
connectedness in Brazilian Nellore cattle. This study shows how 
genomic information can increase connectedness measures 
when pedigree information is not complete due to multiple 
sire systems. Collectively, through the use of genomics and by 
accounting for non-additive gene action, we can better reflect 
signals of connectedness not captured by pedigree-based 
counterparts.

Conclusions
Genetic connectedness plays a key role in the quality of genetic 
value comparisons across MU. We used PEVD and CD to assess 
genomic connectedness measures in Nellore cattle field data, 

accounting for the presence of non-additive gene action. 
Our findings show that genomic information can capture 
connectedness signals that may be missed from the pedigree, 
providing a more precise picture of connectedness. Working with 
novel traits can be challenging when they are hard to measure, 
because only a few breeding programs possess the infrastructure 
and logistics to collect phenotypes such as the FA profile of meat. 
We show that it is possible to capture connectedness signals 
from samples of different farms within and between different 
breeding programs using a specific phenotype (C14:0) with low 
heritability. We also confirm that the use of AI, even though still 
used at low levels in the country (16%), has an important role 
in connecting herds. Furthermore, we observed that the use of 
additive and non-additive genomic kernel relationship matrices 
can enhance the capture of connectedness measures compared 
to purely additive counterparts.
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